1
|
Li L, Matsuoka I, Sakamoto K, Kimura J. Differential effects of lysophosphatidylcholine and ACh on muscarinic K(+),non-selective cation and Ca(2+) currents in guinea-pig atrial cells. Fukushima J Med Sci 2016; 62:27-35. [PMID: 26911304 DOI: 10.5387/fms.2015-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh).
Collapse
Affiliation(s)
- Libing Li
- Department of Pharmacology, School of Medicine, Fukushima Medical University
| | | | | | | |
Collapse
|
2
|
Li L, Yao Y, Wang H, Ren Y, Ma L, Yan J, Gao C. Pravastatin attenuates cardiac dysfunction induced by lysophosphatidylcholine in isolated rat hearts. Eur J Pharmacol 2010; 640:139-42. [DOI: 10.1016/j.ejphar.2010.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/29/2010] [Accepted: 04/24/2010] [Indexed: 10/19/2022]
|
3
|
Schilling T, Eder C. Non-selective cation channel activity is required for lysophosphatidylcholine-induced monocyte migration. J Cell Physiol 2009; 221:325-34. [DOI: 10.1002/jcp.21857] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
Jung S, Lee Y, Han S, Kim Y, Nam T, Ahn D. Lysophosphatidylcholine Increases Ca Current via Activation of Protein Kinase C in Rabbit Portal Vein Smooth Muscle Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:31-5. [PMID: 20157391 DOI: 10.4196/kjpp.2008.12.1.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lysophosphatidylcholine (LPC), a metabolite of membrane phospholipids by phospholipase A(2), has been considered responsible for the development of abnormal vascular reactivity during atherosclerosis. Ca(2+) influx was shown to be augmented in atherosclerotic artery which might be responsible for abnormal vascular reactivity. However, the mechanism underlying Ca(2+) influx change in atherosclerotic artery remains undetermined. The purpose of the present study was to examine the effects of LPC on L-type Ca(2+) current (I(Ca(L))) activity and to elucidate the mechanism of LPC-induced change of I(Ca(L)) in rabbit portal vein smooth muscle cells using whole cell patch clamp. Extracellular application of LPC increased I(Ca(L)) through whole test potentials, and this effect was readily reversed by washout. Steady state voltage dependency of activation or inactivation properties of I(Ca(L)) was not significantly changed by LPC. Staurosporine (100 nM) or chelerythrine (3 microM), which is a potent inhibitor of PKC, significantly decreased basal I(Ca(L)), and LPC-induced increase of I(Ca(L)) was significantly suppressed in the presence of PKC inhibitors. On the other hand, application of PMA, an activator of PKC, increased basal I(Ca(L)) significantly, and LPC-induced enhancement of I(Ca(L)) was abolished by pretreatment of the cells with PMA. These findings suggest that LPC increased I(Ca(L)) in vascular smooth muscle cells by a pathway that involves PKC, and that LPC-induced increase of I(Ca(L)) might be, at least in part, responsible for increased Ca(2+) influx in atherosclerotic artery.
Collapse
Affiliation(s)
- Seungsoo Jung
- Department of Physiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Michel AD, Fonfria E. Agonist potency at P2X7 receptors is modulated by structurally diverse lipids. Br J Pharmacol 2007; 152:523-37. [PMID: 17700717 PMCID: PMC2050815 DOI: 10.1038/sj.bjp.0707417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The P2X(7) receptor exhibits a high degree of plasticity with agonist potency increasing after prolonged receptor activation. In this study we investigated the ability of lipids to modulate agonist potency at P2X(7) receptors. EXPERIMENTAL APPROACH A variety of lipids, including lysophosphatidylcholine, sphingosylphosphorylcholine and hexadecylphosphorylcholine were studied for their effect on P2X(7) receptor-stimulated ethidium bromide accumulation in cells expressing human recombinant P2X(7) receptors and on P2X(7) receptor-stimulated interleukin-1 beta (IL1 beta) release from THP-1 cells. The effects of the lipids were also assessed in radioligand binding studies on human P2X(7) receptors. KEY RESULTS At concentrations (3-30 microM) below the threshold to cause cell lysis, the lipids increased agonist potency and/or maximal effects at P2X(7) receptors in both ethidium accumulation and IL1 beta release studies. There was little structure activity relationship (SAR) for this effect and sub-lytic concentrations of Triton X-100 partially mimicked the effects of the lipids. The lipids caused cell lysis and increased intracellular calcium at higher concentrations (30-100 microM) which complicated interpretation of their effects in functional studies. However, the lipids (3-100 microM) also increased agonist potency 30-100 fold in radioligand binding studies. CONCLUSIONS AND IMPLICATIONS This study demonstrates that a diverse range of lipids increase agonist potency at the P2X(7) receptor in functional and binding studies. The broad SAR, including the effect of Triton X-100, suggests this may reflect changes in membrane properties rather than a direct effect on the P2X(7) receptor. Since many of the lipids studied accumulate in disease states they may enhance P2X(7) receptor function under pathophysiological conditions.
Collapse
Affiliation(s)
- A D Michel
- Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Harlow, Essex, UK.
| | | |
Collapse
|
6
|
Nakamura Y, Yasukochi M, Kobayashi S, Uehara K, Honda A, Inoue R, Imanaga I, Uehara A. Cell membrane-derived lysophosphatidylcholine activates cardiac ryanodine receptor channels. Pflugers Arch 2006; 453:455-62. [PMID: 17028837 DOI: 10.1007/s00424-006-0141-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Lysophosphatidylcholine (LPC) is metabolized from a membrane phospholipid and modulates a variety of channels in the plasma membrane (PM). We examined LPC modulation of cardiac ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR) using the planar lipid bilayer method to measure the single-channel currents. Micromolar concentrations of LPC increased the open probability of the reconstituted RyR channels irrespective of whether LPC was added to the cis or trans chamber. LPC also increased the membrane capacitance of the bilayer. The effects of LPC contrasted well with those of sphingosylphosphorylcholine (SPC). Taken together, these results suggest that amphipathic lipid LPC does not bind directly to the RyR channel protein, but rather, is incorporated into the bilayer membrane and activates the channel. Thus, we consider cell membrane-derived LPC to be a putative endogenous mediator that activates not only plasma membrane channels but also RyR channels and induces arrhythmogenic Ca(2+) mobilization in cardiomyocytes.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Physiology, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Agrawal A, Agrawal KP, Ram A, Sondhi A, Chhabra SK, Gangal SV, Mehta D. Basis of rise in intracellular sodium in airway hyperresponsiveness and asthma. Lung 2006; 183:375-87. [PMID: 16465598 DOI: 10.1007/s00408-005-2549-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2005] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the basis of disturbances in sodium transport in asthma and in airway hyperresponsiveness without symptoms of asthma (asymptomatic AHR). We measured the intracellular sodium (Na(i)); activity of Na(+)/K(+)-ATPase in unstimulated cells (resting activity) and in cell homogenate under optimal conditions (maximal activity); and sodium influx, in mixed leukocytes of 15 normal subjects, 12 subjects with asymptomatic AHR, and 26 asthmatics with or without active symptoms. Resting Na(+)/K(+)-ATPase activity was the same as sodium influx, consistent with homeostasis. Compared with normal subjects, those with asymptomatic AHR or asthma with controlled symptoms had a twofold increase in sodium influx and Na(i). Symptomatic asthmatics also had a twofold increase in sodium influx but a fourfold elevation of Na(i). Maximal Na(+)/K(+)-ATPase activity was reduced by half in symptomatic asthmatics compared with normal subjects. The reduction of maximal Na(+)/K(+)-ATPase activity was associated with a significant decrease in ATP turnover per Na(+)/K(+)-ATPase molecule but not number of Na(+)/K(+)-ATPase molecules per cell. In summary, airway hyperresponsiveness with or without asthma is associated with increased sodium influx and Na in leukocytes. Resting activity of Na(+)/K(+)-ATPase is also increased as a compensatory response to the increased sodium influx, but it is achieved at the expense of higher Na(i). Symptomatic asthma is additionally associated with reduction in maximal activity of Na(+)/K(+)-ATPase, resulting in reduced capacity to handle the increase in sodium influx and consequent severe elevations in Na(i).
Collapse
Affiliation(s)
- Anurag Agrawal
- Department of Cardio-respiratory Physiology, Vallabhbhai Patel Chest Institute, University of Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bordeleau LJ, Gailis L, Fournier D, Morissette M, Di Paolo T, Daleau P. Cut-off phenomenon in the protective effect of alcohols against lysophosphatidylcholine-induced calcium overload. Pflugers Arch 2005; 450:292-7. [PMID: 15909177 DOI: 10.1007/s00424-005-1425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 03/24/2005] [Indexed: 01/13/2023]
Abstract
We studied the effect of chain length on the protective effect of alcohols against lysophosphatidylcholine (LPC)-induced Ca2+ overload in neonatal rat cardiomyocytes. We previously found that ethanol retards Ca2+ elevation. Cells were loaded with the Ca2+-sensitive fluorophore fura-2, and changes in fluorescence were followed. The addition of 10 microM LPC increased Ca2+, which reached a plateau after an 8-10 min delay. The presence of 88 mM n-propanol, n-butanol, tert-butanol, or 2,2-dimethylpropanol significantly increased the delay by 94-213%. However, n-pentanol at 2 mM or 88 mM had no protective effect. Among n-alcohols, the increase in lag time was inversely proportional to the length of the carbon chain. Chain length, rather than molecular weight determines the effect, because 2,2-dimethylpropanol had a protective effect. The influence of alcohols on LPC micelle formation was estimated from the increase in octadecyl rhodamine B fluorescence; the increase by n-alcohols was directly proportional to chain length, indicating that micelle formation was not involved in the extension of lag time. The absence of the protective effect when the alcohol aliphatic chain exceeds four carbons suggests that the effect of ethanol may be mediated via a small lipophilic pocket on a protein, or to lateral pressure perturbation in the membrane.
Collapse
Affiliation(s)
- Louis-Jean Bordeleau
- Quebec Heart Institute, Laval Hospital Research Center, 2725 chemin Ste-Foy, Ste-Foy, QC, Canada, G1V 4G5
| | | | | | | | | | | |
Collapse
|
9
|
Lee ESY, Soliman KFA, Charlton CG. Lysophosphatidylcholine Decreases Locomotor Activities and Dopamine Turnover Rate in Rats. Neurotoxicology 2005; 26:27-38. [PMID: 15527871 DOI: 10.1016/j.neuro.2004.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2003] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Lysophosphatidylcholine (lyso-PTC), a secondary product of S-adenosylmethionine (SAM)-dependent phosphatidylethanolamine (PTE) methylation, is a potent cytotoxin and might be involved in the pathogenesis of Parkinson's disease (PD). Our previous studies showed that the injection of SAM into the brain caused PD-like changes in rodents. Moreover, 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonism-inducing agent, increased lyso-PTC formation via the stimulation of PTE methylation pathway. These results indicate a possible role of lyso-PTC in the PD-like changes seen following the injection of SAM or MPP+. In the present study, lyso-PTC was injected into the lateral ventricle of rats and locomotor activities and the biogenic amine levels were measured to evaluate the effects of lyso-PTC on the dopaminergic system. Quinacrine, a phospholipase A2 (PLA2) inhibitor, was employed to determine its protective effect on SAM-induced PD-like changes by the inhibition of lyso-PTC formation. The results showed that 1 h after the injection, 0.4 and 0.8 micromol of lyso-PTC increased striatal dopamine (DA) by 20 and 24%, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) by 37 and 45% and decreased homovanilic acid (HVA) by 24 and 13%, respectively. Consequently, dopamine turnover rate, (DOPAC + HVA)/DA, was significantly reduced by 44 and 48% in the rat striatum. Meanwhile, the administration of 0.4 or 0.8 micromol of lyso-PTC decreased movement time by 52 and 63%, total distance by 44 and 48% and the number of movements by 43 and 64%, respectively. Quinacrine attenuated SAM-induced hypokinesia without affecting SAM metabolism prior to its action on rat brain. The results obtained indicate that the hypokinesia observed following the administration of lyso-PTC might be related to the decline in DA turnover in the striatum in response to lyso-PTC exposure. The present study suggests that inhibitory effects of lyso-PTC on dopaminergic neurotransmission is one of the contributing factors in SAM and MPP+-induced PD-like changes.
Collapse
Affiliation(s)
- Eun-Sook Y Lee
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | | | | |
Collapse
|
10
|
Schilling T, Lehmann F, Rückert B, Eder C. Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol 2004; 557:105-20. [PMID: 15020687 PMCID: PMC1665039 DOI: 10.1113/jphysiol.2004.060632] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 03/10/2004] [Indexed: 12/16/2022] Open
Abstract
Activation of microglial cells, the resident macrophages of the brain, occurs rapidly following brain injury. De-ramification, i.e. transformation from ramified into amoeboid morphology is one of the earliest manifestations of microglial activation. In the present study, we identified the physiological mechanisms underlying microglial de-ramification induced by lysophosphatidylcholine (LPC). Patch-clamp experiments revealed activation of non-selective cation currents and Ca(2+)-dependent K(+) currents by extracellular LPC. LPC-activated non-selective cation channels were permeable for monovalent and divalent cations. They were inhibited by Gd(3+), La(3+), Zn(2+) and Grammostola spatulata venom, but were unaffected by diltiazem, LOE908MS, amiloride and DIDS. Ca(2+) influx through non-selective cation channels caused sustained increases in intracellular Ca(2+) concentration. These Ca(2+) increases were sufficient to elicit charybdotoxin-sensitive Ca(2+)-dependent K(+) currents. However, increased [Ca(2+)](i) was not required for LPC-induced morphological changes. In LPC-stimulated microglial cells, non-selective cation currents caused transient membrane depolarization, which was followed by sustained membrane hyperpolarization induced by Ca(2+)-dependent K(+) currents. Furthermore, LPC elicited K(+) efflux by stimulating electroneutral K(+)-Cl(-) cotransporters, which were inhibited by furosemide and DIOA. LPC-induced microglial de-ramification was prevented by simultaneous inhibition of non-selective cation channels and K(+)-Cl(-) cotransporters, suggesting their functional importance for microglial activation.
Collapse
Affiliation(s)
- Tom Schilling
- Institute of Physiology, Humboldt University, Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
11
|
Pater C, Compagnone D, Luszick J, Verboom CN. Effect of Omacor on HRV parameters in patients with recent uncomplicated myocardial infarction - A randomized, parallel group, double-blind, placebo-controlled trial: study design [ISRCTN75358739]. CURRENT CONTROLLED TRIALS IN CARDIOVASCULAR MEDICINE 2003; 4:2. [PMID: 14613518 PMCID: PMC270085 DOI: 10.1186/1468-6708-4-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/15/2003] [Indexed: 11/15/2022]
Abstract
BACKGROUND: A large body of data derived from animal, epidemiological and clinical studies indicate that n-3 polyunsaturated fatty acids have a favourable effect on the prognosis of patients with cardiovascular disease in general, and on reducing sudden death in particular.Depressed heart rate variability (HRV), an indicator of impairment of the autonomic nervous system, has been shown to be a powerful predictor of subsequent mortality in patients surviving an acute myocardial infarction. A multitude of studies have demonstrated this strong association, suggesting that the imbalance in the sympathic/parasympathetic system may facilitate emergence of ventricular arrhythmias.Heart rate variability parameters will be assessed in the present study, with the primary objective of evaluating the possible superiority of Omacor (a highly refined, concentrated omega-3 fatty acid) versus placebo in improving HRV from baseline to endpoint in patients with recent uncomplicated myocardial infarction. Both groups will receive optimal conventional treatment.The study will also explore and quantify improvement in time domain HRV indices and will assess the safety of administering Omacor to optimally treated post-infarction patients (conventional treatment). METHODS: This multi-centre study will evaluate the effect of Omacor 1 g, o.d. on time-domain HRV parameters in comparison to placebo o.d. in patients with recent uncomplicated transmural myocardial infarction.Patients will be screened during the first few days after the acute event as appropriate for the patient's condition, and after obtaining informed consent. Based on inclusion/exclusion criteria, a first 24-hour Holter recording will be performed. Two to five days later, screened patients still eligible for the study will undergo a second 24-hour Holter recording. After the second Holter recording, all patients will be randomly allocated to treatment with Omacor 1 g, o.d. or placebo o.d.One hundred patients will be followed in double-blind fashion for a six-month period after randomization. Visits, including 24-hour Holter recording and assessment of adverse events, will take place at one-month intervals +/- five days after randomization, i.e., six times in all.
Collapse
Affiliation(s)
- Cornel Pater
- Department of Cardiovascular Clinical Development, Solvay Pharmaceuticals GmbH, Hannover, Germany
| | - Daniele Compagnone
- Department of Gastroenterology and Gynecology Clinical Development, Solvay Pharmaceuticals GmbH, Hannover, Germany
| | - Joachim Luszick
- Department of Cardiovascular Clinical Development, Solvay Pharmaceuticals GmbH, Hannover, Germany
| | - Cees-Nico Verboom
- Global Product Strategy Department, Solvay Pharmaceuticals GmbH, Hannover Germany
| |
Collapse
|
12
|
Watanabe M, Okada T. Lysophosphatidylcholine-induced myocardial damage is inhibited by pretreatment with poloxamer 188 in isolated rat heart. Mol Cell Biochem 2003; 248:209-15. [PMID: 12870676 DOI: 10.1023/a:1024165125139] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lysophosphatidylcholine (LPC) accumulates in myocardial tissues and coronary sinus during ischemia, and plays important role in the development of ischemia-reperfusion injury and ischemic ventricular arrhythmia. The aim of this study was to examine whether pretreatment of poloxamer 188 (P-188), a nonionic and non-toxic surfactant, can prevent the cardiac dysfunction induced by exogenous LPC perfusion in Langendorff perfused rat heart model. LPC (6 microM) significantly (p < 0.05) decreased heart rate (HR) and left ventricular developed pressure (LVDP) from 274.3 +/- 23.2 to 175.0 +/- 42.9/min and from 115.9 +/- 11.3 to 26.7 +/- 7.1 mmHg, respectively. The LPC-induced reduction of HR and LVDP did not recover by washout of LPC. Pretreatment with P-188 (1 mM for 30 min) inhibited completely the LPC-induced decreases of HR and LVDP. The pretreatment with P-188 also prevented the LPC-induced increases of left ventricular end-diastolic pressure (LVEDP) and GOT release, significantly (p < 0.05). The coronary perfusion pressure (CPP) rose (p < 0.01) by the LPC perfusion from 71.9 +/- 5.3 to 121.9 +/- 13.0 mmHg, significantly, but pretreatment of P-188 did not affect the LPC-induced vasoconstriction. Our results suggest that exogenous LPC causes irreversible cardiac injury by the sarcolemmal membrane disruption followed by Ca overload, and this LPC-induced cardiac injury, probably, can be prevented by the pretreatment with poloxamer 188.
Collapse
Affiliation(s)
- Makino Watanabe
- Department of Physiology, Juntendo University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
13
|
Terasawa K, Nakajima T, Iida H, Iwasawa K, Oonuma H, Jo T, Morita T, Nakamura F, Fujimori Y, Toyo-oka T, Nagai R. Nonselective cation currents regulate membrane potential of rabbit coronary arterial cell: modulation by lysophosphatidylcholine. Circulation 2002; 106:3111-9. [PMID: 12473560 DOI: 10.1161/01.cir.0000039345.00481.1d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The effects of lysophosphatidylcholine (LPC) on electrophysiological activities and intracellular Ca2+ concentration ([Ca2+]i) were investigated in coronary arterial smooth muscle cells (CASMCs). METHODS AND RESULTS The patch clamp techniques and Ca2+ measurements were applied to cultured rabbit CASMCs. The membrane potential was -46.0+/-5.0 mV, and LPC depolarized it. Replacement of extracellular Na+ with NMDG+ hyperpolarized the membrane and antagonized the depolarizing effects of LPC. In Na+-, K+-, or Cs+-containing solution, the voltage-independent background current with reversal potential (E(r)) of approximately +0 mV was observed. Removal of Cl- failed to affect it. When extracellular cations were replaced by NMDG+, E(r) was shifted to negative potentials. La3+ and Gd3+ abolished the background current, but nicardipine and verapamil did not inhibit it. In Na+-containing solution, LPC induced a voltage-independent current with E(r) of approximately +0 mV concentration-dependently. Similar current was recorded in K+- and Cs+-containing solution. La3+ and Gd3+ inhibited LPC-induced current, but nicardipine and verapamil did not inhibit it. In cell-attached configurations, single-channel activities with single-channel conductance of approximately 32pS were observed when patch pipettes were filled with LPC. LPC increased [Ca2+]i as the result of Ca2+ influx, and La3+ completely antagonized it. CONCLUSIONS These results suggest that (1) nonselective cation current (I(NSC)) contributes to form membrane potentials of CASMCs and (2) LPC activates I(NSC), resulting in an increase of [Ca2+]i. Thus, LPC may affect CASMC tone under various pathophysiological conditions such as ischemia.
Collapse
Affiliation(s)
- Kuniko Terasawa
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li L, Matsuoka I, Suzuki Y, Watanabe Y, Ishibashi T, Yokoyama K, Maruyama Y, Kimura J. Inhibitory effect of fluvastatin on lysophosphatidylcholine-induced nonselective cation current in Guinea pig ventricular myocytes. Mol Pharmacol 2002; 62:602-7. [PMID: 12181436 DOI: 10.1124/mol.62.3.602] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using the whole-cell voltage-clamp method, we investigated the effect of fluvastatin, a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, on lysophosphatidylcholine (LPC)-induced nonselective cation current (I(NSC)) in guinea pig cardiac ventricular myocytes. External LPC (3 to approximately 50 microM) induced I(NSC) in a dose-dependent manner with a lag. With fluvastatin (5 microM) in the external solution, LPC induced I(NSC), which was significantly smaller and with a longer lag compared with that in the absence of fluvastatin. With mevalonic acid (MVA) (100 microM) in the external solution, fluvastatin did not diminish LPC-induced I(NSC). Geranylgeranylpyrophosphate, an MVA metabolite, in the pipette solution prevented fluvastatin from diminishing LPC-induced I(NSC), suggesting that isoprenylated signaling molecules, such as the small G-protein Rho, might be involved in the LPC effect. Botulinum toxin C3, Rho-kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide, 2 HCl (Y-27632), or pertussis toxin in the pipette solution suppressed LPC-induced I(NSC). We conclude that LPC induces I(NSC) via a Gi/Go-coupled receptor and Rho-mediated pathway. The inhibitory effect of fluvastatin on LPC-induced I(NSC) provides a new insight into the signal transduction mechanism and may have important clinical implications.
Collapse
Affiliation(s)
- Libing Li
- Department of Pharmacology, and Department of Ecology and Clinical Therapeutics, School of Nursing, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yokoyama K, Ishibashi T, Ohkawara H, Kimura J, Matsuoka I, Sakamoto T, Nagata K, Sugimoto K, Sakurada S, Maruyama Y. HMG-CoA reductase inhibitors suppress intracellular calcium mobilization and membrane current induced by lysophosphatidylcholine in endothelial cells. Circulation 2002; 105:962-7. [PMID: 11864926 DOI: 10.1161/hc0802.104457] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Lysophosphatidylcholine (LPC) is known to increase intracellular Ca2+ concentration ([Ca2+]i) in endothelial cells. This study was conducted to investigate the effects of HMG-CoA reductase inhibitors (statins) on the increase in [Ca2+]i and membrane current induced by LPC. METHODS AND RESULTS [Ca2+]i was determined in cultured human aortic endothelial cells by fura-2 assay, and membrane current was measured by whole-cell patch clamp. The [Ca2+]i increase induced by LPC was abolished by inhibitors of phospholipase C (PLC). Statins markedly decreased the [Ca2+]i increase caused by LPC. This suppressive effect was quickly reversed by geranylgeranylpyrophosphate (GGPP) and was mimicked by inhibitors of Rho and Rho kinase. LPC induced the translocation of the GTP-bound active form of RhoA into membranes within 1 minute as determined by a pull-down assay and reduced the levels of RhoA in the cytoplasm, indicating that LPC quickly increases the GTP/GDP ratio of RhoA and induces membrane translocation. Statins prevented the GTP/GDP exchange of RhoA and its membrane translocation from the cytoplasm caused by LPC, and these effects of statins were reversed by GGPP. The responses of RhoA activation to statins and GGPP concurred with their effects on Ca2+ mobilization. LPC also induced a nonselective cation current after a lag. Statins prolonged the lag and decreased the current amplitude, and GGPP abolished the inhibitory effect on the current. CONCLUSIONS LPC induced Ca2+ mobilization and membrane current via a Rho activation-dependent PLC pathway in endothelial cells, and statins blocked these effects by preventing the GGPP-dependent lipid modification of Rho. The present study implicates Rho in LPC stimulation of Ca2+ movement.
Collapse
Affiliation(s)
- Keiko Yokoyama
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sato R, Sakamoto K, Yamazaki J, Nagao T. Differences in protective profiles of diltiazem isomers in ischemic and reperfused guinea pig hearts. Eur J Pharmacol 2002; 434:125-31. [PMID: 11779575 DOI: 10.1016/s0014-2999(01)01514-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of L-cis and D-cis diltiazem on the extracellular potassium concentration ([K(+)]e), pH and cardiac function were compared in ischemic guinea pig hearts. Before inducing ischemia, L-cis diltiazem (10 and 30 microM) reduced the left ventricular developed pressure (LVDP) with a marginal inhibition of heart rate (HR), whereas lower doses of the D-cis isomer decreased both LVDP and HR. L-cis Diltiazem only slightly inhibited the increase in [K(+)]e and the decrease in pH but significantly inhibited ischemic contractures in contrast to the marked inhibition of these parameters produced by even low doses of the D-cis isomer. Notably, at equipotent doses for the ischemic parameters, L-cis diltiazem restored the left ventricular end-diastolic pressure (LVEDP) and HR after reperfusion to a greater extent than the D-cis isomer. These results suggest that the L-cis isomer may specifically improve postischemic function, in addition to the modest action on [K(+)]e and pH, in guinea pig hearts.
Collapse
Affiliation(s)
- Ryuichi Sato
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
17
|
Macianskiene R, Matejovic P, Sipido K, Flameng W, Mubagwa K. Modulation of the extracellular divalent cation-inhibited non-selective conductance in cardiac cells by metabolic inhibition and by oxidants. J Mol Cell Cardiol 2001; 33:1371-85. [PMID: 11437543 DOI: 10.1006/jmcc.2001.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of metabolic inhibition and oxidative stress on the monovalent cation-permeable, extracellular divalent cation-inhibited non-selective conductance was investigated in ventricular myocytes at 22 degrees C. Under whole-cell voltage-clamp, with L-type Ca2+ channels blocked by nifedipine, and K+ currents blocked by Cs+ substitution for K+, removal of Ca2+(o)and Mg2+(o) induced a non-selective current (I(NS-(Ca)o)) in mouse, rabbit and rat cells. Removal of glucose increased I(NS-(Ca)o)in the absence of Ca2+(o) and Mg2+(o), but failed to induce this current in the presence of the divalent cations. Further inhibition of glycolysis by 2-deoxyglucose (DOG; 10 mM, in zero glucose) or of mitochondrial function by rotenone (10 microM) or NaCN (5 mM) also failed to induce I(NS-(Ca)o)in the presence of Ca2+(o) and Mg2+(o). Even when given together, DOG and rotenone did not induce I(NS-(Ca)o) in the presence of divalent cations. Preactivated I(NS-(Ca)o) was increased by the oxidants thimerosal (50 microM), diamide (500 microM) and pCMPS (50 microM). However, none of these drugs nor NEM (1 mM) did elicit I(NS-(Ca)o)in the presence of Ca2+(o) and Mg2+(o). Exposure of rat myocytes to Ag+ induced a current resembling I(NS-(Ca)o) (reversing at -5 mV; blocked by 100 microM Gd3+) even in the presence of divalent cations. The data indicate that metabolic inhibition only regulates activated I(NS-(Ca)o)but does not induce the opening of closed channels, and that small oxidants like Ag+ may induce I(NS-(Ca)o) activation by accessing at sites unavailable for larger molecules.
Collapse
Affiliation(s)
- R Macianskiene
- Laboratory of Cardiac Cellular Research, Centre for Experimental Surgery and Anaesthesiology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
18
|
Yeon D, Kwon S, Nam T, Ahn D. Lysophosphatidylcholine decreases delayed rectifier K+ current in rabbit coronary smooth muscle cells. J Vet Med Sci 2001; 63:395-9. [PMID: 11346173 DOI: 10.1292/jvms.63.395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidylcholine (LPC), which exists abundantly in lipid fraction of oxidized low density lipoprotein, has been implicated in enhanced agonist-induced contraction and increase of intracellular Ca2+. The effect of LPC on the activity of delayed rectifier K+ current (I(dK)), which is a major determinant of membrane potential and vascular tone under resting condition, was examined in rabbit coronary smooth muscle cells using whole cell patch clamping technique. Application of LPC to the bath solution caused a concentration-dependent inhibition of I(dK), and the concentration to produce half-maximal inhibition was 1.51 microM. This effect of LPC on I(dK) was readily reversed after washout of LPC in the bath. The steady-state voltage dependence of I(dK) was shifted to positive direction by both extra- and intracellular application of LPC. Staurosporine (100 nM) pretreatment significantly suppressed the LPC-induced inhibition of I(dK). These results suggest that LPC inhibits I(dK) in rabbit coronary smooth muscle cells by a pathway that involves protein kinase C, and the LPC-induced inhibition of I(dK) may be, at least in part, responsible for the abnormal vascular reactivity in atherosclerotic coronary artery.
Collapse
Affiliation(s)
- D Yeon
- Department of Physiology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
19
|
Hashimoto Y, Yabana H, Murata S. Electrophysiological effect of l-cis-diltiazem, the stereoisomer of d-cis-diltiazem, on isolated guinea-pig left ventricular myocytes. Eur J Pharmacol 2000; 391:217-23. [PMID: 10729361 DOI: 10.1016/s0014-2999(00)00077-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
l-cis-Diltiazem, the stereoisomer of the L-type Ca(2+) channel blocker d-cis-diltiazem, protects cardiac myocytes from ischemia and reperfusion injury in the perfused heart and from veratridine-induced Ca(2+) overload. We determined the effect of l-cis-diltiazem on the voltage-dependent Na(+) current (I(Na)) and lysophosphatidylcholine-induced currents in isolated guinea-pig left ventricular myocytes by a whole-cell patch-clamp technique. l-cis-Diltiazem inhibited I(Na) in a dose-dependent manner without altering the current-voltage relationship for I(Na) (K(d) values : 729 and 9 microM at holding potentials of -140 and -80 mV, respectively). A use-dependent block of I(Na), the leftward shift of the steady-state inactivation curve and the delay of recovery from inactivation suggest that l-cis-diltiazem has a higher affinity for the inactivated state of Na(+) channels. In addition to I(Na), the lysophosphatidylcholine-induced currents were inhibited by l-cis-diltiazem in a similar concentration range. It is suggested that inhibition of both Na(+) channels and lysophosphatidylcholine-activated non-selective cation channels contributes to the cardioprotective effect of l-cis-diltiazem.
Collapse
Affiliation(s)
- Y Hashimoto
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 2-2-50, Kawagishi, Toda, Saitama, Japan.
| | | | | |
Collapse
|
20
|
Abstract
Oscillatory currents (OCs) were studied in isolated rabbit ventricular myocytes with whole cell mode voltage clamp using Na+-free intracellular and extracellular solutions under conditions where K+ currents were anticipated to be eliminated or minimized. All OCs were dependent on release of Ca2+ from the sarcoplasmic reticulum (SR) because they were associated with intracellular Ca2+ ([Ca2+]i) transients, and were suppressed by high concentrations of BAPTA (20 mmol l-1) or pretreatment with the SR antagonist agents ryanodine (10 micromol l-1) or thapsigargin (1 micromol l-1). The reversal potential (Vrev) for OCs shifted with changes in the calculated Vrev for Cl- (ECl) but was between ECl and the calculated Vrev for elemental monovalent cations (ECat), indicating that more than one Ca2+-activated current contributed to OCs. Addition of the Ca2+-activated Cl- current (ICl(Ca)) antagonist, niflumic acid, shifted the OC Vrev to ECat, suggesting that ICl(Ca) and a Ca2+-activated non-selective cation current (ICAN) contributed to the observed OCs. A reduced niflumic acid-insensitive Ca2+-activated OC persisted following marked symmetrical reduction of Cl- in the intracellular and extracellular solutions. Subsequent removal of all extracellular monovalent cations, by N-methyl-D-glucamine (NMDG) substitution, eliminated OCs and the inward holding current suggesting that ICAN and ICl(Ca) accounted for all or most of the Ca2+-activated OC in the absence of Na+. The OC Vrev was equal to ECl in the absence of monovalent elemental cations. Under these conditions niflumic acid eliminated all OCs. Macroscopic OC is partially due to ICAN in rabbit ventricular myocytes.
Collapse
Affiliation(s)
- Y Wu
- The Cardiac Arrhythmia Section, Division of Cardiovascular Medicine, Department of Internal Medicine, Vanderbilt University Medical School, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
21
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Wilson HA, Waldrip JB, Nielson KH, Judd AM, Han SK, Cho W, Sims PJ, Bell JD. Mechanisms by which elevated intracellular calcium induces S49 cell membranes to become susceptible to the action of secretory phospholipase A2. J Biol Chem 1999; 274:11494-504. [PMID: 10206954 DOI: 10.1074/jbc.274.17.11494] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of S49 lymphoma cells to exogenous group IIA or V secretory phospholipase A2 (sPLA2) caused an initial release of fatty acid followed by resistance to further hydrolysis by the enzyme. This refractoriness was overcome by exposing cells to palmitoyl lysolecithin. This effect was specific in terms of lysophospholipid structure. Induction of membrane susceptibility by lysolecithin involved an increase in cytosolic calcium and was duplicated by incubating the cells with calcium ionophores such as ionomycin. Lysolecithin also activated cytosolic phospholipase A2 (cPLA2). Inhibition of this enzyme attenuated the ability of lysolecithin (but not ionomycin) to induce susceptibility to sPLA2. Lysolecithin or ionomycin caused concurrent hydrolysis of both phosphatidylethanolamine and phosphatidylcholine implying that transbilayer movement of phosphatidylethanolamine occurred upon exposure to these agents but that susceptibility is not simply due to exposure of a preferred substrate (i.e. phosphatidylethanolamine) to the enzyme. Microvesicles were apparently released from the cells upon addition of lysolecithin or ionomycin. Both these vesicles and the remnant cell membranes were susceptible to sPLA2. Together these data suggest that lysolecithin induces susceptibility through both cPLA2-dependent and -independent pathways. Whereas elevated cytosolic calcium was required for both pathways, it was sufficient only for the cPLA2-independent pathway. This cPLA2-independent pathway involved changes in cell membrane structure associated with transbilayer phospholipid migration and microvesicle release.
Collapse
Affiliation(s)
- H A Wilson
- Department of Zoology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ma H, Hashizume H, Hara A, Yazawa K, Abiko Y. Protective effect of quinaprilat, an active metabolite of quinapril, on Ca2+-overload induced by lysophosphatidylcholine in isolated rat cardiomyocytes. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:17-24. [PMID: 10082313 DOI: 10.1254/jjp.79.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We examined the effects of quinaprilat, an active metabolite of quinapril (an angiotensin converting enzyme (ACE) inhibitor) on the increase in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+-overload) induced by lysophosphatidylcholine (LPC) in isolated rat cardiomyocytes. LPC (15 microM) produced Ca2+-overload with a change in cell-shape from rod to round. Quinaprilat but not quinapril at 20 or 50 microM attenuated the LPC-induced increase in [Ca2+]i and the change in cell-shape in a concentration-dependent manner. Since quinaprilat has an inhibitory action on ACE and quinapril has practically no inhibitory action on ACE, it is likely that the inhibitory action of quinaprilat on ACE is necessary for the protective effect of the drug against LPC-induced changes. We therefore examined the effects of enalapril (another ACE inhibitor with the weak inhibitory action on ACE) and enalaprilat (an active metabolite of enalapril with an inhibitory action on ACE) on the LPC-induced changes. Both enalapril and enalaprilat attenuated the LPC-induced Ca2+-overload, suggesting that the inhibitory action on ACE may not mainly contribute to the protective effect of ACE inhibitors against LPC-induced Ca2+-overload. This suggestion was supported by the fact that neither ACE (0.2 U/ml) nor angiotensin II (0.1-100 microM) increased [Ca2+]i in isolated cardiomyocytes. Furthermore, application of bradykinin (0.01-10 microM) did not enhance the protective effect of quinaprilat against LPC-induced changes. LPC also increased release of creatine kinase (CK) from the myocyte markedly, and quinaprilat but not quinapril attenuated the LPC-induced CK release. Unexpectedly, both enalapril and enalaprilat did not attenuate the LPC-induced CK release. Neither quinapril nor quinaprilat changed the critical micelle concentration of LPC, suggesting that these drugs do not directly bind to LPC. We conclude that quinaprilat attenuates the LPC-induced increase in [Ca2+]i, and that the protective effect of quinaprilat on the LPC-induced change may not be related to a decrease in angiotensin II production or an increase in bradykinin production.
Collapse
Affiliation(s)
- H Ma
- Department of Pharmacology, Asahikawa Medical College, Japan
| | | | | | | | | |
Collapse
|
24
|
Akuzawa-Tateyama M, Tateyama M, Ochi R. Low K+-induced hyperpolarizations trigger transient depolarizations and action potentials in rabbit ventricular myocytes. J Physiol 1998; 513 ( Pt 3):775-86. [PMID: 9824717 PMCID: PMC2231317 DOI: 10.1111/j.1469-7793.1998.775ba.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The effects of large reductions of [K+]o on membrane potential were studied in isolated rabbit ventricular myocytes using the whole-cell patch clamp technique. 2. Decreasing [K+]o from the normal level of 5.4 mM to 0.1 mM increased resting membrane potential (Vrest) from -75.6 +/- 0.3 to -140.3 +/- 1.9 mV (means +/- s.e.m; n = 127), induced irregular, transient depolarizations with mean maximal amplitudes of 19.5 +/- 1.5 mV and elicited action potentials in 56.7 % of trials. The action potentials exhibited overshoots of 37.9 +/- 1.5 mV (n = 72) and sustained plateaux. 3. Addition of 0.1 mM La3+ in the presence of 0.1 mM [K+]o significantly increased Vrest but decreased the amplitude of transient depolarizations and suppressed the firing of action potentials. 4. Replacement of external Na+ or Cl- with N-methyl-D-glucamine or aspartate, respectively, or internal dialysis with 10 mM EGTA or BAPTA had little effect on low [K+]o-induced membrane potential changes. 5. Hyperpolarizing voltage clamp pulses to potentials between -110 and -200 mV activated irregular inward currents that increased in amplitude and frequency with increasing hyperpolarization and were depressed by 0.1 mM La3+. 6. The generation of transient depolarizations by low [K+]o can be explained as being a consequence of decreasing the inward rectifier K+ current (IK1) and the appearance of inward currents reflecting electroporation resulting from strong electric fields across the membrane.
Collapse
Affiliation(s)
- M Akuzawa-Tateyama
- Department of Physiology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113,, Japan
| | | | | |
Collapse
|
25
|
Caldwell RA, Baumgarten CM. Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ Res 1998; 83:533-40. [PMID: 9734476 DOI: 10.1161/01.res.83.5.533] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmalogen rather than diacyl phospholipids are the preferred substrate for the cardiac phospholipase A2 (PLA2) isoform activated during ischemia. The diacyl metabolite, lysophosphatidylcholine, is arrhythmogenic, but the effects of the plasmalogen metabolite, lysoplasmenylcholine (LPLC), are essentially unknown. We found that 2.5 and 5 micromol/L LPLC induced spontaneous contractions of intact isolated rabbit ventricular myocytes (median times, 27.4 and 16.4 minutes, respectively) significantly faster than lysophosphatidylcholine (>60 and 37.8 minutes, respectively). Whole-cell recordings revealed that LPLC depolarized the resting membrane potential from -83.5+/-0.2 to -21.5+/-1.0 mV. Depolarization was due to a guanidinium toxin-insensitive Na+ influx. The LPLC-induced current reversed at -18.5+/-0.9 mV and was shifted 26.7+/-4.2 mV negative by a 10-fold reduction of bath Na+ (Na+/K+ permeability ratio, approximately 0.12+/-0.06). In contrast, block of Ca2+ channels with Cd2+ and reducing bath Cl failed to affect the current. The actions of LPLC were opposed by lanthanides. Gd3+ and La3+ were equally effective inhibitors of the LPLC-induced current and equally delayed the onset of spontaneous contractions. However, the characteristics of lanthanide block imply that Gd3+-sensitive, poorly selective, stretch-activated channels were not involved. Instead, the data are consistent with the view that lanthanides increase phospholipid ordering and may thereby oppose membrane perturbations caused by LPLC. Plasmalogens constitute a significant fraction of cardiac sarcolemmal choline phospholipids. In light of their subclass-specific catabolism by phospholipase A2 and the present results, it is suggested that LPLC accumulation may contribute to ventricular dysrhythmias during ischemia.
Collapse
Affiliation(s)
- R A Caldwell
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0551, USA
| | | |
Collapse
|
26
|
Caldwell RA, Clemo HF, Baumgarten CM. Using gadolinium to identify stretch-activated channels: technical considerations. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C619-21. [PMID: 9688617 DOI: 10.1152/ajpcell.1998.275.2.c619] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gadolinium (Gd3+) blocks cation-selective stretch-activated ion channels (SACs) and thereby inhibits a variety of physiological and pathophysiological processes. Gd3+ sensitivity has become a simple and widely used method for detecting the involvement of SACs, and, conversely, Gd3+ insensitivity has been used to infer that processes are not dependent on SACs. The limitations of this approach are not adequately appreciated, however. Avid binding of Gd3+ to anions commonly present in physiological salt solutions and culture media, including phosphate- and bicarbonate-buffered solutions and EGTA in intracellular solutions, often is not taken into account. Failure to detect an effect of Gd3+ in such solutions may reflect the vanishingly low concentrations of free Gd3+ rather than the lack of a role for SACs. Moreover, certain SACs are insensitive to Gd3+, and Gd3+ also blocks other ion channels. Gd3+ remains a useful tool for studying SACs, but appropriate care must be taken in experimental design and interpretation to avoid both false negative and false positive conclusions.
Collapse
Affiliation(s)
- R A Caldwell
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | |
Collapse
|
27
|
Hashizume H, Chen M, Ma H, Hara A, Yazawa K, Akahira M, Xiao CY, Abiko Y. A new approach to the development of anti-ischemic drugs: protective drugs against cell injury induced by lysophosphatidylcholine. Life Sci 1998; 62:1695-9. [PMID: 9585159 DOI: 10.1016/s0024-3205(98)00130-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have revealed that lysophosphatidylcholine (LPC) produces mechanical and metabolic derangements in perfused working rat hearts and Ca2+-overload in isolated cardiac myocytes. Thus, LPC possesses an ischemia-like effect on the heart. Therefore, a drug that possesses an anti-LPC action would protect or improve ischemia/reperfusion damage. We examined the effects of various anti-ischemic drugs on the Ca2+ overload induced by LPC. Our data suggest that a drug with high lipophilicity possesses a protective effect on cell injury induced by LPC, probably because of preservation of membrane integrity.
Collapse
Affiliation(s)
- H Hashizume
- Department of Pharmacology, Asahikawa Medical College, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamaguchi S, Tamagawa M, Nakajima N, Nakaya H. Selective impairment of HCO3(-)-dependent pHi regulation by lysophosphatidylcholine in guinea pig ventricular myocardium. Cardiovasc Res 1998; 37:179-86. [PMID: 9539872 DOI: 10.1016/s0008-6363(97)00203-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim was to examine the effects of lysophosphatidylcholine (LPC), an amphiphilic lipid metabolite in ischemic myocardium, on intracellular pH (pH(i)) regulatory systems in guinea pig papillary muscles. METHODS In CO2/HCO(3-)-buffered Tyrode solution, pH(i), intracellular Na+ activity (aNai) and membrane potential of isolated guinea pig papillary muscles were measured using ion-selective microelectrode and conventional microelectrode. Standard ammonium prepulsing with 20 mM NH4Cl was used to produce an intracellular acid load, and effects of LPC on the pH(i) recovery from acidosis were evaluated in the absence and presence of a transport inhibitor. RESULTS LPC acidified the resting pH(i) by 0.03 +/- 0.01 pH units (n = 15, p < 0.01) concomitantly with a slight decrease in resting membrane potential and an increase in aNai in quiescent preparations. The pH(i) recovery rate from an intracellular acid load was decreased to 83 +/- 4% of the control value by 30 microM LPC (n = 8, P < 0.05) but not by 30 microM phosphatidylcholine (PC). In the presence of 10 microM 5-(N,N-hexamethylene) amiloride (HMA), a Na(+)-H+ exchange inhibitor, LPC still slowed pH(i) recovery from an intracellular acid load to 77 +/- 4% of the control (n = 5, P < 0.05). However, LPC failed to alter the pH(i) recovery rate in the presence of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 0.5 mM), a Na(+)-HCO3- symport inhibitor. CONCLUSION LPC impairs Na(+)-HCO3- symport but not Na(+)-H+ exchange, and LPC may potentiate its arrhythmogenic action by intensifying the intracellular acidosis in ischemic myocardium.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Pharmacology, Chiba University School of Medicine, Japan
| | | | | | | |
Collapse
|
29
|
Mubagwa K, Stengl M, Flameng W. Extracellular divalent cations block a cation non-selective conductance unrelated to calcium channels in rat cardiac muscle. J Physiol 1997; 502 ( Pt 2):235-47. [PMID: 9263906 PMCID: PMC1159545 DOI: 10.1111/j.1469-7793.1997.235bk.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The effect of removing extracellular divalent cations on resting potential (Vrest) and background conductance of rat cardiac muscle was studied. Vrest was measured with 3 M KCl-filled microelectrodes in papillary muscles, or with a patch electrode in ventricular myocytes. Whole-cell membrane currents were measured in myocytes using step or ramp voltage commands. 2. In both muscles and single cells, decrease or removal of Ca2+o and Mg2+o caused a nifedipine-resistant depolarization, which was reversed upon readmission of Ca2+o or Mg2+o (half-maximal effect at 0.8 mM Ca2+o or 3 mM Mg2+o in muscles). 3. In single myocytes, removal of Ca2+o and Mg2+o had no effect on the seal resistance in nonruptured cell-attached recordings, but reversibly induced a current with a reversal potential (Vrev) of -8 +/- 3.4 mV (with internal Cs+; mean +/- S.E.M., n = 23) during whole-cell recordings. The current was insensitive to nifedipine (3-100 microM) or amiloride (1 mM). Vrev was insensitive to changes in the equilibrium potential for chloride ions (ECl). 4. The current induced in the absence of extracellular divalent cations was blocked in a concentration-dependent manner by Ca2+o. (At -80 mV, the affinity constant KCa was 60 microM with a Hill coefficient of 0.9) KCa was voltage dependent at positive but not negative potentials. Mg2+o, Ni2+o, Sr2+o, Ba2+o, Cd2+o and Gd3+o also blocked the current. 5. In 0 mM Na+ (145 mM NMDG+), the inward component of the divalent cation-sensitive current was decreased and Vrev shifted to more negative potentials. 6. These results suggest that a novel conductance pathway, permeable to monovalent cations but not to Cl- and blocked by divalent cations, exists in ventricular myocytes.
Collapse
Affiliation(s)
- K Mubagwa
- Centrum voor Experimentele Heelkunde en Anesthesiologie, University of Leuven, Belgium.
| | | | | |
Collapse
|