1
|
Hawley JA, Forster SC, Giles EM. Exercise, the Gut Microbiome and Gastrointestinal Diseases: Therapeutic Impact and Molecular Mechanisms. Gastroenterology 2025:S0016-5085(25)00329-4. [PMID: 39978410 DOI: 10.1053/j.gastro.2025.01.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
The benefits of regular physical activity (PA) on disease prevention and treatment outcomes have been recognized for centuries. However, only recently has interorgan communication triggered by the release of "myokines" from contracting skeletal muscles emerged as a putative mechanism by which exercise confers protection against numerous disease states. Cross-talk between active skeletal muscles and the gut microbiota reveal how regular PA boosts host immunity, facilitates a more diverse gut microbiome and functional metabolome, and plays a positive role in energy homeostasis and metabolic regulation. In contrast, and despite the large interindividual variation in the human gut microbiome, reduced microbial diversity has been implicated in several diseases of the gastrointestinal (GI) tract, systemic immune diseases, and cancers. Although prolonged, intense, weight-bearing exercise conducted in extreme conditions can increase intestinal permeability, compromising gut-barrier function and resulting in both upper and lower GI symptoms, these are transient and benign. Accordingly, the gut microbiome has become an attractive target for modulating many of the positive effects of regular PA on GI health and disease, although the precise dose of exercise required to induce favourable changes in the microbiome and enhance host immunity is currently unknown. Future efforts should concentrate on gaining a deeper understanding of the factors involved in exercise-gut interactions through the generation of functional 'omics readouts (ie, metatranscriptomics, metaproteomics, and metabolomics) that have the potential to identify functional traits of the microbiome that are linked to host health and disease states, and validating these interactions in experimental and preclinical systems. A greater understanding of how PA interacts with the GI tract and the microbiome may enable targeted therapeutic strategies to be developed for individuals and populations at risk for a variety of GI diseases.
Collapse
Affiliation(s)
- John A Hawley
- The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, United Kingdom.
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Edward M Giles
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Lu X, Chen Y, Shi Y, Shi Y, Su X, Chen P, Wu D, Shi H. Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention. Exp Gerontol 2025; 200:112685. [PMID: 39818278 DOI: 10.1016/j.exger.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging. This review provides a comprehensive summary of different forms of exercise for older adults and the multifaceted role of exercise in anti-aging, focusing on the biological functions and sources of these exerkines. We further explore how exerkines combat aging-related diseases, such as type 2 diabetes and osteoporosis. By stimulating the secretion of these exerkines, exercise supports healthy longevity by promoting tissue homeostasis and metabolic balance. Additionally, the integration of exercise-induced exerkines into therapeutic strategies represents a promising approach to mitigating age-related pathologies at the molecular level. As our understanding deepens, it may pave the way for personalized interventions leveraging physical activity to enhance healthspan and improve quality of life.
Collapse
Affiliation(s)
- Xuan Lu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Ying Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Yue Shi
- School of Athletic, Shanghai University of Sport, Shanghai 200438, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peijie Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Die Wu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Hui Shi
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Ayaz E, Dincer B, Cinbaz G, Karacan E, Benli R, Mete E, Bilgiç H, Mesci B. The Effect of Exercise on Spexin and Follistatin in Elderly Individuals. J Cachexia Sarcopenia Muscle 2025; 16:e13692. [PMID: 39895162 PMCID: PMC11788494 DOI: 10.1002/jcsm.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND In adipose tissue-muscle crosstalk mechanisms, the interaction of adipokines and myokines is known to be critical for maintaining the body's metabolic balance in age-related metabolic disorders. The aim of the study investigate the effects of 12 weeks of aerobic and resistance exercise training on spexin and follistatin and their relationship with each other. METHODS This study was a multicentre, randomized controlled study conducted at two assisted living facilities with participants aged ≥ 65. Among the 66 subjects, 33 were allocated to the exercise group (E) and 33 to the control group (C). The exercise group was administered 50 min of exercise by expert physiotherapists 1 day a week for 12 weeks. Participants in the intervention groups performed exercise assignments two extra days a week, tailored to their specific circumstances and supervised by the institution's physiotherapists. Spexin, follistatin and measurements of metabolic syndrome parameters were performed at the beginning and after 12 weeks. RESULTS The mean age of the 62 participants who completed the study (E n = 31, C n = 31) was 73.25 ± 6.44 years, and 62.9% were female. While spexin (E = 1090.94 ± 533.66, C = 1142.91 ± 550.68 pg/mL, p > 0.05) and follistatin (E = 50.52 ± 24.35, C = 50.00 ± 23.52 ng/mL, p > 0.05) values were similar in the two groups at baseline, the values of spexin (E = 1311.32 ± 513.66, C = 1033.27 ± 486.48, p < 0.0001; η2 = 0.387) and follistatin (E = 64.79 ± 32.35, C = 48.16 ± 26.27, p < 0.0001; η2 = 0.267) in the exercise group were higher than in the control group at week 12. At the 12th week, neck circumference (38.32 ± 3.41, 37.16 ± 3.15, p = 0.002), waist circumference (102.64 ± 13.38, 98.54 ± 14.47, p < 0.0001), hip circumference (105.70 ± 15.43, 102.93 ± 13.48, p < 0.0001), body fat mass (22.69 ± 7.39, 20.45 ± 6.22, p < 0.0001) and systolic and diastolic blood pressure (137.19 ± 13.80, 124.9 ± 15.18, p = 0.0001, 77.38 ± 12.10, 72.61 ± 9.26, p = 0.043) decreased, and body muscle mass (46.32 ± 8.43, 49.03 ± 8.58, p < 0.0001) increased in the exercise group compared to baseline. A correlation was observed between the change in follistatin level and the change in spexin level (r = 0.438, p = 0.001). A negative correlation was found between the amount of decrease in body fat mass and the decrease in spexin level (r = -0.380, p = 0.005). A positive correlation was found between the increase in body muscle mass and the increase in spexin and follistatin (r = 0.431, p = 0.001; r = 0.490, p < 0.0001, respectively). CONCLUSIONS It was found that spexin, which provides metabolic homeostasis, and follistatin, which expresses the increase in muscle mass, increased with the implementation of a 12-week aerobic and resistance exercise program in elderly individuals, and these increases were found to be associated with each other. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05251597.
Collapse
Affiliation(s)
- Elif Yıldırım Ayaz
- Internal Medicine Clinic, Sultan 2. Abdülhamid Han Training and Research HospitalUniversity of Health SciencesÜsküdarİstanbulTurkey
| | - Berna Dincer
- Department of Internal Medicine NursingFaculty of Health Sciences, Istanbul Medeniyet UniversityKartalİstanbulTurkey
| | - Gülser Cinbaz
- Department of Internal Medicine NursingFaculty of Health Sciences, Istanbul Medeniyet UniversityKartalİstanbulTurkey
| | - Esra Karacan
- Department of Physiothetapy and Rehabilitation, Health Science FacultyYeditepe UniversityAtaşehirİstanbulTurkey
| | - Reyhan Kaygusuz Benli
- Department of Physiothetapy and Rehabilitation, Health Science FacultyDemiroglu Science UniversityŞişliİstanbulTurkey
| | - Emel Mete
- Department of Internal Medicine NursingFaculty of Health Sciences, Istanbul Medeniyet UniversityKartalİstanbulTurkey
| | - Hilal Bilgiç
- İnternal Medicine ClinicBagcılar Education and Research HospitalBağcılarİstanbulTurkey
| | - Banu Mesci
- Internal Medicine ClinicGöztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul Medeniyet UniversityKadıköyİstanbulTurkey
| |
Collapse
|
4
|
Wang J, Jia D, Zhang Z, Wang D. Exerkines and Sarcopenia: Unveiling the Mechanism Behind Exercise-Induced Mitochondrial Homeostasis. Metabolites 2025; 15:59. [PMID: 39852400 PMCID: PMC11767263 DOI: 10.3390/metabo15010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Sarcopenia, characterized by the progressive loss of muscle mass and strength, is linked to physical disability, metabolic dysfunction, and an increased risk of mortality. Exercise therapy is currently acknowledged as a viable approach for addressing sarcopenia. Nevertheless, the molecular mechanisms behind exercise training or physical activity remain poorly understood. The disruption of mitochondrial homeostasis is implicated in the pathogenesis of sarcopenia. Exercise training effectively delays the onset of sarcopenia by significantly maintaining mitochondrial homeostasis, including promoting mitophagy, improving mitochondrial biogenesis, balancing mitochondrial dynamics, and maintaining mitochondrial redox. Exerkines (e.g., adipokines, myokines, hepatokines, and osteokines), signaling molecules released in response to exercise training, may potentially contribute to skeletal muscle metabolism through ameliorating mitochondrial homeostasis, reducing inflammation, and regulating protein synthesis as a defense against sarcopenia. Methods: In this review, we provide a detailed summary of exercise-induced exerkines and confer their benefit, with particular focus on their impact on mitochondrial homeostasis in the context of sarcopenia. Results: Exercise induces substantial adaptations in skeletal muscle, including increased muscle mass, improved muscle regeneration and hypertrophy, elevated hormone release, and enhanced mitochondrial function. An expanding body of research highlights that exerkines have the potential to regulate processes such as mitophagy, mitochondrial biogenesis, dynamics, autophagy, and redox balance. These mechanisms contribute to the maintenance of mitochondrial homeostasis, thereby supporting skeletal muscle metabolism and mitochondrial health. Conclusions: Through a comprehensive investigation of the molecular mechanisms within mitochondria, the context reveals new insights into the potential of exerkines as key exercise-protective sensors for combating sarcopenia.
Collapse
Affiliation(s)
- Jiayin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Zhiwang Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (D.J.)
| | - Dan Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
5
|
Esteves JV, Stanford KI. Exercise as a tool to mitigate metabolic disease. Am J Physiol Cell Physiol 2024; 327:C587-C598. [PMID: 38981607 PMCID: PMC11427015 DOI: 10.1152/ajpcell.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tissues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
Collapse
Affiliation(s)
- Joao Victor Esteves
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of General and Gastrointestinal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
6
|
Jin Y, Sun F, Yang A, Yu X, Li Y, Liang S, Jing X, Wang K, Zhang L, Xiao S, Zhang W, Wang X, Zhao G, Gao B. Insulin-like growth factor binding protein-1 and insulin in polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1279717. [PMID: 38174331 PMCID: PMC10762309 DOI: 10.3389/fendo.2023.1279717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Background Insulin-like growth factor binding protein-1 (IGFBP-1) is considered a decline in polycystic ovary syndrome (PCOS), but it remains controversial that whether such reduction is attributed to obesity. Aims This systematic review aims to explore whether IGFBP-1 is reduced in PCOS, and whether such reduction is associated with obesity. Results Our pooled study included 12 studies with a total of 450 participants. IGFBP-1 levels in PCOS were significantly lower than that in non-PCOS (SMD (95%CI)=-0.49(-0.89, -0.09), P=0.02). No significant difference in IGFBP-1 levels between patients with or without PCOS classified by BMI. Whilst, stratification by PCOS status revealed a significant decrease in IGFBP-1 in overweight (SMD (95%CI)=-0.92(-1.46, -0.37), P=0.001). When comparing fasting insulin in the same way, PCOS patients had significantly elevated fasting insulin level but not statistically declined IGFBP-1 after classified by BMI. Conclusion This meta-analysis provides evidence that the decrease of IGFBP-1 in PCOS was more strongly influenced by comorbid obesity than by PCOS itself. Additionally, contrast to previous findings that insulin significantly suppresses IGFBP-1, our results suggested that the suppression of PCOS-related hyperinsulinemia on IGFBP-1 seemed diminished. Overall, our work may provide a novel perspective on the mechanism between insulin and IGFBP-1 underlying PCOS development.
Collapse
Affiliation(s)
- Yuxin Jin
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Fei Sun
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Aili Yang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xinwen Yu
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yi Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaorui Jing
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lan Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Sa Xiao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - WenCheng Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoguang Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Guohong Zhao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Ahmadi Hekmatikar A, Nelson A, Petersen A. Highlighting the idea of exerkines in the management of cancer patients with cachexia: novel insights and a critical review. BMC Cancer 2023; 23:889. [PMID: 37730552 PMCID: PMC10512651 DOI: 10.1186/s12885-023-11391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Exerkines are all peptides, metabolites, and nucleic acids released into the bloodstream during and after physical exercise. Exerkines liberated from skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (batokines), and neurons (neurokines) may benefit health and wellbeing. Cancer-related cachexia is a highly prevalent disorder characterized by weight loss with specific skeletal muscle and adipose tissue loss. Many studies have sought to provide exercise strategies for managing cachexia, focusing on musculoskeletal tissue changes. Therefore, understanding the responses of musculoskeletal and other tissue exerkines to acute and chronic exercise may provide novel insight and recommendations for physical training to counteract cancer-related cachexia. METHODS For the purpose of conducting this study review, we made efforts to gather relevant studies and thoroughly discuss them to create a comprehensive overview. To achieve this, we conducted searches using appropriate keywords in various databases. Studies that were deemed irrelevant to the current research, not available in English, or lacking full-text access were excluded. Nevertheless, it is important to acknowledge the limited amount of research conducted in this specific field. RESULTS In order to obtain a comprehensive understanding of the findings, we prioritized human studies in order to obtain results that closely align with the scope of the present study. However, in instances where human studies were limited or additional analysis was required to draw more robust conclusions, we also incorporated animal studies. Finally, 295 studies, discussed in this review. CONCLUSION Our understanding of the underlying physiological mechanisms related to the significance of investigating exerkines in cancer cachexia is currently quite basic. Nonetheless, this demonstrated that resistance and aerobic exercise can contribute to the reduction and control of the disease in individuals with cancer cachexia, as well as in survivors, by inducing changes in exerkines.
Collapse
Affiliation(s)
- Amirhossein Ahmadi Hekmatikar
- Department of Physical Education & Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - André Nelson
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aaron Petersen
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. Physiol Rev 2023; 103:1693-1787. [PMID: 36603158 PMCID: PMC10110736 DOI: 10.1152/physrev.00017.2022] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Human skeletal muscle demonstrates remarkable plasticity, adapting to numerous external stimuli including the habitual level of contractile loading. Accordingly, muscle function and exercise capacity encompass a broad spectrum, from inactive individuals with low levels of endurance and strength to elite athletes who produce prodigious performances underpinned by pleiotropic training-induced muscular adaptations. Our current understanding of the signal integration, interpretation, and output coordination of the cellular and molecular mechanisms that govern muscle plasticity across this continuum is incomplete. As such, training methods and their application to elite athletes largely rely on a "trial-and-error" approach, with the experience and practices of successful coaches and athletes often providing the bases for "post hoc" scientific enquiry and research. This review provides a synopsis of the morphological and functional changes along with the molecular mechanisms underlying exercise adaptation to endurance- and resistance-based training. These traits are placed in the context of innate genetic and interindividual differences in exercise capacity and performance, with special consideration given to aging athletes. Collectively, we provide a comprehensive overview of skeletal muscle plasticity in response to different modes of exercise and how such adaptations translate from "molecules to medals."
Collapse
Affiliation(s)
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Górecka M, Krzemiński K, Mikulski T, Ziemba AW. ANGPTL4, IL-6 and TNF-α as regulators of lipid metabolism during a marathon run. Sci Rep 2022; 12:19940. [PMID: 36402848 PMCID: PMC9675781 DOI: 10.1038/s41598-022-17439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to reveal whether marathon running influences regulators of lipid metabolism i.e. angiopoietin-like protein 4 (ANGPTL4), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α). Plasma concentration of ANGPTL4, IL-6, TNF-α and lipids were determined in samples collected from 11 male runners before the marathon, immediately after the run and at 90 min of recovery. Plasma ANGPTL4 increased during exercise from 55.5 ± 13.4 to 78.1 ± 15.0 ng/ml (P < 0.001). This was accompanied by a significant increase in IL-6, TNF-α, free fatty acids (FFA) and glycerol (Gly) and a decrease in triacylglycerols (TG). After 90 min of recovery ANGPTL4 and TG did not differ from the exercise values, while plasma IL-6, TNF-α, FFA and Gly concentration were significantly lower. The exercise-induced increase in plasma concentration of ANGPTL4 correlated positively with the rise in plasma IL-6, TNF-α, FFA and Gly and negatively with the duration of the run. The increase in plasma IL-6 and TNF-α correlated positively with the rise in Gly. Summarizing, marathon running induced an increase in plasma ANGPTL4 and the value was higher in faster runners. The increase in plasma FFA, IL-6 and TNF-α concentration during a marathon run may be involved in plasma ANGPTL4 release, which could be a compensatory mechanism against FFA-induced lipotoxicity and oxidative stress. All of the analyzed cytokines may stimulate lipolysis during exercise.
Collapse
Affiliation(s)
- Monika Górecka
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Krzysztof Krzemiński
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Tomasz Mikulski
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Andrzej Wojciech Ziemba
- grid.413454.30000 0001 1958 0162Clinical and Research Department of Applied Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Crosstalk between the liver and kidney in diabetic nephropathy. Eur J Pharmacol 2022; 931:175219. [PMID: 35987257 DOI: 10.1016/j.ejphar.2022.175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its pathogenesis has not been fully elucidated. Recently, communication between organs has gradually become a new focus in the study of diseases pathogenesis, and abnormal interorgan communication has been proven to be involved in the occurrence and progression of many diseases. As an important metabolic organ in the human body, the liver plays an important role in maintaining homeostasis in humans. The liver secretes a series of proteins called hepatokines that affect adjacent and distal organs through paracrine or endocrine signaling pathways. In this review, we summarize some of the hepatokines identified to date and describe their roles in DN to discuss the possibility that the liver-renal axis is potentially useful as a therapeutic target for DN. We summarize the important hepatokines identified thus far and discuss their relationship with DN. We propose for the first time that the "liver-renal axis" is a potential therapeutic target in individuals with DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Haghighi A, Hajinia M, Askari R, Abbasian S, Goldfield GS. Effect of high-intensity interval training and high-intensity resistance training on Irisin and fibroblast growth factor 21 in men with overweight and obesity. Can J Physiol Pharmacol 2022; 100:937-944. [PMID: 35820184 DOI: 10.1139/cjpp-2021-0712] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adipose tissue browning is a physiological process that increases energy expenditure and may combat against obesity and its related risk factors. Fibroblast growth factor 21 and Irisin, hormones affected by exercise that also affect adipose tissue browning, have not been widely studied with regards to exercise type and duration. This study compared the effect of high-intensity interval training (HIIT) and high-intensity resistance training (HIRT) on Irisin and fibroblast growth factor 21 (FGF21) in men living with overweight and obesity. After completing a training program three times weekly for eight weeks, participants' serum levels of Irisin and FGF21 were significantly increased in the HIIT and HIRT groups compared to the control group (p<0.05). Additionally, body fat percentage and body weight in both training groups were significantly reduced in comparison with the control group (p<0.05). Thus, HIIT and HIRT programs may be used as a feasible modality to promote favourable changes in body composition and Irisin and FGF21, factors critical for browning white adipose tissue in men living with overweight and obesity.
Collapse
Affiliation(s)
- AmirHossein Haghighi
- Hakim Sabzevari University, 185150, Department of Exercise Physiology, Sabzevar, Iran (the Islamic Republic of);
| | - Morteza Hajinia
- Hakim Sabzevari University, 185150, Department of Exercise Physiology, Sabzevar, Iran (the Islamic Republic of);
| | - Roya Askari
- Hakim Sabzevari University, 185150, Department of Exercise Physiology, Sabzevar, Iran (the Islamic Republic of);
| | - Sadegh Abbasian
- Khavaran Institute of Higher Education, Department of Sport Sciences, Mashhad, Iran (the Islamic Republic of);
| | - Gary S Goldfield
- Children's Hospital of Eastern Ontario, 27338, Healthy Active Living and Obesity Research Group, Ottawa, Ontario, Canada;
| |
Collapse
|
12
|
Pino-de la Fuente F, Bórquez JC, Díaz-Castro F, Espinosa A, Chiong M, Troncoso R. Exercise regulation of hepatic lipid droplet metabolism. Life Sci 2022; 298:120522. [PMID: 35367244 DOI: 10.1016/j.lfs.2022.120522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/02/2023]
Abstract
Lipid droplets (LD) are not just lipid stores. They are now recognized as highly dynamic organelles, having a life cycle that includes biogenesis, growth, steady-state, transport, and catabolism. Importantly, LD exhibit different features in terms of size, number, lipid composition, proteins, and interaction with other organelles, and all these features exert an impact on cellular homeostasis. The imbalance of LD function causes non-alcoholic fatty liver disease (NAFLD). Studies show that exercise attenuates NAFLD by decreasing LD content; however, reports show metabolic benefits without changes in LD amount (intrahepatic triglyceride levels) in NAFLD. Due to the multiple effects of exercise in LD features, we think that these metabolic benefits occur through changes in LD features in NAFLD, rather than only the reduction in content. Exercise increases energy mobilization and utilization from storages such as LD, and is one of the non-pharmacological treatments against NAFLD. Therefore, exercise modification of LD could be a target for NAFLD treatment. Here, we review the most up-to-date literature on this topic, and focus on recent findings showing that LD features could play an important role in the severity of NAFLD.
Collapse
Affiliation(s)
- Francisco Pino-de la Fuente
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Bórquez
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
14
|
Plomgaard P, Hansen JS, Townsend LK, Gudiksen A, Secher NH, Clemmesen JO, Støving RK, Goetze JP, Wright DC, Pilegaard H. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans. Front Endocrinol (Lausanne) 2022; 13:1037948. [PMID: 36545337 PMCID: PMC9760804 DOI: 10.3389/fendo.2022.1037948] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVE Growth differentiation factor (GDF)-15 is implicated in regulation of metabolism and circulating GDF15 increases in response to exercise. The source and regulation of the exercise-induced increase in GDF15 is, however not known. METHOD Plasma GDF15 was measured by ELISA under the following conditions: 1) Arterial-to-hepatic venous differences sampled before, during, and after exercise in healthy male subjects (n=10); 2) exogenous glucagon infusion compared to saline infusion in resting healthy subjects (n=10); 3) an acute exercise bout with and without a pancreatic clamp (n=6); 4) healthy subjects for 36 hours (n=17), and 5) patients with anorexia nervosa (n=25) were compared to healthy age-matched subjects (n=25). Tissue GDF15 mRNA content was determined in mice in response to exhaustive exercise (n=16). RESULTS The splanchnic bed released GDF15 to the circulation during exercise and increasing the glucagon-to-insulin ratio in resting humans led to a 2.7-fold (P<0.05) increase in circulating GDF15. Conversely, inhibiting the exercise-induced increase in the glucagon-to-insulin ratio blunted the exercise-induced increase in circulating GDF15. Fasting for 36 hours did not affect circulating GDF15, whereas resting patients with anorexia nervosa displayed elevated plasma concentrations (1.4-fold, P<0.05) compared to controls. In mice, exercise increased GDF15 mRNA contents in liver, muscle, and adipose tissue. CONCLUSION In humans, GDF15 is a "hepatokine" which increases during exercise and is at least in part regulated by the glucagon-to-insulin ratio. Moreover, chronic energy deprivation is associated with elevated plasma GDF15, which supports that GDF15 is implicated in metabolic signalling in humans.
Collapse
Affiliation(s)
- Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Peter Plomgaard,
| | - Jakob S. Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Logan K. Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels H. Secher
- Department of Anaesthesiology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens O. Clemmesen
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rene K. Støving
- Center for Eating Disorders, Elite Research Center for Medical Endocrinology, Odense University Hospital, Odense, Denmark
- Mental Health Services in the Region of Southern Denmark, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens P. Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Copenhagen, ON, Canada
- School of kinesiology, Faculty of Land and Food Systems and British Columbia (BC) Children’s Hospital Research Foundation, University of British Columbia, Vancouver, BC, Canada
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
The wonder exerkines-novel insights: a critical state-of-the-art review. Mol Cell Biochem 2021; 477:105-113. [PMID: 34554363 PMCID: PMC8755664 DOI: 10.1007/s11010-021-04264-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Several benefits can be acquired through physical exercise. Different classes of biomolecules are responsible for the cross-talk between distant organs. The secretome of skeletal muscles, and more widely the field of organokines, is ever-expanding. “Exerkine” has emerged as the umbrella term covering any humoral factors secreted into circulation by tissues in response to exercise. This review aims at describing the most interesting exerkines discovered in the last 3 years, which are paving the way for both physiological novel insights and potential medical strategies. The five exerkines identified all play a significant role in the healthy effect of exercise. Specifically: miR-1192, released by muscles and myocardium into circulation, by modulating cardioprotective effect in trained mice; miR-342-5p, located into exosomes from vascular endothelial cells, also a cardioprotective miRNA in trained young humans; apelin, released by muscles into circulation, involved in anti-inflammatory pathways and muscle regenerative capacity in rats; GDF-15, released into circulation from yet unknown source, whose effects can be observed on multiple organs in young men after a single bout of exercise; oxytocin, released by myoblasts and myotubes, with autocrine and paracrine functions in myotubes. The systemic transport by vesicles and the crosstalk between distant organs deserve a deep investigation. Sources, targets, transport mechanisms, biological roles, population samples, frequency, intensity, time and type of exercise should be considered for the characterization of existing and novel exerkines. The “exercise is medicine” framework should include exerkines in favor of novel insights for public health.
Collapse
|
16
|
Townsend LK, MacPherson REK, Wright DC. New Horizon: Exercise and a Focus on Tissue-Brain Crosstalk. J Clin Endocrinol Metab 2021; 106:2147-2163. [PMID: 33982072 DOI: 10.1210/clinem/dgab333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
The world population is aging, leading to increased rates of neurodegenerative disorders. Exercise has countless health benefits and has consistently been shown to improve brain health and cognitive function. The purpose of this review is to provide an overview of exercise-induced adaptations in the brain with a focus on crosstalk between peripheral tissues and the brain. We highlight recent investigations into exercise-induced circulating factors, or exerkines, including irisin, cathepsin B, GPLD1, and ketones and the mechanisms mediating their effects in the brain.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Medicine, McMaster University, Hamilton, L8S 4L8, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences and Centre for Neuroscience, Brock University, St. Catharines, L2S 3A1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| |
Collapse
|
17
|
Liu XH, Graham ZA, Harlow L, Pan J, Azulai D, Bauman WA, Yarrow J, Cardozo CP. Spinal Cord Injury Reduces Serum Levels of Fibroblast Growth Factor-21 and Impairs Its Signaling Pathways in Liver and Adipose Tissue in Mice. Front Endocrinol (Lausanne) 2021; 12:668984. [PMID: 34046014 PMCID: PMC8147560 DOI: 10.3389/fendo.2021.668984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury (SCI) results in dysregulation of carbohydrate and lipid metabolism; the underlying cellular and physiological mechanisms remain unclear. Fibroblast growth factor 21 (FGF21) is a circulating protein primarily secreted by the liver that lowers blood glucose levels, corrects abnormal lipid profiles, and mitigates non-alcoholic fatty liver disease. FGF21 acts via activating FGF receptor 1 and ß-klotho in adipose tissue and stimulating release of adiponectin from adipose tissue which in turn signals in the liver and skeletal muscle. We examined FGF21/adiponectin signaling after spinal cord transection in mice fed a high fat diet (HFD) or a standard mouse chow. Tissues were collected at 84 days after spinal cord transection or a sham SCI surgery. SCI reduced serum FGF21 levels and hepatic FGF21 expression, as well as β-klotho and FGF receptor-1 (FGFR1) mRNA expression in adipose tissue. SCI also reduced serum levels and adipose tissue mRNA expression of adiponectin and leptin, two major adipokines. In addition, SCI suppressed hepatic type 2 adiponectin receptor (AdipoR2) mRNA expression and PPARα activation in the liver. Post-SCI mice fed a HFD had further suppression of serum FGF21 levels and hepatic FGF21 expression. Elevated serum free fatty acid (FFA) levels after HFD feeding were observed in post-SCI mice but not in sham-mice, suggesting defective FFA uptake after SCI. Moreover, after SCI several genes that are implicated in insulin's action had reduced expression in tissues of interest. These findings suggest that downregulated FGF21/adiponectin signaling and impaired responsiveness of adipose tissues to FGF21 may, at least in part, contribute to the overall picture of metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zachary A. Graham
- Research Service, Birmingham VA Medical Center, Birmingham, AL, United States
- Department of Cell, Developmental and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Daniella Azulai
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua Yarrow
- Research Service and Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
18
|
Karlsson L, González-Alvarado MN, Motalleb R, Wang Y, Wang Y, Börjesson M, Zhu C, Kuhn HG. Constitutive PGC-1α Overexpression in Skeletal Muscle Does Not Contribute to Exercise-Induced Neurogenesis. Mol Neurobiol 2021; 58:1465-1481. [PMID: 33200398 PMCID: PMC7932943 DOI: 10.1007/s12035-020-02189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023]
Abstract
Physical exercise can improve age-dependent decline in cognition, which in rodent is partly mediated by restoration of an age-dependent decline in neurogenesis. Exercise-inducible myokines in the circulation present a link in muscle-brain crosstalk. The transcription factor PGC-1α regulates the release of such myokines with neurotrophic properties into the circulation. We study how chronic muscular overexpression of PGC-1α could contribute to exercise-induced effects on hippocampal neurogenesis and if this effect could be enhanced in a running wheel paradigm. We used 3- and 11-month-old transgenic mice with overexpression of PGC-1α under the control of muscle creatinine kinase promoter (MCK-PGC-1α), which have a constitutively developed endurance muscle phenotype. Wild-type and MCK-PGC-1α mice were single housed with free access to running wheels. Four weeks of running in female animals increased the levels of newborn cells, immature neurons, and, for young animals, new mature neurons, compared to sedentary controls. However, no difference in these parameters was observed between wild-type and transgenic mice under sedentary or running conditions. Multiplex analysis of serum cytokines, chemokines, and myokines suggested several differences in serum protein concentrations between genotypes with musclin found to be significantly upregulated 4-fold in male MCK-PGC-1α animals. We conclude that constitutive muscular overexpression of PGC-1α, despite systemic changes and difference in serum composition, does not translate into exercise-induced effects on hippocampal neurogenesis, independent of the age of the animal. This suggests that chronic activation of PGC-1α in skeletal muscle is by itself not sufficient to mimic exercise-induced effects or to prevent decline of neurogenesis in aging.
Collapse
Affiliation(s)
- Lars Karlsson
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Region of Western Sweden, Gothenburg, Sweden.
| | - María Nazareth González-Alvarado
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Reza Motalleb
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yafeng Wang
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yong Wang
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mats Börjesson
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy and Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital/Östra, Region of Western Sweden, Gothenburg, Sweden
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hans-Georg Kuhn
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
He Y, Qiu R, Wu B, Gui W, Lin X, Li H, Zheng F. Transthyretin contributes to insulin resistance and diminishes exercise-induced insulin sensitivity in obese mice by inhibiting AMPK activity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E808-E821. [PMID: 33682458 DOI: 10.1152/ajpendo.00495.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMP-activated protein kinase (AMPK) signaling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. In addition, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.NEW & NOTEWORTHY Exercise improves obesity-induced insulin resistance via mechanisms that remain unclear. The novel findings of the study are that circulating TTR (a hepatokine) level is decreased by exercise, and the elevated circulating TTR, as was the elevated transthyretin internalization mediated by Grp78, counteracts the exercise-induced insulin sensitivity by downregulating AMPK activity in skeletal muscle of obese mice. These data suggest that TTR suppression might be an adaptive response to exercise through the crosstalk between liver and muscle.
Collapse
Affiliation(s)
- Yingzi He
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ruojun Qiu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beibei Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Gui
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
de Oliveira dos Santos AR, de Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, Detregiachi CRP, Buchaim DV, Buchaim RL, Tofano RJ, Mendes CG, Tofano VAC, dos Santos Haber JF. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int J Mol Sci 2021; 22:2639. [PMID: 33807959 PMCID: PMC7961600 DOI: 10.3390/ijms22052639] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.
Collapse
Affiliation(s)
- Ana Rita de Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília 17500-000, São Paulo, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla 9-75, Bauru 17040, São Paulo, Brazil;
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| |
Collapse
|
21
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
22
|
Campderrós L, Sánchez-Infantes D, Villarroya J, Nescolarde L, Bayès-Genis A, Cereijo R, Roca E, Villarroya F. Altered GDF15 and FGF21 Levels in Response to Strenuous Exercise: A Study in Marathon Runners. Front Physiol 2020; 11:550102. [PMID: 33329017 PMCID: PMC7711067 DOI: 10.3389/fphys.2020.550102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Recreational marathon runners face strong physiological challenges. Assessment of potential biomarkers for the biological responses of runners will help to discriminate individual race responsiveness and their physiological consequences. This study sought to analyze the changes in the plasma levels of GDF15 and FGF21, novel endocrine factors related to metabolic stress, in runners following the strenuous exercise of a marathon race. Methods Blood samples were obtained from eighteen male runners (mean ±SD, age: 41.7 ±5.0 years, BMI: 23.6 ± 1.8) 48 h before, immediately after, and 48 h after a marathon race, and from age-matched sedentary individuals. The level of GDF15, FGF21, and 38 additional biochemical and hematological parameters were determined. Results The basal levels of GDF15 and FGF21 did not differ between runners before the race and sedentary individuals. Significant increases in the mean levels of GDF15 (4.2-fold) and FGF21 (20-fold) were found in runners immediately after the race. The magnitudes of these increases differed markedly among individuals and did not correlate with each other. The GDF15 and FGF21 levels had returned to the basal level 48 h post-race. The post-race value of GDF15 (but not FGF21) correlated positively with increased total white cell count (r = 0.50, P = 0.01) and neutrophilia (r = 0.10, P = 0.01). Conclusion GDF15 and FGF21 are transiently increased in runners following a marathon race. The induction of GDF15 levels is associated with alterations in circulating immune cells levels.
Collapse
Affiliation(s)
- Laura Campderrós
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - David Sánchez-Infantes
- CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain.,Institut de Recerca Germans Trias i Pujol, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Lexa Nescolarde
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.,Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Antoni Bayès-Genis
- Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| | - Emma Roca
- Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquimica i Biomedicina Molecular, University of Barcelona, Barcelona, Spain.,CIBER Fisiopatologia de la Obesidad y Nutrición, Madrid, Spain
| |
Collapse
|
23
|
Physiopathology of Lifestyle Interventions in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020; 12:nu12113472. [PMID: 33198247 PMCID: PMC7697937 DOI: 10.3390/nu12113472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health problem, and its prevalence has increased in recent years. Diet and exercise interventions are the first-line treatment options, with weight loss via a hypocaloric diet being the most important therapeutic target in NAFLD. However, most NAFLD patients are not able to achieve such weight loss. Therefore, the requisite is the investigation of other effective therapeutic approaches. This review summarizes research on understanding complex pathophysiology underlying dietary approaches and exercise interventions with the potential to prevent and treat NAFLD.
Collapse
|
24
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Murphy RM, Watt MJ, Febbraio MA. Metabolic communication during exercise. Nat Metab 2020; 2:805-816. [PMID: 32747791 DOI: 10.1038/s42255-020-0258-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
The coordination of nutrient sensing, delivery, uptake and utilization is essential for maintaining cellular, tissue and whole-body homeostasis. Such synchronization can be achieved only if metabolic information is communicated between the cells and tissues of the entire organism. During intense exercise, the metabolic demand of the body can increase approximately 100-fold. Thus, exercise is a physiological state in which intertissue communication is of paramount importance. In this Review, we discuss the physiological processes governing intertissue communication during exercise and the molecules mediating such cross-talk.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Severinsen MCK, Pedersen BK. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev 2020; 41:5835999. [PMID: 32393961 PMCID: PMC7288608 DOI: 10.1210/endrev/bnaa016] [Citation(s) in RCA: 565] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Physical activity decreases the risk of a network of diseases, and exercise may be prescribed as medicine for lifestyle-related disorders such as type 2 diabetes, dementia, cardiovascular diseases, and cancer. During the past couple of decades, it has been apparent that skeletal muscle works as an endocrine organ, which can produce and secrete hundreds of myokines that exert their effects in either autocrine, paracrine, or endocrine manners. Recent advances show that skeletal muscle produces myokines in response to exercise, which allow for crosstalk between the muscle and other organs, including brain, adipose tissue, bone, liver, gut, pancreas, vascular bed, and skin, as well as communication within the muscle itself. Although only few myokines have been allocated to a specific function in humans, it has been identified that the biological roles of myokines include effects on, for example, cognition, lipid and glucose metabolism, browning of white fat, bone formation, endothelial cell function, hypertrophy, skin structure, and tumor growth. This suggests that myokines may be useful biomarkers for monitoring exercise prescription for people with, for example, cancer, diabetes, or neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai Charlotte Krogh Severinsen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020; 12:E1899. [PMID: 32604889 PMCID: PMC7353393 DOI: 10.3390/nu12061899] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is an effective strategy for preventing and treating obesity and its related cardiometabolic disorders, resulting in significant loss of body fat mass, white adipose tissue browning, redistribution of energy substrates, optimization of global energy expenditure, enhancement of hypothalamic circuits that control appetite-satiety and energy expenditure, and decreased systemic inflammation and insulin resistance. Novel exercise-inducible soluble factors, including myokines, hepatokines, and osteokines, and immune cytokines and adipokines are hypothesized to play an important role in the body's response to exercise. To our knowledge, no review has provided a comprehensive integrative overview of these novel molecular players and the mechanisms involved in the redistribution of metabolic fuel during and after exercise, the loss of weight and fat mass, and reduced inflammation. In this review, we explain the potential role of these exercise-inducible factors, namely myokines, such as irisin, IL-6, IL-15, METRNL, BAIBA, and myostatin, and hepatokines, in particular selenoprotein P, fetuin A, FGF21, ANGPTL4, and follistatin. We also describe the function of osteokines, specifically osteocalcin, and of adipokines such as leptin, adiponectin, and resistin. We also emphasize an integrative overview of the pleiotropic mechanisms, the metabolic pathways, and the inter-organ crosstalk involved in energy expenditure, fat mass loss, reduced inflammation, and healthy weight induced by exercise.
Collapse
Affiliation(s)
- Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia P.C. 66278, Mexico
| |
Collapse
|
28
|
Hu C, Hoene M, Plomgaard P, Hansen JS, Zhao X, Li J, Wang X, Clemmesen JO, Secher NH, Häring HU, Lehmann R, Xu G, Weigert C. Muscle-Liver Substrate Fluxes in Exercising Humans and Potential Effects on Hepatic Metabolism. J Clin Endocrinol Metab 2020; 105:5673517. [PMID: 31825515 PMCID: PMC7062410 DOI: 10.1210/clinem/dgz266] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/11/2019] [Indexed: 01/12/2023]
Abstract
CONTEXT The liver is crucial to maintain energy homeostasis during exercise. Skeletal muscle-derived metabolites can contribute to the regulation of hepatic metabolism. OBJECTIVE We aim to elucidate which metabolites are released from the working muscles and taken up by the liver in exercising humans and their potential influence on hepatic function. METHODS In two separate studies, young healthy men fasted overnight and then performed an acute bout of exercise. Arterial-to-venous differences of metabolites over the hepato-splanchnic bed and over the exercising and resting leg were investigated by capillary electrophoresis- and liquid chromatography-mass spectrometry metabolomics platforms. Liver transcriptome data of exercising mice were analyzed by pathway analysis to find a potential overlap between exercise-regulated metabolites and activators of hepatic transcription. RESULTS During exercise, hepatic O2 uptake and CO2 delivery were increased two-fold. In contrast to all other free fatty acids (FFA), those FFA with 18 or more carbon atoms and a high degree of saturation showed a constant release in the liver vein and only minor changes by exercise. FFA 6:0 and 8:0 were released from the working leg and taken up by the hepato-splanchnic bed. Succinate and malate showed a pronounced hepatic uptake during exercise and were also released from the exercising leg. The transcriptional response in the liver of exercising mice indicates the activation of HIF-, NRF2-, and cAMP-dependent gene transcription. These pathways can also be activated by succinate. CONCLUSION Metabolites circulate between working muscles and the liver and may support the metabolic adaption to exercise by acting both as substrates and as signaling molecules.
Collapse
Affiliation(s)
- Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, University Tuebingen, Tuebingen, Germany
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - Jakob S Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases and CMRC, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Jia Li
- Institute for Clinical Chemistry and Pathobiochemistry, University Tuebingen, Tuebingen, Germany
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Jens O Clemmesen
- Department of Hepatology, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesiology, The Copenhagen Muscle Research Centre, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Hans U Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Otfried-Mueller-Strasse, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse, Oberschleissheim, Germany
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, University Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Otfried-Mueller-Strasse, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse, Oberschleissheim, Germany
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
- Correspondence: Cora Weigert, PhD, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Hoppe-Seyler-Str. 3 72076 Tuebingen, Germany. E-mail: ; and Guowang Xu, PhD, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, China. E-mail:
| | - Cora Weigert
- Institute for Clinical Chemistry and Pathobiochemistry, University Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Otfried-Mueller-Strasse, Tuebingen, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse, Oberschleissheim, Germany
- Correspondence: Cora Weigert, PhD, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tuebingen, Hoppe-Seyler-Str. 3 72076 Tuebingen, Germany. E-mail: ; and Guowang Xu, PhD, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian 116023, China. E-mail:
| |
Collapse
|
29
|
Garneau L, Parsons SA, Smith SR, Mulvihill EE, Sparks LM, Aguer C. Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front Physiol 2020; 11:18. [PMID: 32132925 PMCID: PMC7040180 DOI: 10.3389/fphys.2020.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Exercise and physical activity levels influence myokine release from skeletal muscle and contribute to circulating concentrations. Indeed, many myokines, including interleukin (IL)-6, IL-15, secreted protein acidic rich in cysteine (SPARC), and fibroblast growth factor (FGF) 21 are higher in the circulation after an exercise bout. Since these peptides modulate muscle metabolism and can also be targeted toward other tissues to induce adaptations to energy demand, they are of great interest regarding metabolic diseases. Therefore, we set out to compare, in six women with obesity (BMI ≥30 kg/m2) and five healthy women (BMI 22–29.9 kg/m2), the effect of an acute bout of moderate-intensity, continuous cycling exercise (60 min, 60% VO2peak) on the release of myokines (IL-6, IL-8, IL-10, IL-13, IL-15, SPARC, and FGF21) in plasma for a 24-h time course. We found that plasma IL-8 and SPARC levels were reduced in the group of women with obesity, whereas plasma IL-13 concentrations were elevated in comparison to non-obese women both before and after the exercise bout. We also found that plasma FGF21 concentration during the 24 h following the bout of exercise was regulated differently in the non-obese in comparison to obese women. Plasma concentrations of FGF21, IL-6, IL-8, IL-15, and IL-18 were regulated by acute exercise. Our results confirm the results of others concerning exercise regulation of circulating myokines while providing insight into the time course of myokine release in circulation after an acute exercise bout and the differences in circulating myokines after exercise in women with or without obesity.
Collapse
Affiliation(s)
- Léa Garneau
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Céline Aguer
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
30
|
Wu Y, Zhu B, Chen Z, Duan J, Yang L. Comment on: "Fibroblast growth factor 21 controls mitophagy and muscle mass" by Oost et al. J Cachexia Sarcopenia Muscle 2020; 11:336-337. [PMID: 31307122 PMCID: PMC7015229 DOI: 10.1002/jcsm.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yeshun Wu
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Bin Zhu
- Department of Critical Care MedicineThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Zijun Chen
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Jiahao Duan
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Ling Yang
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| |
Collapse
|
31
|
Effect of mountain ultra-marathon running on plasma angiopoietin-like protein 4 and lipid profile in healthy trained men. Eur J Appl Physiol 2019; 120:117-125. [PMID: 31707478 PMCID: PMC6969869 DOI: 10.1007/s00421-019-04256-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Purpose Angiopoietin-like protein 4 (ANGPTL4) regulates lipid metabolism by inhibiting lipoprotein lipase activity and stimulating lipolysis in adipose tissue. The aim of this study was to find out whether the mountain ultra-marathon running influences plasma ANGPTL4 and whether it is related to plasma lipid changes. Methods Ten healthy men (age 31 ± 1.1 years) completed a 100-km ultra-marathon running. Plasma ANGPTL4, free fatty acids (FFA), triacylglycerols (TG), glycerol (Gly), total cholesterol (TC), low (LDL-C) and high (HDL-C) density lipoprotein-cholesterol were determined before, immediately after the run and after 90 min of recovery. Results Plasma ANGPTL4 increased during exercise from 68.0 ± 16.5 to 101.2 ± 18.1 ng/ml (p < 0.001). This was accompanied by significant increases in plasma FFA, Gly, HDL-C and decreases in plasma TG concentrations (p < 0.01). After 90 min of recovery, plasma ANGPTL4 and TG did not differ significantly from the exercise values, while plasma FFA, Gly, TC and HDL-C were significantly lower than immediately after the run. TC/HDL-C and TG/HDL-C molar ratios were significantly reduced. The exercise-induced changes in plasma ANGPTL4 correlated positively with those of FFA (r = 0.73; p < 0.02), and HDL-C (r = 0.69; p < 0.05). Positive correlation was found also between plasma ANGPTL4 and FFA concentrations after 90 min of recovery (r = 0.77; p < 0.01). Conclusions The present data suggest that increase in plasma FFA during mountain ultra-marathon run may be involved in plasma ANGPTL4 release and that increase in ANGPTL4 secretion may be a compensatory mechanism against fatty acid-induced oxidative stress. Increase in plasma HDL-C observed immediately after the run may be due to the protective effect of ANGPTL4 on HDL.
Collapse
|
32
|
Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH. Nutrients 2019; 11:nu11112709. [PMID: 31717358 PMCID: PMC6893460 DOI: 10.3390/nu11112709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Non-alcoholic fatty liver diseases (NAFLD) including the severe form with steatohepatitis (NASH) are highly prevalent ailments to which no approved pharmacological treatment exists. Dietary intervention aiming at 10% weight reduction is efficient but fails due to low compliance. Increase in physical activity is an alternative that improved NAFLD even in the absence of weight reduction. The underlying mechanisms are unclear and cannot be studied in humans. Here, a rat NAFLD model was developed that reproduces many facets of the diet-induced NAFLD in humans. The impact of endurance exercise was studied in this model. Male Wistar rats received control chow or a NASH-inducing diet rich in fat, cholesterol, and fructose. Both diet groups were subdivided into a sedentary and an endurance exercise group. Animals receiving the NASH-inducing diet gained more body weight, got glucose intolerant and developed a liver pathology with steatosis, hepatocyte hypertrophy, inflammation and fibrosis typical of NAFLD or NASH. Contrary to expectations, endurance exercise did not improve the NASH activity score and even enhanced hepatic inflammation. However, endurance exercise attenuated the hepatic cholesterol overload and the ensuing severe oxidative stress. In addition, exercise improved glucose tolerance possibly in part by induction of hepatic FGF21 production.
Collapse
|
33
|
Willis SA, Sargeant JA, Thackray AE, Yates T, Stensel DJ, Aithal GP, King JA. Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Appl Physiol Nutr Metab 2019; 44:1065-1072. [DOI: 10.1139/apnm-2018-0818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor 21 (FGF21), follistatin and leukocyte cell-derived chemotaxin 2 (LECT2) are novel hepatokines that are modulated by metabolic stresses. This study investigated whether exercise intensity modulates the hepatokine response to acute exercise. Ten young, healthy men undertook three 8-h experimental trials: moderate-intensity exercise (MOD; 55% peak oxygen uptake), high-intensity exercise (HIGH; 75% peak oxygen uptake), and control (CON; rest), in a randomised, counterbalanced order. Exercise trials commenced with a treadmill run of varied duration to match gross exercise energy expenditure between trials (MOD vs HIGH; 2475 ± 70 vs 2488 ± 58 kJ). Circulating FGF21, follistatin, LECT2, glucagon, insulin, glucose and nonesterified fatty acids (NEFA) were measured before exercise and at 0, 1, 2, 4, and 7 h postexercise. Plasma FGF21 concentrations were increased up to 4 h postexercise compared with CON (P ≤ 0.022) with greater increases observed at 1, 2, and 4 h postexercise during HIGH versus MOD (P ≤ 0.025). Irrespective of intensity (P ≥ 0.606), plasma follistatin concentrations were elevated at 4 and 7 h postexercise (P ≤ 0.053). Plasma LECT2 concentrations were increased immediately postexercise (P ≤ 0.046) but were not significant after correcting for plasma volume shifts. Plasma glucagon (1 h; P = 0.032) and NEFA (4 and 7 h; P ≤ 0.029) responses to exercise were accentuated in HIGH versus MOD. These findings demonstrate that acute exercise augments circulating FGF21 and follistatin. Exercise-induced changes in FGF21 are intensity-dependent and may support the greater metabolic benefit of high-intensity exercise.
Collapse
Affiliation(s)
- Scott A. Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Jack A. Sargeant
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Alice E. Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
- Diabetes Research Centre, University of Leicester, Leicester LE5 4PW, UK
| | - David J. Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2QL, UK
| | - James A. King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
- NIHR Leicester Biomedical Research Centre, Leicester LE3 9QD, UK
| |
Collapse
|
34
|
Franko A, Hartwig S, Kotzka J, Ruoß M, Nüssler AK, Königsrainer A, Häring HU, Lehr S, Peter A. Identification of the Secreted Proteins Originated from Primary Human Hepatocytes and HepG2 Cells. Nutrients 2019; 11:1795. [PMID: 31382615 PMCID: PMC6723870 DOI: 10.3390/nu11081795] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
The liver plays a pivotal role in whole-body carbohydrate, lipid, and protein metabolism. One of the key regulators of glucose and lipid metabolism are hepatokines, which are found among the liver secreted proteins, defined as liver secretome. To elucidate the composition of the human liver secretome and identify hepatokines in primary human hepatocytes (PHH), we conducted comprehensive protein profiling on conditioned medium (CM) of PHH. Secretome profiling using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) identified 691 potential hepatokines in PHH. Subsequently, pathway analysis assigned these proteins to acute phase response, coagulation, and complement system pathways. The secretome of PHH was compared to the secreted proteins of the liver hepatoma cell line HepG2. Although the secretome of PHH and HepG2 cells show a high overlap, the HepG2 secretome rather mirrors the fetal liver with some cancer characteristics. Collectively, our study represents one of the most comprehensive secretome profiling approaches for PHH, allowing new insights into the composition of the secretome derived from primary human material, and points out strength and weakness of using HepG2 cell secretome as a model for the analysis of the human liver secretome.
Collapse
Affiliation(s)
- Andras Franko
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany.
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany.
| | - Sonja Hartwig
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry of DDZ, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry of DDZ, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Marc Ruoß
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Lehr
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry of DDZ, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Peter
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| |
Collapse
|
35
|
PEPPLER WILLEMT, CASTELLANI LAURAN, ROOT-MCCAIG JARED, TOWNSEND LOGANK, SUTTON CHARLESD, FRENDO-CUMBO SCOTT, MEDAK KYLED, MACPHERSON REBECCAEK, CHARRON MAUREENJ, WRIGHT DAVIDC. Regulation of Hepatic Follistatin Expression at Rest and during Exercise in Mice. Med Sci Sports Exerc 2019; 51:1116-1125. [DOI: 10.1249/mss.0000000000001893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Lombardi G, Ziemann E, Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front Endocrinol (Lausanne) 2019; 10:60. [PMID: 30792697 PMCID: PMC6374307 DOI: 10.3389/fendo.2019.00060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Bone tissue can be seen as a physiological hub of several stimuli of different origin (e.g., dietary, endocrine, nervous, immune, skeletal muscle traction, biomechanical load). Their integration, at the bone level, results in: (i) changes in mineral and protein composition and microarchitecture and, consequently, in shape and strength; (ii) modulation of calcium and phosphorous release into the bloodstream, (iii) expression and release of hormones and mediators able to communicate the current bone status to the rest of the body. Different stimuli are able to act on either one or, as usual, more levels. Physical activity is the key stimulus for bone metabolism acting in two ways: through the biomechanical load which resolves into a direct stimulation of the segment(s) involved and through an indirect load mediated by muscle traction onto the bone, which is the main physiological stimulus for bone formation, and the endocrine stimulation which causes homeostatic adaptation. The third way, in which physical activity is able to modify bone functions, passes through the immune system. It is known that immune function is modulated by physical activity; however, two recent insights have shed new light on this modulation. The first relies on the discovery of inflammasomes, receptors/sensors of the innate immunity that regulate caspase-1 activation and are, hence, the tissue triggers of inflammation in response to infections and/or stressors. The second relies on the ability of certain tissues, and particularly skeletal muscle and adipose tissue, to synthesize and secrete mediators (namely, myokines and adipokines) able to affect, profoundly, the immune function. Physical activity is known to act on both these mechanisms and, hence, its effects on bone are also mediated by the immune system activation. Indeed, that immune system and bone are tightly connected and inflammation is pivotal in determining the bone metabolic status is well-known. The aim of this narrative review is to give a complete view of the exercise-dependent immune system-mediated effects on bone metabolism and function.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- *Correspondence: Giovanni Lombardi
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|