1
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
2
|
Wang L, Jian Z, Wang P, Zhao L, Chen K. Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of Lotus corniculatus. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:46-57. [PMID: 36031596 DOI: 10.1071/fp22051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Lotus corniculatus L. is a perennial high-quality legume forage species but is vulnerable to drought, and water deficit reduces productivity. To understand the drought response mechanism of L. corniculatus , we investigated physiological responses under drought stress and constructed suppression subtractive hybridisation (SSH) cDNA libraries to isolate drought-inducible genes and quantitatively study the expression levels of candidate drought- responsive genes. Genes encoding calmodulin-like protein, mitogen-activated protein kinase, indole-3-acetic acid-induced protein, ser/thr-protein phosphatase homolog-related proteins, and β -galactosidase-related protein with hydrolysis activity were isolated and considered the main factors that explained the resistance of L. corniculatus to drought. Approximately 632 expressed sequence tags (ESTs) were identified and confirmed in the constructed SSH library. The Gene Ontology (GO) analysis revealed that these genes were involved mainly in transcription processes, protein synthesis, material metabolism, catalytic reactions, sugar metabolism, and photosynthesis. The interaction between the functions of these drought-related genes and the physiological responses preliminarily explains the drought resistance mechanisms of L. corniculatus .
Collapse
Affiliation(s)
- Leiting Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhongling Jian
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Puchang Wang
- Guizhou Institute of Prataculture, Guiyang 550006, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, China; and State Engineering Technology Institute for Karst Rocky Desertification Control, Guiyang 550025, China
| | - Keke Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Wang Z, Liu M, Yao M, Zhang X, Qu C, Du H, Lu K, Li J, Wei L, Liang Y. Rapeseed ( Brassica napus) Mitogen-Activated Protein Kinase 1 Enhances Shading Tolerance by Regulating the Photosynthesis Capability of Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:902989. [PMID: 35720537 PMCID: PMC9201689 DOI: 10.3389/fpls.2022.902989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rapeseed (Brassica napus) is the third-largest source of vegetable oil in the world with an edible, medicinal, and ornamental value. However, insufficient light or high planting density directly affects its growth, development, yield, and quality. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that play key roles in regulating the responses to biotic and abiotic stresses in plants. In this study, we found that the promoter of BnaMAPK1 contained several light-responsive elements (including the AT1-motif, G-Box, and TCT-motif), consistent with its shading stress-induced upregulation. Compared with the wild type under shading stress, BnaMAPK1-overexpressing plants showed higher light capture efficiency and carbon assimilation capacity, enhancing their shading tolerance. Using RNA sequencing, we systematically investigated the function of BnaMAPK1 in shading stress on photosynthetic structure, Calvin cycle, and light-driven electron transport. Notably, numerous genes encoding light-harvesting chlorophyll a/b-binding proteins (BnaLHCBs) in photosystem II-light-harvesting complex (LHC) II supercomplex were significantly downregulated in the BnaMAPK1-overexpressing lines relative to the wild type under shading stress. Combining RNA sequencing and yeast library screening, a candidate interaction partner of BnaMAPK1 regulating in shading stress, BnaLHCB3, was obtained. Moreover, yeast two-hybrid and split-luciferase complementation assays confirmed the physical interaction relationship between BnaLHCB3 and BnaMAPK1, suggesting that BnaMAPK1 may involve in stabilizing the photosystem II-LHC II supercomplex. Taken together, our results demonstrate that BnaMAPK1 positively regulates photosynthesis capability to respond to shading stress in rapeseed, possibly by controlling antenna proteins complex in photosystem II, and could provide valuable information for further breeding for rapeseed stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Miao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering College, Guizhou University, Guiyang, China
| | - Mengnan Yao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Xiaoli Zhang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Hai Du
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Kun Lu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Jiana Li
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Ying Liang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
4
|
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics 2022; 114:110311. [PMID: 35176445 DOI: 10.1016/j.ygeno.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in regulating many important biological processes in plants. Here, we identified and characterized eight MAPKK and 49 MAPKKK genes in sorghum and analyzed their differential expression under drought treatment; we also characterized 16 sorghum MAPK genes. RNA-seq analysis revealed that 10 MAPK cascade genes were involved in drought stress response at the transcriptome level in sorghum. Overexpression of SbMPK14 in Arabidopsis and maize resulted in hypersensitivity to drought by promoting water loss, indicating that SbMPK14 functions as a negative regulator of the drought response. Subsequent transcriptome analysis and qRT-PCR verification of maize SbMPK14 overexpression lines revealed that SbMPK14 likely increases plant drought sensitivity by suppressing the activity of specific ERF and WRKY transcription factors. This comprehensive study provides valuable insight into the mechanistic basis of MAPK cascade gene function and their responses to drought in sorghum.
Collapse
Affiliation(s)
- Miaoyi Zhou
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Bingbing Zhao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330046, China
| | - Hanshuai Li
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Wen Ren
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Qian Zhang
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ya Liu
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| | - Jiuran Zhao
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| |
Collapse
|
5
|
Yang L, Wang H, Wang P, Gao M, Huang L, Cui X, Liu Y. De novo and comparative transcriptomic analysis explain morphological differences in Panax notoginseng taproots. BMC Genomics 2022; 23:86. [PMID: 35100996 PMCID: PMC8802446 DOI: 10.1186/s12864-021-08283-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. Results A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. Conclusion These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08283-w.
Collapse
Affiliation(s)
- Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Hanye Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China
| | - Mingju Gao
- Wenshan University, Wenshan, 663000, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China.,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China.,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China.,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China.,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650000, China. .,Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650000, China. .,Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650000, China. .,Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650000, China. .,Sanqi Research Institute of Yunnan Province, Kunming, 650000, China.
| |
Collapse
|
6
|
Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H. Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. PLANT CELL REPORTS 2021; 40:491-506. [PMID: 33388892 DOI: 10.1007/s00299-020-02645-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE StMAPK11 overexpression promotes potato growth, physiological activities and photosynthesis under drought conditions. Mitogen-activated protein kinases (MAPKs) are import regulators of MAPK pathway in plants under drought condition. However, the critical role in potato (Solanum tuberosum L.) drought resistance is not fully understood. In this study, we aimed to explore the role of StMAPK11 under drought stress. The result of RT-qPCR for assay of StMAPKs expression demonstrated that 15 StMAPKs were differentially expressed in leaves, flowers, petioles, stamens, pistils, stems, stolons, roots, tubers and tuber peels of potato. StMAPKs was dynamically modulated by abiotic stresses and plant hormone treatments, and StMAPK11 was apparently up-regulated under drought conditions. Therefore, the vectors pCPB-StMAPK11 and pCPBI121-miRmapk11 for over-expression and down-regulation of StMAPK11 were constructed, respectively, and introduced into potato cultivar Atlantic. The result showed that StMAPK11 promoted potato growth under drought conditions, as well as the physiological activities evidenced by changes in SOD, CAT and POD activity and H2O2, proline and MDA content. StMAPK11 up-regulation intensified drought resistance of potato plant by elevating antioxidant activities and photosynthesis. Moreover, we consolidated the protective role of StMAPK11 in tobacco and Arabidopsis against drought stress. The result could provide new insights into the function of StMAPK11 in drought response and its possible mechanisms.
Collapse
Affiliation(s)
- Xi Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xue Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xusheng Hong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Fangfang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
7
|
Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:747-760. [PMID: 31863495 DOI: 10.1111/tpj.14660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play vital roles in regulating plant growth, development, and stress responses. MAPK-like (MPKL) proteins are a group of kinases containing the MAPK signature TxY motif and showing sequence similarity to MAPKs. However, the functions of plant MPKL proteins are currently unknown. The maize (Zea mays) genome contains four genes encoding MPKL proteins, here named ZmMPKL1 to ZmMPKL4. In this study, we show that ZmMPKL1 possesses kinase activity and that drought-induced ZmMPKL1 expression, ZmMPKL1 overexpression and knockout maize seedlings exhibited no visible morphological difference from wild-type B73 seedlings when grown under normal conditions. By contrast, under drought conditions, ZmMPKL1-overexpressing seedlings showed increased stomatal aperture, water loss, and leaf wilting and knockout seedlings showed the opposite phenotypes. Moreover, these drought-sensitive phenotypes in ZmMPKL1-overexpressing seedlings were restored by exogenous abscisic acid (ABA). ZmMPKL1 overexpression reduced drought-induced ABA production in seedlings and the knockout showed enhanced ABA production. Drought-induced transcription of ABA biosynthetic genes were suppressed and ABA catabolic genes were enhanced in ZmMPKL1-overexpressing seedlings, while their transcription were reversely regulated in knockout seedlings. These results suggest that ZmMPKL1 positively regulates seedlings drought sensitivity by altering the transcription of ABA biosynthetic and catabolic genes, and ABA homeostasis.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Ting Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-Activated Protein Kinase Cascades in Plant Hormone Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:1387. [PMID: 30349547 PMCID: PMC6187979 DOI: 10.3389/fpls.2018.01387] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinase (MAPK) modules play key roles in the transduction of environmental and developmental signals through phosphorylation of downstream signaling targets, including other kinases, enzymes, cytoskeletal proteins or transcription factors, in all eukaryotic cells. A typical MAPK cascade consists of at least three sequentially acting serine/threonine kinases, a MAP kinase kinase kinase (MAPKKK), a MAP kinase kinase (MAPKK) and finally, the MAP kinase (MAPK) itself, with each phosphorylating, and hence activating, the next kinase in the cascade. Recent advances in our understanding of hormone signaling pathways have led to the discovery of new regulatory systems. In particular, this research has revealed the emerging role of crosstalk between the protein components of various signaling pathways and the involvement of this crosstalk in multiple cellular processes. Here we provide an overview of current models and mechanisms of hormone signaling with a special emphasis on the role of MAPKs in cell signaling networks. One-sentence summary: In this review we highlight the mechanisms of crosstalk between MAPK cascades and plant hormone signaling pathways and summarize recent findings on MAPK regulation and function in various cellular processes.
Collapse
Affiliation(s)
- Przemysław Jagodzik
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Tajdel-Zielinska
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agata Ciesla
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Małgorzata Marczak
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Ludwikow
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Agnieszka Ludwikow,
| |
Collapse
|
9
|
Niu Y, Xiang Y. An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:915. [PMID: 30018629 PMCID: PMC6037897 DOI: 10.3389/fpls.2018.00915] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
Biological membranes are highly ordered structures consisting of mosaics of lipids and proteins. Elevated temperatures can directly and effectively change the properties of these membranes, including their fluidity and permeability, through a holistic effect that involves changes in the lipid composition and/or interactions between lipids and specific membrane proteins. Ultimately, high temperatures can alter microdomain remodeling and instantaneously relay ambient cues to downstream signaling pathways. Thus, dynamic membrane regulation not only helps cells perceive temperature changes but also participates in intracellular responses and determines a cell's fate. Moreover, due to the specific distribution of extra- and endomembrane elements, the plasma membrane (PM) and membranous organelles are individually responsible for distinct developmental events during plant adaptation to heat stress. This review describes recent studies that focused on the roles of various components that can alter the physical state of the plasma and thylakoid membranes as well as the crucial signaling pathways initiated through the membrane system, encompassing both endomembranes and membranous organelles in the context of heat stress responses.
Collapse
Affiliation(s)
- Yue Niu
- *Correspondence: Yue Niu, Yun Xiang,
| | - Yun Xiang
- *Correspondence: Yue Niu, Yun Xiang,
| |
Collapse
|
10
|
Liu Y, He C. A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biol 2016; 11:192-204. [PMID: 27984790 PMCID: PMC5157795 DOI: 10.1016/j.redox.2016.12.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved modules among eukaryotic species that range from yeast, plants, flies to mammals. In eukaryotic cells, reactive oxygen species (ROS) has both physiological and toxic effects. Both MAPK cascades and ROS signaling are involved in plant response to various biotic and abiotic stresses. It has been observed that not only can ROS induce MAPK activation, but also that disturbing MAPK cascades can modulate ROS production and responses. This review will discuss the potential mechanisms by which ROS may activate and/or regulate MAPK cascades in plants. The role of MAPK cascades and ROS signaling in regulating gene expression, stomatal function, and programmed cell death (PCD) is also discussed. In addition, the relationship between Rboh-dependent ROS production and MAPK activation in PAMP-triggered immunity will be reviewed.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China; Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming 650224, Yunnan, People's Republic of China
| |
Collapse
|
11
|
Wang F, Wang C, Yan Y, Jia H, Guo X. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:689. [PMID: 27242882 PMCID: PMC4876126 DOI: 10.3389/fpls.2016.00689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/05/2016] [Indexed: 05/21/2023]
Abstract
Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes.
Collapse
|
12
|
Hao L, Wen Y, Zhao Y, Lu W, Xiao K. Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions. PLANT CELL REPORTS 2015; 34:2081-97. [PMID: 26275989 DOI: 10.1007/s00299-015-1853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Wheat MAPK member TaMPK4 responds to abiotic stresses of Pi and N deprivations and high salinity and is crucial in regulating plant tolerance to aforementioned stresses. Mitogen-activated protein kinase (MAPK) cascades are important signal transduction modules in regulating plant responses to various environmental stresses. In this study, a wheat MAPK member referred to TaMPK4 was characterized for its roles in mediating plant tolerance to diverse stresses. TaMPK4 shares conserved domains generally identified in plant MAPKs and possesses in vitro kinase activity. Under stresses of Pi and N deprivations and high salinity, TaMPK4 was strongly upregulated and its expressions were restored upon recovery treatments from above stresses. Sense- and antisense-expressing TaMPK4 in tobacco significantly modified plant growth under the stress conditions and dramatically modified the root architecture through transcriptional regulation of the auxin transport-associated genes NtPIN3 and NtPIN9, whose downregulated expressions dramatically reduced the root growth. Compared with wild type (WT), the antioxidant enzymatic activities under the stress conditions, P accumulation under P deprivation, and N amount under N deficiency were altered dramatically in the transgenic plants, showing higher in the TaMPK4-overexpressing and lower in the TaMPK4-knockout plants, which were in concordance with the modified expressions of a set of antioxidant enzyme genes (NtPOD2;1, NtPOD9, NtSOD2, NtFeSOD, and NtCAT), two phosphate transporter genes (NtPT and NtPT2), and two nitrate transporter genes (NtNRT1.1-s and NtNRT1.1-t), respectively. Downregulated expression of above genes in tobacco largely reduced the plant growth, and Pi and N acquisitions under the stress conditions. TaMPK4 also involved regulations of plant K(+) and osmolyte contents under high salinity. Thus, TaMPK4 is functional in regulating plant tolerance to diverse stresses through modifying various biological processes.
Collapse
Affiliation(s)
- Lin Hao
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Yanli Wen
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Yuanyuan Zhao
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China
| | - Wenjing Lu
- College of Life Sciences, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China.
| | - Kai Xiao
- College of Agronomy, Agricultural University of Hebei, No. 289, Lingyusi Stresst, Baoding, 071001, People's Republic of China.
| |
Collapse
|
13
|
Winnicki K, Żabka A, Bernasińska J, Matczak K, Maszewski J. Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum. PLANT CELL REPORTS 2015; 34:905-17. [PMID: 25652240 PMCID: PMC4427623 DOI: 10.1007/s00299-015-1752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Co-localization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50% of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | | | |
Collapse
|
14
|
Diaz-Vivancos P, Barba-Espín G, Hernández JA. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. PLANT CELL REPORTS 2013; 32:1491-502. [PMID: 23812175 DOI: 10.1007/s00299-013-1473-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 05/04/2023]
Abstract
While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using "-omics" technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might eventually be used in breeding programs to improve crop yields.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia, 30100, Spain
| | | | | |
Collapse
|
15
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
16
|
Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach. PLANT, CELL & ENVIRONMENT 2011; 34:1907-19. [PMID: 21711356 DOI: 10.1111/j.1365-3040.2011.02386.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels.
Collapse
|
17
|
Luo J, Zhao LL, Gong SY, Sun X, Li P, Qin LX, Zhou Y, Xu WL, Li XB. A cotton mitogen-activated protein kinase (GhMPK6) is involved in ABA-induced CAT1 expression and H2O2 production. J Genet Genomics 2011; 38:557-65. [DOI: 10.1016/j.jgg.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/24/2022]
|
18
|
Huang XS, Luo T, Fu XZ, Fan QJ, Liu JH. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5191-206. [PMID: 21778184 PMCID: PMC3193021 DOI: 10.1093/jxb/err229] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 05/18/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays pivotal roles in diverse signalling pathways related to plant development and stress responses. In this study, the cloning and functional characterization of a group-I MAPK gene, PtrMAPK, in Poncirus trifoliata (L.) Raf are reported. PtrMAPK contains 11 highly conserved kinase domains and a phosphorylation motif (TEY), and is localized in the nucleus of transformed onion epidermal cells. The PtrMAPK transcript level was increased by dehydration and cold, but was unaffected by salt. Transgenic overexpression of PtrMAPK in tobacco confers dehydration and drought tolerance. The transgenic plants exhibited better water status, less reactive oxygen species (ROS) generation, and higher levels of antioxidant enzyme activity and metabolites than the wild type. Interestingly, the stress tolerance capacity of the transgenic plants was compromised by inhibitors of antioxidant enzymes. In addition, overexpression of PtrMAPK enhanced the expression of ROS-related and stress-responsive genes under normal or drought conditions. Taken together, these data demonstrate that PtrMAPK acts as a positive regulator in dehydration/drought stress responses by either regulating ROS homeostasis through activation of the cellular antioxidant systems or modulating transcriptional levels of a variety of stress-associated genes.
Collapse
Affiliation(s)
- Xiao-San Huang
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Luo
- College of Life Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Zheng Fu
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi-Jun Fan
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology of the Ministry of Education, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. PLANT MOLECULAR BIOLOGY 2011; 77:17-31. [PMID: 21590508 DOI: 10.1007/s11103-011-9788-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/08/2011] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shi J, Zhang L, An H, Wu C, Guo X. GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 2011; 12:22. [PMID: 21575189 PMCID: PMC3117701 DOI: 10.1186/1471-2199-12-22] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
Background Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Members of group A and B have been extensively characterized, but little information on the group D MAPKs has been reported. Results In this study, we isolated and characterised GhMPK16, the first group D MAPK gene found in cotton. Southern blot analysis suggests GhMPK16 is single copy in the cotton genome, and RNA blot analysis indicates that GhMPK16 transcripts accumulate following pathogen infection and treatment with multiple defense-related signal molecules. The analysis of the promoter region of GhMPK16 revealed a group of putative cis-acting elements related to stress responses. Subcellular localization analysis suggests that GhMPK16 acts in the nucleus. Transgenic Arabidopsis overexpressing GhMPK16 displayed significant resistance to fungi (Colletotrichum nicotianae and Alternaria alternata) and bacteria (Pseudomonas solanacearum) pathogen, and the transcripts of pathogen-related (PR) genes were more rapidly and strongly induced in the transgenic plants. Furthermore, transgenic Arabidopsis showed reduced drought tolerance and rapid H2O2 accumulation. Conclusion These results suggest that GhMPK16 might be involved in multiple signal transduction pathways, including biotic and abiotic stress signaling pathways.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | | | |
Collapse
|
21
|
Zhang L, Xi D, Luo L, Meng F, Li Y, Wu CA, Guo X. Cotton GhMPK2 is involved in multiple signaling pathways and mediates defense responses to pathogen infection and oxidative stress. FEBS J 2011; 278:1367-78. [PMID: 21338470 DOI: 10.1111/j.1742-4658.2011.08056.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating pathogen responses and reactive oxygen species signaling. In plants, MAPKs are classified into four major groups (A-D). Previous studies have mainly focused on groups A and B, but little is known about group C. In this study, we functionally characterized a stress-responsive group C MAPK gene (GhMPK2) from cotton. Northern blot analysis indicated that GhMPK2 was induced not only by signaling molecules, such as ethylene and methyl jasmonate, but also by methyl viologen-mediated oxidative stress. Transgenic tobacco (Nicotiana tabacum) plants that overexpress GhMPK2 displayed enhanced resistance to fungal and viral pathogens, and the expression of the pathogenesis-related (PR) genes, including PR1, PR2, PR4, and PR5, was significantly increased. Interestingly, the transcription of 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) was significantly upregulated in transgenic plants, suggesting that GhMPK2 positively regulates ethylene synthesis. Moreover, overexpression of GhMPK2 elevated the expression of several antioxidant enzymes, conferring on transgenic plants enhanced reactive oxygen species scavenging capability and oxidative stress tolerance. These results increased our understanding of the role of the group C GhMPK2 gene in multiple defense-signaling pathways, including those that are involved in responses to pathogen infection and oxidative stress.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress. PLANT SIGNALING & BEHAVIOR 2011; 6:196-203. [PMID: 21512321 PMCID: PMC3121978 DOI: 10.4161/psb.6.2.14701] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.
Collapse
Affiliation(s)
- Alok Krishna Sinha
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Monika Jaggi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Badmi Raghuram
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg; New Delhi, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
23
|
Liu Y, Li X, Tan H, Liu M, Zhao X, Wang J. Molecular characterization of RsMPK2, a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:836-44. [PMID: 20833058 DOI: 10.1016/j.plaphy.2010.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/22/2010] [Accepted: 07/06/2010] [Indexed: 05/18/2023]
Abstract
Reaumuria soongorica (Pall.) Maxim. is a short woody shrub widely found in semi-arid areas of China, and can survive severe environmental stresses. To understand its potential signaling transduction pathway in stress tolerance, we investigated the participation of mitogen-activated protein kinases (MAPKs) as possible mediators of abiotic stresses. A novel MAP kinase cDNA (RsMPK2) that encodes a 374 amino acid protein was isolated from R. soongorica. RsMPK2 belongs to the C1 subgroup, which is still functionally uncharacterized compared to groups A and B; and contains all 11 of the conserved MAPK subdomains and the TEY phosphorylation motif. RsMPK2 is expressed in vegetative (root, stem, leaf and callus) and reproductive (flower) organs. The transcripts of RsMPK2 were rapidly accumulated at high levels when R. soongorica was subjected to dehydration, salinity conditions and treatment with abscisic acid or hydrogen peroxide. Growth analysis of Escherichia coli (srl::Tn10) cells transformed with pPROEXHT-RsMPK2 showed that the expression products of RsMPK2 do not act as an osmoprotectant. But, the inhibition of RsMPK2 expression by the inhibitor U0126 induced a decrease of antioxidant enzyme activity under stresses, indicating that RsMPK2 is involved in the regulation of the antioxidant defense system in the response to stress signaling.
Collapse
Affiliation(s)
- Yubing Liu
- Extreme Stress Resistance and Biotechnology Laboratory, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Donggang West Road 320, Lanzhou City, Gansu Province 730000, PR China.
| | | | | | | | | | | |
Collapse
|
24
|
Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. PLANT MOLECULAR BIOLOGY 2010; 74:1-17. [PMID: 20602149 DOI: 10.1007/s11103-010-9661-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/23/2010] [Indexed: 05/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK. RNA blot analysis indicated that GhMPK7 transcript was induced by pathogen infection and multiple defense-related signal molecules. Transgenic Nicotina benthamiana overexpressing GhMPK7 displayed significant resistance to fungus Colletotrichum nicotianae and virus PVY, and the transcript levels of SA pathway genes were more rapidly and strongly induced. Furthermore, the transgenic N. benthamiana showed reduced ROS-mediated injuries by upregulating expression of oxidative stress-related genes. Interestingly, the transgenic plants germinated earlier and grew faster in comparison to wild-type plants. beta-glucuronidase activity driven by the GhMPK7 promoter was detected in the apical meristem at the vegetative stage, and it was enhanced by treatments with signal molecules and phytohormones. These results suggest that GhMPK7 might play an important role in SA-regulated broad-spectrum resistance to pathogen infection, and that it is also involved in regulation of plant growth and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis
- Base Sequence
- Cloning, Molecular
- Colletotrichum/pathogenicity
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/growth & development
- Mitogen-Activated Protein Kinases/classification
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plants, Genetically Modified
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Stress, Physiological
- Nicotiana
Collapse
Affiliation(s)
- Jing Shi
- Shandong Agricultural University, Tai'an, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. PLANTA 2009; 229:485-95. [PMID: 19002491 DOI: 10.1007/s00425-008-0848-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/20/2008] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in biotic and abiotic stress responses. In plants, MAPKs are classified into four groups, designated A-D. Information about group C MAPKs is limited, and, in particular, no data from maize are available. In this article, we isolated a novel group C MAPK gene, ZmMPK7, from Zea mays. Exogenous abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)) induced calcium-dependant transcription of ZmMPK7. Induction of this gene in response to ABA was blocked by several reactive oxygen species (ROS) manipulators such as imidazole, Tiron, and dimethylthiourea (DMTU). This result indicates that endogenous H(2)O(2) may be required for ZmMPK7-mediated ABA signaling. Expression of ZmMPK7 in Nicotonia tobaccum caused less H(2)O(2) to accumulate and alleviated ROS-mediated injuries following submission of the plants to osmotic stress. The enhanced total peroxidase (POD) activity in transgenic tobacco plants may contribute to removal of ROS. Finally, we have shown that the ZmMPK7 protein localizes in the nucleus. These results broaden our knowledge regarding plant group C MAPK activity in response to stress signals.
Collapse
Affiliation(s)
- Xiao-juan Zong
- Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|