1
|
Kamarova KA, Ershova NM, Sheshukova EV, Arifulin EA, Ovsiannikova NL, Antimonova AA, Kudriashov AA, Komarova TV. Nicotiana benthamiana Class 1 Reversibly Glycosylated Polypeptides Suppress Tobacco Mosaic Virus Infection. Int J Mol Sci 2023; 24:12843. [PMID: 37629021 PMCID: PMC10454303 DOI: 10.3390/ijms241612843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Reversibly glycosylated polypeptides (RGPs) have been identified in many plant species and play an important role in cell wall formation, intercellular transport regulation, and plant-virus interactions. Most plants have several RGP genes with different expression patterns depending on the organ and developmental stage. Here, we report on four members of the RGP family in N. benthamiana. Based on a homology search, NbRGP1-3 and NbRGP5 were assigned to the class 1 and class 2 RGPs, respectively. We demonstrated that NbRGP1-3 and 5 mRNA accumulation increases significantly in response to tobacco mosaic virus (TMV) infection. Moreover, all identified class 1 NbRGPs (as distinct from NbRGP5) suppress TMV intercellular transport and replication in N. benthamiana. Elevated expression of NbRGP1-2 led to the stimulation of callose deposition at plasmodesmata, indicating that RGP-mediated TMV local spread could be affected via a callose-dependent mechanism. It was also demonstrated that NbRGP1 interacts with TMV movement protein (MP) in vitro and in vivo. Therefore, class 1 NbRGP1-2 play an antiviral role by impeding intercellular transport of the virus by affecting plasmodesmata callose and directly interacting with TMV MP, resulting in the reduced viral spread and replication.
Collapse
Affiliation(s)
- Kamila A. Kamarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Natalia M. Ershova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia L. Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra A. Antimonova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Andrei A. Kudriashov
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (N.M.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
3
|
Sun X, Cao L, Zhang S, Yu J, Xu X, Xu C, Xu Z, Qu C, Liu G. Genome-wide analysis of the RGP gene family in Populus trichocarpa and their expression under nitrogen treatment. Gene Expr Patterns 2020; 38:119142. [PMID: 32898702 DOI: 10.1016/j.gep.2020.119142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Reversible glycosylation polypeptide (RGP) is a type of plant-specific protein, primarily involved in the biosynthesis of cell wall polysaccharides, which in turn changes the shape of the cell walls and affects the wood properties of plants. Poplar is a major industrial timber species, and the RGP gene has not been studied. This study uses bioinformatics methods to predict physical and chemical characters such as molecular weight, isoelectric point, and hydrophilicity; and fluorescent quantitative method to determine the effect of different forms of nitrogen on the transcription level of the gene family. The results showed that there are six RGP homologous genes in the Populus trichocarpa genome, which were distributed on the six chromosomes of P. trichocarpa. The family members have a simple gene structure and contain four exons and introns. Phylogenetic tree analysis showed that RGP genes all belong to Class I in P. trichocarpa. Tissue-specific expression analysis showed that PtRGP1 and PtRGP2 were highly expressed in the stems, PtRGP4 and PtRGP5 were highly expressed in the upper leaves, PtRGR3 and PtRGR6 were expressed in stems and internodes, but the relative expression is not high. Quantitative real-time RT-PCR (qRT-PCR) analyses revealed that PtRGP3 and 6 were up-regulated in the upper stem in response to the low ammonium and high nitrate treatments. The influence of nitrogen on the expression of PtRGP3 and 6 genes may affect the formation of the plant secondary cell wall. This study lays a foundation for further study on the function of RGP genes in P. trichocarpa.
Collapse
Affiliation(s)
- Xue Sun
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Shuang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Caifeng Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhiru Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Saqib A, Scheller HV, Fredslund F, Welner DH. Molecular characteristics of plant UDP-arabinopyranose mutases. Glycobiology 2019; 29:839-846. [PMID: 31679023 PMCID: PMC6861824 DOI: 10.1093/glycob/cwz067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.
Collapse
Affiliation(s)
- Anam Saqib
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
- Industrial Enzymes and Biofuels Group, National Institute for Biotechnology and Genetic Engineering, Jhang Road, 44000 Faisalabad, Pakistan
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Engineering and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| |
Collapse
|
5
|
Honta H, Inamura T, Konishi T, Satoh S, Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. JOURNAL OF PLANT RESEARCH 2018; 131:307-317. [PMID: 29052022 DOI: 10.1007/s10265-017-0985-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 05/27/2023]
Abstract
Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.
Collapse
Affiliation(s)
- Hideyuki Honta
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Takuya Inamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Teruko Konishi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
6
|
Olmedo P, Moreno AA, Sanhueza D, Balic I, Silva-Sanzana C, Zepeda B, Verdonk JC, Arriagada C, Meneses C, Campos-Vargas R. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:46-54. [PMID: 29241566 DOI: 10.1016/j.plantsci.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme.
Collapse
Affiliation(s)
- Patricio Olmedo
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Iván Balic
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Fuchslocher 1305, Osorno, Chile.
| | - Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Baltasar Zepeda
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Julian C Verdonk
- Horticulture and Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PD Wageningen, The Netherlands.
| | - César Arriagada
- Laboratorio Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Francisco Salazar1145, Temuco, Chile.
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago, Chile.
| |
Collapse
|
7
|
Welner DH, Shin D, Tomaleri GP, DeGiovanni AM, Tsai AYL, Tran HM, Hansen SF, Green DT, Scheller HV, Adams PD. Plant cell wall glycosyltransferases: High-throughput recombinant expression screening and general requirements for these challenging enzymes. PLoS One 2017; 12:e0177591. [PMID: 28598995 PMCID: PMC5466300 DOI: 10.1371/journal.pone.0177591] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Molecular characterization of plant cell wall glycosyltransferases is a critical step towards understanding the biosynthesis of the complex plant cell wall, and ultimately for efficient engineering of biofuel and agricultural crops. The majority of these enzymes have proven very difficult to obtain in the needed amount and purity for such molecular studies, and recombinant cell wall glycosyltransferase production efforts have largely failed. A daunting number of strategies can be employed to overcome this challenge, including optimization of DNA and protein sequences, choice of expression organism, expression conditions, co-expression partners, purification methods, and optimization of protein solubility and stability. Hence researchers are presented with thousands of potential conditions to test. Ultimately, the subset of conditions that will be sampled depends on practical considerations and prior knowledge of the enzyme(s) being studied. We have developed a rational approach to this process. We devise a pipeline comprising in silico selection of targets and construct design, and high-throughput expression screening, target enrichment, and hit identification. We have applied this pipeline to a test set of Arabidopsis thaliana cell wall glycosyltransferases known to be challenging to obtain in soluble form, as well as to a library of cell wall glycosyltransferases from other plants including agricultural and biofuel crops. The screening results suggest that recombinant cell wall glycosyltransferases in general have a very low soluble:insoluble ratio in lysates from heterologous expression cultures, and that co-expression of chaperones as well as lysis buffer optimization can increase this ratio. We have applied the identified preferred conditions to Reversibly Glycosylated Polypeptide 1 from Arabidopsis thaliana, and processed this enzyme to near-purity in unprecedented milligram amounts. The obtained preparation of Reversibly Glycosylated Polypeptide 1 has the expected arabinopyranose mutase and autoglycosylation activities.
Collapse
Affiliation(s)
- Ditte Hededam Welner
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| | - David Shin
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Giovani P. Tomaleri
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Huu M. Tran
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California, United States of America
| | - Sara Fasmer Hansen
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | | | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
8
|
Welner DH, Tsai AYL, DeGiovanni AM, Scheller HV, Adams PD. X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa. Acta Crystallogr F Struct Biol Commun 2017; 73:241-245. [PMID: 28368284 PMCID: PMC5379175 DOI: 10.1107/s2053230x17004587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 11/20/2022] Open
Abstract
The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.
Collapse
Affiliation(s)
- Ditte Hededam Welner
- DTU Bioengineering, Technical University of Denmark, Elektrovej, Building 375, 2800 Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Alex Yi-Lin Tsai
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Andy M. DeGiovanni
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
10
|
De Storme N, Geelen D. Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. FRONTIERS IN PLANT SCIENCE 2014; 5:138. [PMID: 24795733 PMCID: PMC4001042 DOI: 10.3389/fpls.2014.00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/23/2014] [Indexed: 05/18/2023]
Abstract
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur.
Collapse
Affiliation(s)
| | - Danny Geelen
- *Correspondence: Danny Geelen, Laboratory for In Vitro Biology and Horticulture, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
11
|
De Pino V, Marino Busjle C, Moreno S. Oligomerization of the reversibly glycosylated polypeptide: its role during rice plant development and in the regulation of self-glycosylation. PROTOPLASMA 2013; 250:111-119. [PMID: 22367534 DOI: 10.1007/s00709-012-0382-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/23/2012] [Indexed: 05/31/2023]
Abstract
A multigenic family of self-glycosylating proteins named reversibly glycosylated polypeptides, designated as RGPs, have been usually associated with carbohydrate metabolism, although they are an enigma both at the functional, as well as at the structural level. In this work, we used biochemical approaches to demonstrate that complex formation is linked to rice plant development, in which class 1 Oryza sativa RGP (OsRGP) would be involved in an early stage of growing plants, while class 2 OsRGP would be associated with a late stage linked to an active polysaccharide synthesis that occurs during the elongation of plant. Here, a further investigation of the complex formation of the Solanum tuberosum RGP (StRGP) was performed. Results showed that disulfide bonds are at least partially responsible for maintaining the oligomeric protein structure, so that the nonreduced StRGP protein showed an apparent higher molecular weight and a lower radioglycosylation of the monomer with respect to its reduced form. Hydrophobic cluster analysis and secondary structure prediction revealed that class 2 RGPs no longer maintained the Rossman fold described for class 1 RGP. A 3D structure of the StRGP protein resolved by homology modeling supports the possibility of intercatenary disulfide bridges formed by exposed cysteines residues C79, C303 and C251 and they are most probably involved in complex formation occurring into the cell cytoplasm.
Collapse
Affiliation(s)
- Verónica De Pino
- Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, INQUIMEFA-Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 954, Ciudad Autónoma de Buenos Aires (1113), Argentina
| | | | | |
Collapse
|
12
|
Oikawa A, Lund CH, Sakuragi Y, Scheller HV. Golgi-localized enzyme complexes for plant cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2013; 18:49-58. [PMID: 22925628 DOI: 10.1016/j.tplants.2012.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/18/2023]
Abstract
The plant cell wall mostly comprises complex glycans, which are synthesized by numerous enzymes located in the Golgi apparatus and plasma membrane. Protein-protein interactions have been shown to constitute an important organizing principle for glycan biosynthetic enzymes in mammals and yeast. Recent genetic and biochemical data also indicate that such interactions could be common in plant cell wall biosynthesis. In this review, we examine the new findings in protein-protein interactions among plant cell wall biosynthetic enzymes and discuss the possibilities for enzyme complexes in the Golgi apparatus. These new insights in the field may contribute to novel strategies for molecular engineering of the cell wall.
Collapse
Affiliation(s)
- Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
13
|
Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, Mukhopadhyay A, Usadel B, Scheller HV. The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. THE PLANT CELL 2011; 23:1373-90. [PMID: 21478444 PMCID: PMC3101560 DOI: 10.1105/tpc.111.083931] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12–31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall–derived L-Ara and exhibiting severe developmental defects.
Collapse
Affiliation(s)
- Carsten Rautengarten
- Joint BioEnergy Institute, Feedstocks Division, Lawrence Berkeley National Laboratory, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
15
|
Abstract
Biosynthesis of pectin and hemicelluloses occurs in the Golgi apparatus and is thought to involve spatial regulations and complex formation of biosynthetic enzymes and proteins. We have demonstrated that a combination of heterologous expression of recombinant proteins tagged with fluorescent proteins and live cell imaging with confocal laser scanning microscopy (CLSM) allows efficient visualization of biosynthetic enzymes and proteins in subcellular compartments. We have also successfully utilized bimolecular fluorescence complementation (BiFC) for in situ visualization of protein-protein interactions of pectin biosynthetic enzymes and for the determination of their membrane topology in the Golgi apparatus.
Collapse
Affiliation(s)
- Yumiko Sakuragi
- The Department of Plant Biology and Biotechnology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ. Plasmodesmata: gateways to local and systemic virus infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1403-12. [PMID: 20687788 DOI: 10.1094/mpmi-05-10-0116] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As channels that provide cell-to-cell connectivity, plasmodesmata are central to the local and systemic spread of viruses in plants. This review discusses the current state of knowledge of the structure and function of these channels and the ways in which viruses bring about functional changes that allow macromolecular trafficking to occur. Despite the passing of two decades since the first identification of a viral movement protein that mediates these changes, our understanding of the relevant molecular mechanisms remains in its infancy. However, viral movement proteins provide valuable tools for the modification of plasmodesmata and will continue to assist in the dissection of plasmodesmal properties in relation to their core roles in cell-to-cell communication.
Collapse
|
17
|
Kim YM, Bouras N, Kav NNV, Strelkov SE. Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: A host-specific toxin from the fungal pathogen Pyrenophora tritici-repentis. Proteomics 2010; 10:2911-26. [DOI: 10.1002/pmic.200900670] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J. Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics 2010; 10:349-68. [PMID: 20148406 DOI: 10.1002/pmic.200900484] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The comprehension of metal homeostasis in plants requires the identification of molecular markers linked to stress tolerance. Proteomic changes in leaves and cambial zone of Populus tremula x P. alba (717-1B4 genotype) were analyzed after 61 days of exposure to cadmium (Cd) 360 mg/kg soil dry weight in pot-soil cultures. The treatment led to an acute Cd stress with a reduction of growth and photosynthesis. Cd stress induced changes in the display of 120 spots for leaf tissue and 153 spots for the cambial zone. It involved a reduced photosynthesis, resulting in a profound reorganisation of carbon and carbohydrate metabolisms in both tissues. Cambial cells underwent stress from the Cd actually present inside the tissue but also a deprivation of photosynthates caused by leaf stress. An important tissue specificity of the response was observed, according to the differences in cell structures and functions.
Collapse
Affiliation(s)
- Thomas C Durand
- CRP-Gabriel Lippmann, Department Environment and Agro-biotechnologies, Belvaux, GD, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zavaliev R, Sagi G, Gera A, Epel BL. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:131-42. [PMID: 19887501 PMCID: PMC2791124 DOI: 10.1093/jxb/erp301] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/03/2009] [Indexed: 05/17/2023]
Abstract
Arabidopsis class 1 reversibly glycosylated polypeptides (C1RGPs) were shown to be plasmodesmal-associated proteins. Transgenic tobacco (Nicotiana tabacum) plants constitutively expressing GFP tagged AtRGP2 under the control of the CaMV 35S promoter are stunted, have a rosette-like growth pattern, and in source leaves exhibit strong chlorosis, increased photoassimilate retention and starch accumulation that results in elevated leaf specific fresh and dry weights. Basal callose levels around plasmodesmata (Pd) of leaf epidermal cells in transgenic plants are higher than in WT. Such a phenotype is characteristic of virus-infected plants and some transgenic plants expressing Pd-associated viral movement proteins (MP). The local spread of Tobacco mosaic virus (TMV) is inhibited in AtRGP2:GFP transgenics compared to WT. Taken together these observations suggest that overexpression of the AtRGP2:GFP leads to a reduction in Pd permeability to photoassimilate, thus lowering the normal rate of translocation from source leaves to sink organs. Such a reduction may also inhibit the local cell-to-cell spread of viruses in transgenic plants. The observed reduction in Pd permeability could be due to a partial Pd occlusion caused either by the accumulation of AtRGP2:GFP fusion in Pd, and/or by constriction of Pd by the excessive callose accumulation.
Collapse
Affiliation(s)
- Raul Zavaliev
- Department of Plant Sciences, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Sagi
- Department of Plant Sciences, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Abed Gera
- Department of Plant Pathology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Bernard L. Epel
- Department of Plant Sciences, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Barjaktarović Ž, Schütz W, Madlung J, Fladerer C, Nordheim A, Hampp R. Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:779-89. [PMID: 19129159 PMCID: PMC2652066 DOI: 10.1093/jxb/ern324] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/04/2023]
Abstract
In a recent study it was shown that callus cell cultures of Arabidopsis thaliana respond to changes in gravitational field strengths by changes in protein expression. Using ESI-MS/MS for proteins with differential abundance after separation by 2D-PAGE, 28 spots which changed reproducibly and significantly in amount (P <0.05) after 2 h of hypergravity (18 up-regulated, 10 down-regulated) could be identified. The corresponding proteins were largely involved in stress responses, including the detoxification of reactive oxygen species (ROS). In the present study, these investigations are extended to phosphorylated proteins. For this purpose, callus cell cultures of Arabidopsis thaliana were exposed to hypergravity (8 g) and simulated weightlessness (random positioning; RP) for up to 30 min, a period of time which yielded the most reliable data. The first changes, however, were visible as early as 10 min after the start of treatment. In comparison to 1 g controls, exposure to hypergravity resulted in 18 protein spots, and random positioning in 25, respectively, with increased/decreased signal intensity by at least 2-fold (P <0.05). Only one spot (alanine aminotransferase) responded the same way under both treatments. After 30 min of RP, four spots appeared, which could not be detected in control samples. Among the protein spots altered in phosphorylation, it was possible to identify 24 from those responding to random positioning and 12 which responded to 8 g. These 12 proteins (8 g) are partly (5 out of 12) the same as those changed in expression after exposure to 2 h of hypergravity. The respective proteins are involved in scavenging and detoxification of ROS (32%), primary metabolism (20.5%), general signalling (14.7%), protein translation and proteolysis (14.7%), and ion homeostasis (8.8%). Together with our recent data on protein expression, it is assumed that changes in gravitational fields induce the production of ROS. Our data further indicate that responses toward RP are more by post-translational protein modulation (most changes in the degree of phosphorylation occur under RP-treatment) than by protein expression (hypergravity).
Collapse
Affiliation(s)
- Žarko Barjaktarović
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Wolfgang Schütz
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Johannes Madlung
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Claudia Fladerer
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Alfred Nordheim
- University of Tübingen, Interfaculty Institute for Cell Biology, Proteom Centrum Tübingen, Auf der Morgenstelle 15, D-72076 Tübingen, Germany
| | - Rüdiger Hampp
- University of Tübingen, Botany Institute, Physiological Ecology of Plants, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
21
|
Tran HT, Plaxton WC. Proteomic analysis of alterations in the secretome of
Arabidopsis thaliana
suspension cells subjected to nutritional phosphate deficiency. Proteomics 2008; 8:4317-26. [DOI: 10.1002/pmic.200800292] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|