1
|
Cao Y, Chen F, Zhu S, Zhu D, Qi H. Staphylococcus aureus infection initiates hypoxia-mediated STIP1 homology and U-box containing protein 1 upregulation to trigger osteomyelitis. Toxicon 2024; 248:108049. [PMID: 39059559 DOI: 10.1016/j.toxicon.2024.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although little is known about the regulatory mechanisms underlying the pathogenesis of osteomyelitis caused by Staphylococcus aureus (S. aureus), hypoxia-inducible factor-1α (HIF-1α) and STIP1 homology and U-box containing protein 1 (STUB1) have been found to be up-regulated in both S. aureus infected MC3T3-E1 cells and in patients with osteomyelitis. HIF-1α directly targets STUB1 to induce its expression. In MC3T3-E1 cells infected with S. aureus, silencing HIF-1α and STUB1 and administering the hypoxia inhibitor IDF-11774 consistently increased the expression of OSX and RUNX2, as well as the levels of alizarin Red S and alkaline phosphatase activity. In a mouse model of osteomyelitis, S. aureus infection elevated HIF-1α expression and serum STUB1 levels. Interleukin (IL)-6, IL-1β, and C-reactive protein levels in serum were reduced after treatment with the hypoxia inhibitor IDF-11774. Following an infection with S. aureus, hypoxia was activated to cause STUB1 overexpression by directly targeting HIF-1α, ultimately causing osteomyelitis symptoms such as osteogenesis and mineralization defected and increased inflammation. This study presents a novel signaling cascade in the pathogenesis of osteomyelitis involving hypoxia/HIF-1α/STUB1. This signaling cascade may be a target for therapeutic interventions.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Chen
- Department of Pediatric, Luodian Hospital, Shanghai, China
| | - Suyue Zhu
- Department of Pediatric, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, China
| | - Dongsheng Zhu
- Department of Pediatric Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.
| | - Han Qi
- Department of Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
2
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Qi X, Bie M, Jiang R, Kang F. HIF-1α regulates osteoclastogenesis and alveolar bone resorption in periodontitis via ANGPTL4. Arch Oral Biol 2023; 153:105736. [PMID: 37290266 DOI: 10.1016/j.archoralbio.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The mechanism of alveolar bone resorption caused by periodontitis is not fully understood. We sought to investigate whether microenvironmental changes of local hypoxia are involved in these processes. METHODS In this study, periodontitis models of control mice and knockout of Hypoxia Induced Factor 1α (HIF-1α) harboring Cathepsin K (CTSK) Cre mice were constructed to study the effect of osteoclasts affected by hypoxic environment on alveolar bone resorption. RAW264.7 cells were subsequently induced by CoCl2 to observe the effects of HIF-1α and Angiopoietin-like Protein 4 (ANGPTL4) on osteoblast differentiation and fusion. RESULTS The degree of alveolar bone resorption in the periodontitis tissues was lesser in mice with conditional knockout of HIF-1α in osteoclasts than in wild-type mice. We also observed that HIF-1α conditional knockout mice had fewer osteoclasts on the alveolar bone surface than control mice. HIF-1α increases the expression of ANGPTL4 and promotes the differentiation of RAW264.7 cells into osteoblasts and cell fusion under chemically simulated hypoxic conditions. CONCLUSION HIF-1α regulates osteoclastogenesis and participates in bone resorption in periodontitis through ANGPTL4.
Collapse
Affiliation(s)
- Xin Qi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - MiaoMiao Bie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Runyang Jiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Elsasser TH, Ma B, Ravel J, Kahl S, Gajer P, Cross A. Short-term feeding of defatted bovine colostrum mitigates inflammation in the gut via changes in metabolites and microbiota in a chicken animal model. Anim Microbiome 2023; 5:6. [PMID: 36703224 PMCID: PMC9878500 DOI: 10.1186/s42523-023-00225-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Nondrug supplement strategies to improve gut health have largely focused on the effects of individual compounds to improve one aspect of gut homeostasis. However, there is no comprehensive assessment of the reproducible effects of oral, short-term, low-level colostrum supplementation on gut inflammation status that are specific to the ileum. Herein, a chicken animal model highly responsive to even mild gut inflammatory stimuli was employed to compare the outcomes of feeding a standard diet (CON) to those of CON supplemented with a centrifuge-defatted bovine colostrum (BC) or a nonfat dried milk (NFDM) control on the efficiency of nutrient use, ileal morphology, gut nitro-oxidative inflammation status, metabolites, and the composition of the microbiota. RESULTS A repeated design, iterative multiple regression model was developed to analyze how BC affected ileal digesta-associated anti-inflammatory metabolite abundance coincident with observed changes in the ileal microbiome, mitigation of epithelial inflammation, and ileal surface morphology. An improved whole body nutrient use efficiency in the BC group (v CON and NFDM) coincided with the observed increased ileum absorptive surface and reduced epithelial cell content of tyrosine-nitrated protein (NT, biomarker of nitro-oxidative inflammatory stress). Metabolome analysis revealed that anti-inflammatory metabolites were significantly greater in abundance in BC-fed animals. BC also had a beneficial BC impact on microbiota, particularly in promoting the presence of the bacterial types associated with eubiosis and the segmented filamentous bacteria, Candidatus Arthromitus. CONCLUSION The data suggest that an anti-inflammatory environment in the ileum was more evident in BC than in the other feeding groups and associated with an increased content of statistically definable groups of anti-inflammatory metabolites that appear to functionally link the observed interactions between the host's improved gut health with an observed increase in whole body nutrient use efficiency, beneficial changes in the microbiome and immunometabolism.
Collapse
Affiliation(s)
- Ted H. Elsasser
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Bing Ma
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jacques Ravel
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Stanislaw Kahl
- grid.463419.d0000 0001 0946 3608Animal Biosciences and Biotechnology Laboratory, USA Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705 USA
| | - Pawel Gajer
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Alan Cross
- grid.411024.20000 0001 2175 4264Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
5
|
Li C, Humayun M, Walker GM, Park KY, Connors B, Feng J, Pellitteri Hahn MC, Scarlett CO, Li J, Feng Y, Clark RL, Hefti H, Schrope J, Venturelli OS, Beebe DJ. Under-Oil Autonomously Regulated Oxygen Microenvironments: A Goldilocks Principle-Based Approach for Microscale Cell Culture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104510. [PMID: 35118834 PMCID: PMC8981459 DOI: 10.1002/advs.202104510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Indexed: 05/14/2023]
Abstract
Oxygen levels in vivo are autonomously regulated by a supply-demand balance, which can be altered in disease states. However, the oxygen levels of in vitro cell culture systems, particularly microscale cell culture, are typically dominated by either supply or demand. Further, the oxygen microenvironment in these systems is rarely monitored or reported. Here, a method to establish and dynamically monitor autonomously regulated oxygen microenvironments (AROM) using an oil overlay in an open microscale cell culture system is presented. Using this method, the oxygen microenvironment is dynamically regulated via the supply-demand balance of the system. Numerical simulation and experimental validation of oxygen transport within multi-liquid-phase, microscale culture systems involving a variety of cell types, including mammalian, fungal, and bacterial cells are presented. Finally, AROM is applied to establish a coculture between cells with disparate oxygen demands-primary intestinal epithelial cells (oxygen consuming) and Bacteroides uniformis (an anaerobic species prevalent in the human gut).
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi University, Madison, MS, 38677, USA
| | - Keon Young Park
- Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Bryce Connors
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Feng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Molly C Pellitteri Hahn
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Cameron O Scarlett
- Analytical Instrumentation Center-Mass Spec Facility, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yanbo Feng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ryan L Clark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hunter Hefti
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jonathan Schrope
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
6
|
Krzywinska E, Sobecki M, Nagarajan S, Zacharjasz J, Tambuwala MM, Pelletier A, Cummins E, Gotthardt D, Fandrey J, Kerdiles YM, Peyssonnaux C, Taylor CT, Sexl V, Stockmann C. The transcription factor HIF-1α mediates plasticity of NKp46+ innate lymphoid cells in the gut. J Exp Med 2022; 219:212964. [PMID: 35024767 PMCID: PMC8763886 DOI: 10.1084/jem.20210909] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22-producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ-producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ-expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22-expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22-inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.
Collapse
Affiliation(s)
| | - Michal Sobecki
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | | | - Eoin Cummins
- School of Medicine, University College Dublin, Conway Institute, Dublin, Ireland
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Joachim Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Yann M Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique UMR7280, Marseille, France
| | - Carole Peyssonnaux
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Cormac T Taylor
- School of Medicine, University College Dublin, Conway Institute, Dublin, Ireland
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | |
Collapse
|
7
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP, Goh J, Maier AB, Kennedy BK. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab 2022; 33:136-146. [PMID: 34952764 DOI: 10.1016/j.tem.2021.11.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Clarissa Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shou Ping Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore.
| |
Collapse
|
8
|
Zong Y, Chen W, Zhao Y, Suo X, Yang X. Salmonella Infection Causes Hyperglycemia for Decreased GLP-1 Content by Enteroendocrine L Cells Pyroptosis in Pigs. Int J Mol Sci 2022; 23:ijms23031272. [PMID: 35163196 PMCID: PMC8835732 DOI: 10.3390/ijms23031272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
Inflammatory responses have been shown to induce hyperglycemia, yet the underlying mechanism is still largely unclear. GLP-1 is an important intestinal hormone for regulating glucose homeostasis; however, few studies have investigated the influence of digestive tract Salmonella infection on enteroendocrine L cell secretions. In this study, we established a model of Salmonella-infected piglets by oral gavage in order to analyze the effects of Salmonella infection on enteroendocrine L cell function. Furthermore, in vitro lipopolysaccharide (LPS) was administered to STC-1 cells to clarify its direct effect on GLP-1 secretion. The results showed that significantly increased blood glucose in the group of Salmonella-infected piglets was observed, and Salmonella infection decreased blood GLP-1 content. Then, ileal epithelium damage was observed by histological detection, and this was further verified by TUNEL staining. We identified activation of TLR signaling demonstrating up-regulated expressions of TLR4 and nuclear factor-kappa B (NF-ΚB). Furthermore, it was shown that Salmonella induced pyroptosis of enteroendocrine L cells and enhanced the secretion of IL-1β through augmenting gene and protein expressions of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a carboxyl-terminal CARD (ASC), Caspase 1, and gasdermin D (GSDMD). Meanwhile, in vitro LPS treatment induced the pyroptosis of STC-1 cells and reduced the secretion of GLP-1. Altogether, the results demonstrated that Salmonella infection can reduce secretion of GLP-1 by inducing pyroptosis of intestinal L cells, which may eventually result in hyperglycemia. The results provided evidence for the cause of hyperglycemia induced by inflammation and shed new light on glucose homeostasis regulation.
Collapse
|
9
|
OUP accepted manuscript. Med Mycol 2022; 60:6517703. [DOI: 10.1093/mmy/myac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/14/2022] Open
|
10
|
Vanderhaeghen T, Beyaert R, Libert C. Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Front Immunol 2021; 12:684085. [PMID: 34149725 PMCID: PMC8211996 DOI: 10.3389/fimmu.2021.684085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid-induced (GC) and hypoxia-induced transcriptional responses play an important role in tissue homeostasis and in the regulation of cellular responses to stress and inflammation. Evidence exists that there is an important crosstalk between both GC and hypoxia effects. Hypoxia is a pathophysiological condition to which cells respond quickly in order to prevent metabolic shutdown and death. The hypoxia inducible factors (HIFs) are the master regulators of oxygen homeostasis and are responsible for the ability of cells to cope with low oxygen levels. Maladaptive responses of HIFs contribute to a variety of pathological conditions including acute mountain sickness (AMS), inflammation and neonatal hypoxia-induced brain injury. Synthetic GCs which are analogous to the naturally occurring steroid hormones (cortisol in humans, corticosterone in rodents), have been used for decades as anti-inflammatory drugs for treating pathological conditions which are linked to hypoxia (i.e. asthma, ischemic injury). In this review, we investigate the crosstalk between the glucocorticoid receptor (GR), and HIFs. We discuss possible mechanisms by which GR and HIF influence one another, in vitro and in vivo, and the therapeutic effects of GCs on HIF-mediated diseases.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Centre for Inflammation Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Ohya S, Matsui M, Kajikuri J, Endo K, Kito H. Increased Interleukin-10 Expression by the Inhibition of Ca 2+-Activated K + Channel K Ca3.1 in CD4 +CD25 + Regulatory T Cells in the Recovery Phase in an Inflammatory Bowel Disease Mouse Model. J Pharmacol Exp Ther 2021; 377:75-85. [PMID: 33504590 DOI: 10.1124/jpet.120.000395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases of the gastrointestinal tract arising from abnormal responses of the innate and adaptative immune systems. Interleukin (IL)-10-producing CD4+CD25+ regulatory T (Treg) cells play a protective role in the recovery phase of IBD. In the present study, the effects of the administration of the selective Ca2+-activated K+ channel KCa3.1 inhibitor TRAM-34 on disease activities were examined in chemically induced IBD model mice. IBD disease severity, as assessed by diarrhea, visible fecal blood, inflammation, and crypt damage in the colon, was significantly lower in mice administered 1 mg/kg TRAM-34 than in vehicle-administered mice. Quantitative real-time polymerase chain reaction examinations showed that IL-10 expression levels in the recovery phase were markedly increased by the inhibition of KCa3.1 in mesenteric lymph node (mLN) Treg cells of IBD model mice compared with vehicle-administered mice. Among several positive and negative transcriptional regulators (TRs) for IL-10, three positive TRs-E4BP4, KLF4, and Blimp1-were upregulated by the inhibition of KCa3.1 in the mLN Treg cells of IBD model mice. In mouse peripheral CD4+CD25+ Treg cells induced by lectin stimulation, IL-10 expression and secretion were enhanced by the treatment with TRAM-34, together with the upregulation of E4BP4, KLF4, and Blimp1. Collectively, the present results demonstrated that the pharmacological inhibition of KCa3.1 decreased IBD symptoms in the IBD model by increasing IL-10 production in peripheral Treg cells and that IL-10high Treg cells produced by the treatment with KCa3.1 inhibitor may contribute to efficient Treg therapy for chronic inflammatory disorders, including IBD. SIGNIFICANCE STATEMENT: Pharmacological inhibition of Ca2+-activated K+ channel KCa3.1 increased IL-10 expression in peripheral Treg cells, together with the upregulation of the transcriptional regulators of IL-10: Krüppel-like factor 4, E4 promoter-binding protein 4, and/or B lymphocyte-induced maturation protein 1. The manipulation of IL-10high-producing Treg cells by the pharmacological inhibition of KCa3.1 may be beneficial in the treatment of chronic inflammatory diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Endo
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
12
|
Yuan D, Yang Z, Chen Y, Li S, Tan B, Yu Q. Hypoxia-induced SPOP attenuates the mobility of trophoblast cells through inhibition of the PI3K/AKT/GSK3β pathway. Cell Biol Int 2021; 45:599-611. [PMID: 33200474 DOI: 10.1002/cbin.11501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Placental hypoxia has been implicated in pregnancy pathologies such as pre-eclampsia and intrauterine growth restriction. However, the underlying mechanism by which the trophoblasts respond to hypoxia remains unclear. Speckle-type POZ protein (SPOP), an E3 ubiquitin ligase adapter, was previously reported to play important roles in various physiological and pathological processes. This study aims to investigate the expression and biological functions of SPOP after exposure to cobalt chloride (CoCl2 )-mimicked hypoxia conditions using human trophoblast-derived choriocarcinoma cell lines and extravillous cytotrophoblast. These data showed that SPOP protein was directly induced by CoCl2 -mimicked hypoxia and regulated by HIF-1α at the posttranscription level. CoCl2 treatment could dramatically influence the localization of SPOP in trophoblasts, especially the accumulation of SPOP into the nucleus. In addition, both CoCl2 -mimicked hypoxia and induction of endogenous SPOP expression by lentivirus transfection attenuated the migration and invasion abilities of trophoblasts. Furthermore, we demonstrated that SPOP was involved in CoCl2 -induced the inhibition of the PI3K/AKT/GSK3β pathway in placental trophoblasts. Taken together, these data indicate that accumulation of HIF-1α augments the expression of SPOP in trophoblasts, which impairs trophoblastic mobility by targeting the PI3K/AKT/GSK3β pathway. This potentially leads to insufficient uterine spiral artery remodeling and suboptimal placental perfusion, and thus the development of pregnancy-related complication.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, Chongqing Medical University Affiliated Second Hospital, Chongqing, China
| | - Zhu Yang
- Department of Gynecology, Chongqing Medical University Affiliated Second Hospital, Chongqing, China.,Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yiyu Chen
- Department of Clinical Laboratory, Chongqing Medical University Affiliated Stomatological Hospital, Chongqing, China
| | - Siyuan Li
- Department of Laboratory Medicine, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Benxu Tan
- Department of Oncology, Chongqing Medical University Affiliated First Hospital, Chongqing, China
| | - Qiubo Yu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
15
|
Comparison of In Vitro Chlamydia muridarum Infection Under Aerobic and Anaerobic Conditions. Curr Microbiol 2020; 77:1580-1589. [PMID: 32253468 DOI: 10.1007/s00284-020-01966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Although Chlamydia infects host body regions that are hypoxic to anoxic, standard Chlamydiae culture conditions are in CO2 enriched (5%) atmospheric oxygen (21%). Because of its success in causing disease in principally anaerobic body sites, e.g., vaginal tract, we hypothesize that Chlamydia has an anaerobic life cycle that plays a role in its maintenance in the host. Using a model system developed for the anaerobic culture of mammalian cells, we assessed the anoxic infectious cycle of C. muridarum in anaerobically cultured HeLa 229 cells. In the absence of oxygen, C. muridarum is capable of going through their life cycle, although its cycle is slowed (2 days post-infection anaerobic vs. 1 day aerobic). Interestingly, in addition to a slower rate of replication, there is a reduction in Chlamydia inclusion number and size as compared to aerobic controls. Anaerobic infected host cell physiology also changed with IL-6 and IL-8 production significantly lower (p ≤ 0.05) compared to aerobic infected host cells (day 4 post-infection). These findings demonstrate that Chlamydia are capable of replicating in the absence of oxygen.
Collapse
|
16
|
Solanki S, Devenport SN, Ramakrishnan SK, Shah YM. Temporal induction of intestinal epithelial hypoxia-inducible factor-2α is sufficient to drive colitis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G98-G107. [PMID: 31241981 PMCID: PMC6734372 DOI: 10.1152/ajpgi.00081.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a notable feature of inflammatory bowel disease and chronic induction of hypoxia-inducible factor (HIF)-1α and HIF-2α (endothelial PAS domain protein 1, EPAS1) play important, but opposing, roles in its pathogenesis. While activation of HIF-1α decreases intestinal inflammation and is beneficial in colitis, activation of HIF-2α exacerbates colitis and increases colon carcinogenesis in animal models, primarily due to the role of epithelial HIF-2α in mounting a potent inflammatory response. Previous work from our laboratory showed that mice overexpressing intestinal epithelial HIF-2α led to massive intestinal inflammation and decreased survival. As oxygen homeostasis and HIFs are critical in embryonic development, it is not clear whether the observed intestinal inflammatory response was secondary to developmental defects. To address this question, the present study used a mouse model to temporally modulate expression of intestinal epithelial HIF-2α to assess its role in mediating inflammatory response. Remarkably, activation of HIF-2α in intestinal epithelial cells in adult mice increased expression of proinflammatory mediators; however, no decrease in survival was observed. Furthermore, in an acute model of colitis, activation of HIF-2α was sufficient to exacerbate colitis. These data confirm our previous finding that epithelial HIF-2α mediates inflammatory response and demonstrates that activation of HIF-2α is sufficient to exacerbate colitis.NEW & NOTEWORTHY Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestinal tract. Hypoxia and activation of its downstream transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are notable features of IBD. HIF-1α has well-characterized protective roles in IBD; however, the role of HIF-2α has been less studied. Using novel HIF-2α mouse models, we show that activation of HIF-2α in intestinal epithelial cells is sufficient to exacerbate colitis.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Samantha N Devenport
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan
| | - Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Zhou H, Zhang HJ, Guan L, Zhang YN, Li Y, Sun MJ. Mechanism and therapeutic effects of Saccharomyces boulardii on experimental colitis in mice. Mol Med Rep 2018; 18:5652-5662. [PMID: 30387820 PMCID: PMC6236308 DOI: 10.3892/mmr.2018.9612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disturbance that affects a number of individuals worldwide; the precise mechanism is unclear and treatment is frequently insufficient to maintain patients in remission. Saccharomyces boulardii is a thermophilic, non‑pathogenic yeast that may be administered for prophylaxis and treatment of a variety of diarrheal diseases. Recent clinical studies have demonstrated that it may have a role in IBD; however, the mechanism of action is unclear. The hypoxia‑inducible factors (HIFs) are ubiquitously expressed regulators of cellular adaptation to hypoxia and are central to the adaptive and inflammatory responses of cells of the intestinal mucosa in patients with IBD. The present study aimed to investigate the effects of S. boulardii on dextran sulfate sodium (DSS)‑induced colitis in mice and the effects of S. boulardii on HIFs. Mice were divided into five groups (n=10 mice/group): i) Control; ii) DSS; iii) S. boulardii (Sb) + DSS; iv) normal saline (NS) + DSS; and v) Sb. For 14 consecutive days, mice from the Sb+DSS and Sb groups were given S. boulardii suspension in saline (150 mg/kg/day; final volume 0.2 ml) by oral gavage. The NS+DSS group received the same volume of NS by gavage. The Control mice received water only. From day 8 to day 14, 3.5% DSS was added to the drinking water of the DSS, Sb+DSS and NS+DSS groups to induce acute colitis. Body weight decreased and disease activity index and histological score increased in mice with DSS‑induced colitis. Oral administration of S. boulardii reduced DSS‑induced weight loss, ameliorated the histological damage and protected the colon barrier in mice with DSS‑induced colitis. The expression of HIF‑1α and HIF‑2α in colon tissues was measured by reverse transcription‑quantitative polymerase chain reaction, immunoblotting and immunohistochemistry. The increase in HIFs in the colon induced by DSS was significantly inhibited by S. boulardii treatment. The expression levels of several epithelial‑mesenchymal transition (EMT) markers and of vascular endothelial growth factor (VEGF) that are regulated by HIFs were measured. S. boulardii reduced EMT and decreased expression of VEGF that was induced by DSS treatment. These results indicated that treatment with S. boulardii ameliorated DSS‑induced colitis, partly through downregulation of HIF‑1α and HIF‑2α.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Hui-Jing Zhang
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Lin Guan
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Yi-Ning Zhang
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Yue Li
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| | - Ming-Jun Sun
- Department of Gastroenterology and Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 11000, P.R. China
| |
Collapse
|
18
|
Matuszczak E, Tylicka M, Dębek W, Sankiewicz A, Gorodkiewicz E, Hermanowicz A. Concentration of Proteasome in the Blood Plasma of Children with Acute Appendicitis, Before and After Surgery, and Its Correlation with CRP. World J Surg 2018; 42:2259-2264. [PMID: 29264727 DOI: 10.1007/s00268-017-4407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The determination of 20S proteasome concentration in the blood plasma of children with appendicitis and its correlation with CRP. DESIGN AND SETTING Thirty-one children with acute appendicitis, were randomly included into the study (age 5 years up to 17 years, mean age 11.5 + 1 years). PARTICIPANTS There were 17 girls and 14 boys. Eighteen healthy, age-matched subjects, admitted for planned surgeries served as controls. Exclusion criteria were: severe preexisting infections, immunological or cardiovascular diseases that required long-term medication, and complicated cases of appendicitis with perforation of appendix and/or peritonitis. MAIN OUTCOME MEASURES The 20S proteasome concentrations in the blood plasma of patients with acute appendicitis were highest before the surgery and were above the range of concentrations measured in controls, and the difference was statistically significant. RESULTS The 20S proteasome concentration measured 24 and 72 h after the operation, slowly decreased over time, and still did not reach the normal range, when compared with the concentration measured in controls (p < 0.05). CONCLUSIONS 20S proteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation. The method of operation-classic open appendectomy, or laparoscopic appendectomy, does not influence the general trend in 20S proteasome concentration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland.
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Dębek
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| | - Anna Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| |
Collapse
|
19
|
Valzania L, Coon KL, Vogel KJ, Brown MR, Strand MR. Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2018; 115:457-465. [PMID: 29298915 PMCID: PMC5777003 DOI: 10.1073/pnas.1719063115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gut microbes positively affect the physiology of many animals, but the molecular mechanisms underlying these benefits remain poorly understood. We recently reported that bacteria-induced gut hypoxia functions as a signal for growth and molting of the mosquito Aedes aegypti In this study, we tested the hypothesis that transduction of a gut hypoxia signal requires hypoxia-induced transcription factors (HIFs). Expression studies showed that HIF-α was stabilized in larvae containing bacteria that induce gut hypoxia but was destabilized in larvae that exhibit normoxia. However, we could rescue growth of larvae exhibiting gut normoxia by treating them with a prolyl hydroxylase inhibitor, FG-4592, that stabilized HIF-α, and inhibit growth of larvae exhibiting gut hypoxia by treating them with an inhibitor, PX-478, that destabilized HIF-α. Using these tools, we determined that HIF signaling activated the insulin/insulin growth factor pathway plus select mitogen-activated kinases and inhibited the adenosine monophosphate-activated protein kinase pathway. HIF signaling was also required for growth of the larval midgut and storage of neutral lipids by the fat body. Altogether, our results indicate that gut hypoxia and HIF signaling activate multiple processes in A. aegypti larvae, with conserved functions in growth and metabolism.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kerri L Coon
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Kevin J Vogel
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Mark R Brown
- Department of Entomology, The University of Georgia, Athens, GA 30602
| | - Michael R Strand
- Department of Entomology, The University of Georgia, Athens, GA 30602
| |
Collapse
|
20
|
Zhao M, Tang S, Xin J, Wei Y, Liu D. Reactive oxygen species induce injury of the intestinal epithelium during hyperoxia. Int J Mol Med 2017; 41:322-330. [PMID: 29138796 PMCID: PMC5746288 DOI: 10.3892/ijmm.2017.3247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Long-term therapeutic hyperoxia may exert serious toxic effects on intestinal epithelial cells in vitro and in vivo. The aim of the present study was to investigate the cause of this intestinal injury under conditions of hyperoxia. Caco-2 cells were treated with different concentrations of hydrogen peroxide (H2O2) and 85% hyperoxia for 24 h. higher rates of injury of Caco-2 cells were observed in the hyperoxia and H2O2 groups compared with the control group. The reactive oxygen species (ROS) level of the hyperoxia group was significantly higher compared with that of the 400 µM H2O2 group. The protein and gene levels of RelA, RelB, hypoxia‑inducible factor-1α, tumor necrosis factor-α and apoptosis signal‑regulating kinase 1 were significantly higher in the hyperoxia and H2O2 groups compared with those in the control group. In conclusion, during hyperoxia, intestinal epithelial cells were destroyed and the levels of ROS were increased. Therefore, ROS may play an important role in intestinal injury in a hyperoxic environment.
Collapse
Affiliation(s)
- Min Zhao
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Shimiao Tang
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Junchi Xin
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yingliang Wei
- Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Dongyan Liu
- Medical Research Center, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
21
|
He L, Zhou X, Huang N, Li H, Cui Z, Tian J, Jiang Q, Liu S, Wu J, Li T, Yao K, Yin Y. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets. Oncotarget 2017; 8:91965-91978. [PMID: 29190890 PMCID: PMC5696156 DOI: 10.18632/oncotarget.20555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is an important cellular metabolite that participates in energy production and amino acid metabolism. However, the protective effects and mechanism of AKG on mucosal lesions have not been well understood. This study was conducted to investigate the effects of dietary AKG supplementation on epithelial restitution in early-weaning piglets under Escherichia coli lipopolysaccharide (LPS) induction. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were dietary treatment (basal diet or AKG diet) and inflammatory challenge (LPS or saline). The results showed that AKG supplementation improved the growth performance and intestinal morphology in the LPS-induced early-weaning piglets. Compared with the basal diet, the AKG diet remarkably decreased the concentration and mRNA expression of intestinal inflammatory cytokines (IL-1β, IL-6, and IL-12) in the LPS-induced piglets. Moreover, AKG administration upregulated the mRNA expression of nutrient-sensing transporters (GLUT-2, SGLT-1, PEPT-1, I-FABP2) in the small intestine of both saline- and LPS-treated piglets, and improved the distribution and expression of tight-junction genes andproteins (ZO-1, Occludin, Claudins, E-cadherin). Collectively, our findings indicate that AKG has the potential to alleviate intestinal inflammatory response and improve epithelial restitution and nutrient-sensing ability under stress injury in early-weaning piglets, and it also provides an experimental basis for enteral use of AKG in swine production and clinical application to prevent intestinal epithelial damage.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhijie Cui
- Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junquan Tian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Qian Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Shaojuan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Jian Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410006, China
| |
Collapse
|
22
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
23
|
Cavadas MAS, Cheong A, Taylor CT. The regulation of transcriptional repression in hypoxia. Exp Cell Res 2017; 356:173-181. [PMID: 28219680 DOI: 10.1016/j.yexcr.2017.02.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Alex Cheong
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences and Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
24
|
Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest 2016; 126:3716-3724. [PMID: 27454299 DOI: 10.1172/jci84433] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.
Collapse
|
25
|
Abstract
Uncontrolled or non-resolving inflammation underpins a range of disease states including rheumatoid arthritis, inflammatory bowel disease and atherosclerosis. Hypoxia is a prominent feature of chronically inflamed tissues. This is due to elevated oxygen consumption by highly metabolically active inflamed resident cells and activated infiltrating immunocytes, as well as diminished oxygen supply due to vascular dysfunction. Tissue hypoxia can have a significant impact upon inflammatory signaling pathways in immune and non-immune cells and this can impact upon disease progression. In this review, we will discuss the relationship between tissue hypoxia and inflammation and identify how hypoxia-sensitive signaling pathways are potential therapeutic targets in chronic inflammatory disease.
Collapse
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Medical Science & The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ciara E Keogh
- School of Medicine and Medical Science & The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Crean
- School of Medicine and Medical Science & The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science & The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|