1
|
Nguyen TKH, Amara U, Kang H. ECT8, an mRNA m 6A reader, enhances salt stress tolerance by modulating mRNA stability in Arabidopsis. PHYSIOLOGIA PLANTARUM 2025; 177:e70135. [PMID: 39968864 DOI: 10.1111/ppl.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
N6-methyladenosine (m6A), the most prevalent modification found in eukaryotic mRNAs, is recognized and interpreted by m6A-binding proteins called m6A readers. The EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins have increasingly been identified as m6A readers in plants. A recent study has demonstrated that the loss-of-function ect8 mutant is sensitive to salt stress by enhancing the stability of negative salt stress regulators in Arabidopsis (Arabidopsis thaliana). In this study, we generated and analyzed the ECT8-overexpressing transgenic Arabidopsis plants to further explore the function of ECT8 in salt stress response. The electrophoretic mobility shift assay in vitro showed that ECT8 binds to the m6A-modified synthetic RNAs, preferring UGUm6AA and UACm6AGA motifs over the GGm6ACU motif. Contrary to the ect8 mutant exhibiting salt hypersensitivity by enhancing the stability of salt stress negative regulators, the ECT8-overexpressing transgenic Arabidopsis plants displayed salt tolerance by increasing the stability and expression levels of salt stress positive regulators. Moreover, RNA-immunoprecipitation assay demonstrated that ECT8 binds to the m6A-modified salt stress-responsive mRNAs in planta. Collectively, our current and previous findings highlight that ECT8-mediated stabilization and destabilization of the genes encoding salt stress positive or negative regulators, respectively, contribute to the salt stress tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Thi Kim Hang Nguyen
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
2
|
Bitarishvili S, Shesterikova E, Smirnova A, Volkova P, Duarte G, Geras'kin S. Phytohormonal balance and differential gene expression in chronically irradiated Scots pine populations from the chernobyl affected zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60178-60188. [PMID: 39373840 DOI: 10.1007/s11356-024-35211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The impact of chronic radiation exposure on phytohormone content and expression of phytohormone- and stress-related genes of Scots pine in the zone affected by the Chernobyl accident was studied. Needle samples were collected from three plots with contrasting levels of radioactive contamination in the Polesye State Radiation-Ecological Reserve, Republic of Belarus, and two reference plots in the Kozeluzhsky forest in June 2022. The experimental plots were located within the artificial plantations of Scots pine established in 1982, before the accident in 1986. The activity of radionuclides 137Cs, 90Sr, 241Am, 238Pu, and 239+240Pu in soil and needles ensured dose rates ranging from 3.3 to 87 mGy × year-1, while at the reference plots, the range was 0.7‒0.8 mGy × year-1. Concentrations of plant hormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), zeatin, and abscisic acid (ABA) in needles were evaluated using high-performance liquid chromatography (HPLC). We demonstrate that chronic radiation exposure is a significant stress factor that affects both phytohormonal balance and the expression of some important phytohormone- and stress-related genes. We found a tendency toward decreased ABA and auxin concentrations in trees from plots contaminated with radionuclides. The ratio (IAA + IBA + zeatin)/ABA was drastically raised at the most contaminated plots Masany and Kulazhin, reflecting the functional rearrangements of cellular metabolism that ensure plant adaptation under chronic radiation exposure. Changes in gene expression indicated modulation of ABA and Ca2+ signalling pathways, decreased potential of zeatin biosynthesis, and activation of heat shock proteins biosynthesis.
Collapse
Affiliation(s)
- Sofia Bitarishvili
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia.
| | - Ekaterina Shesterikova
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| | - Alyona Smirnova
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| | | | - Gustavo Duarte
- Belgian Nuclear Research Centre-SCK CEN, Unit for Biosphere Impact Studies, 2400, Mol, Belgium
| | - Stanislav Geras'kin
- Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035 Kievskoe Shosse, d 1, K 1, Obninsk, Kaluga Region, Russia
| |
Collapse
|
3
|
Xu J, Liu S, Ren Y, You Y, Wang Z, Zhang Y, Zhu X, Hu P. Genome-wide identification of HSP90 gene family in Rosa chinensis and its response to salt and drought stresses. 3 Biotech 2024; 14:204. [PMID: 39161880 PMCID: PMC11330952 DOI: 10.1007/s13205-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04052-0.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yueming Ren
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| | - Yang You
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Zhifang Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yongqiang Zhang
- Xuchang Academy of Agricultural Sciences, Xuchang, Henan Province China
| | - Xinjie Zhu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Ping Hu
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| |
Collapse
|
4
|
Noureddine J, Mu B, Hamidzada H, Mok WL, Bonea D, Nambara E, Zhao R. Knockout of endoplasmic reticulum-localized molecular chaperone HSP90.7 impairs seedling development and cellular auxin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:218-236. [PMID: 38565312 DOI: 10.1111/tpj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.
Collapse
Affiliation(s)
- Jenan Noureddine
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Homaira Hamidzada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Wai Lam Mok
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eiji Nambara
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
He SL, Li B, Zahurancik WJ, Arthur HC, Sidharthan V, Gopalan V, Wang L, Jang JC. Overexpression of stress granule protein TZF1 enhances salt stress tolerance by targeting ACA11 mRNA for degradation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1375478. [PMID: 38799098 PMCID: PMC11122021 DOI: 10.3389/fpls.2024.1375478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Tandem CCCH zinc finger (TZF) proteins play diverse roles in plant growth and stress response. Although as many as 11 TZF proteins have been identified in Arabidopsis, little is known about the mechanism by which TZF proteins select and regulate the target mRNAs. Here, we report that Arabidopsis TZF1 is a bona-fide stress granule protein. Ectopic expression of TZF1 (TZF1 OE), but not an mRNA binding-defective mutant (TZF1H186Y OE), enhances salt stress tolerance in Arabidopsis. RNA-seq analyses of NaCl-treated plants revealed that the down-regulated genes in TZF1 OE plants are enriched for functions in salt and oxidative stress responses. Because many of these down-regulated mRNAs contain AU- and/or U-rich elements (AREs and/or UREs) in their 3'-UTRs, we hypothesized that TZF1-ARE/URE interaction might contribute to the observed gene expression changes. Results from RNA immunoprecipitation-quantitative PCR analysis, gel-shift, and mRNA half-life assays indicate that TZF1 binds and triggers degradation of the autoinhibited Ca2+-ATPase 11 (ACA11) mRNA, which encodes a tonoplast-localized calcium pump that extrudes calcium and dampens signal transduction pathways necessary for salt stress tolerance. Furthermore, this salt stress-tolerance phenotype was recapitulated in aca11 null mutants. Collectively, our findings demonstrate that TZF1 binds and initiates degradation of specific mRNAs to enhance salt stress tolerance.
Collapse
Affiliation(s)
- Siou-Luan He
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Bin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong, China
| | - Walter J. Zahurancik
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Henry C. Arthur
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Vaishnavi Sidharthan
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Venkat Gopalan
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
- Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Shandong, China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Wang S, Hao X, Liu Y, Chen Y, Qu Y, Wang Z, Shen Y. AnWRKY29 and AnHSP90 synergistically modulate trehalose levels in a desert shrub leaves during osmotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14237. [PMID: 38433182 DOI: 10.1111/ppl.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Trehalose, a biological macromolecule with osmotic adjustment properties, plays a crucial role during osmotic stress. As a psammophyte, Ammopiptanthus nanus relies on the accumulation of organic solutes to respond to osmotic stress. We utilized virus-induced gene silencing technology for the first time in the desert shrub A. nanus to confirm the central regulatory role of AnWRKY29 in osmotic stress, as it controls the transcription of AnTPS11 (trehalose-6-phosphate synthase 11). Further investigation has shown that AnHSP90 may interact with AnWRKY29. The AnHSP90 gene is sensitive to osmotic stress, underscoring its pivotal role in orchestrating the response to such adverse conditions. By directly targeting the W-box element within the AnTPS11 promoter, AnWRKY29 effectively enhances the transcriptional activity of AnTPS11, which is facilitated by AnHSP90. This discovery highlights the critical role of AnWRKY29 and AnHSP90 in enabling organisms to adapt to and cope effectively with osmotic stress, which can be a crucial factor in A. nanus survival and overall ecological resilience. Collectively, uncovering the molecular mechanisms underlying the osmotic responses of A. nanus is paramount for comprehending and augmenting the osmotic tolerance mechanisms of psammophyte shrub plants.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Qu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Peng J, Liu S, Wu J, Liu T, Liu B, Xiong Y, Zhao J, You M, Lei X, Ma X. Genome-Wide Analysis of the Oat ( Avena sativa) HSP90 Gene Family Reveals Its Identification, Evolution, and Response to Abiotic Stress. Int J Mol Sci 2024; 25:2305. [PMID: 38396983 PMCID: PMC10889330 DOI: 10.3390/ijms25042305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Oats (Avena sativa) are an important cereal crop and cool-season forage worldwide. Heat shock protein 90 (HSP90) is a protein ubiquitously expressed in response to heat stress in almost all plants. To date, the HSP90 gene family has not been comprehensively reported in oats. Herein, we have identified twenty HSP90 genes in oats and elucidated their evolutionary pathways and responses to five abiotic stresses. The gene structure and motif analyses demonstrated consistency across the phylogenetic tree branches, and the groups exhibited relative structural conservation. Additionally, we identified ten pairs of segmentally duplicated genes in oats. Interspecies synteny analysis and orthologous gene identification indicated that oats share a significant number of orthologous genes with their ancestral species; this implies that the expansion of the oat HSP90 gene family may have occurred through oat polyploidization and large fragment duplication. The analysis of cis-acting elements revealed their influential role in the expression pattern of HSP90 genes under abiotic stresses. Analysis of oat gene expression under high-temperature, salt, cadmium (Cd), polyethylene glycol (PEG), and abscisic acid (ABA) stresses demonstrated that most AsHSP90 genes were significantly up-regulated by heat stress, particularly AsHSP90-7, AsHSP90-8, and AsHSP90-9. This study offers new insights into the amplification and evolutionary processes of the AsHSP90 protein, as well as its potential role in response to abiotic stresses. Furthermore, it lays the groundwork for understanding oat adaptation to abiotic stress, contributing to research and applications in plant breeding.
Collapse
Affiliation(s)
- Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiqiang Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
8
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
10
|
Ma H, Lin J, Mei F, Mao H, Li QQ. Differential alternative polyadenylation of homoeologous genes of allohexaploid wheat ABD subgenomes during drought stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:499-518. [PMID: 36786697 DOI: 10.1111/tpj.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023]
Abstract
Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi, 712100, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
11
|
Xue P, Sun Y, Hu D, Zhang J, Wan X. Genome-wide characterization of DcHsp90 gene family in carnation (Dianthus caryophyllus L.) and functional analysis of DcHsp90-6 in heat tolerance. PROTOPLASMA 2023; 260:807-819. [PMID: 36264387 DOI: 10.1007/s00709-022-01815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plant heat shock protein 90 (Hsp90) participates in various physiological processes including protein folding, degradation, and signal transduction. However, the DcHsp90 gene family in carnation (Dianthus caryophyllus L.) has not been systematically analyzed. We thoroughly examined and comprehensively analyzed the carnation DcHsp90 gene family in this study and discovered 9 DcHsp90 genes. Based on the phylogenetic examination, DcHsp90 proteins may be divided into two groups. DcHsp90 structural features were similar but varied between groups. Promoter analysis revealed the presence of many cis-acting elements, most of which were connected to growth and development, hormones, and stress. DcHsp90 genes may play distinct functions in heat stress response, according to gene expression analyses. The DcHsp90-6 was isolated, and its role in the reaction to heat stress was studied. Thermotolerance and superoxide dismutase activity in transgenic seedlings were enhanced by Arabidopsis overexpression of DcHsp90-6. After heat stress, transgenic plants' electrolyte leakage and malondialdehyde levels were much lower than wild-type plants. Furthermore, overexpression of DcHsp90-6 altered the expressions of stress-responsive genes such as AtHsp101, AtHsp90, AtGolS1, AtRS4/5, and AtHsfB1. This study provides comprehensive information on the DcHsp90 gene family and suggests that overexpressed DcHsp90-6 positively regulates thermotolerance highlighting the adaptation mechanism of carnation under heat stress.
Collapse
Affiliation(s)
- Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuying Sun
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Junwei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Guo Q, Wei R, Xu M, Yao W, Jiang J, Ma X, Qu G, Jiang T. Genome-wide analysis of HSF family and overexpression of PsnHSF21 confers salt tolerance in Populus simonii × P. nigra. FRONTIERS IN PLANT SCIENCE 2023; 14:1160102. [PMID: 37200984 PMCID: PMC10187788 DOI: 10.3389/fpls.2023.1160102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
Heat shock transcription factor (HSF) is an important TF that performs a dominant role in plant growth, development, and stress response network. In this study, we identified a total of 30 HSF members from poplar, which are unevenly distributed on 17 chromosomes. The poplar HSF family can be divided into three subfamilies, and the members of the same subfamily share relatively conserved domains and motifs. HSF family members are acidic and hydrophilic proteins that are located in the nucleus and mainly carry out gene expansion through segmental replication. In addition, they have rich collinearity across plant species. Based on RNA-Seq analysis, we explored the expression pattern of PtHSFs under salt stress. Subsequently, we cloned the significantly upregulated PtHSF21 gene and transformed it into Populus simonii × P. nigra. Under salt stress, the transgenic poplar overexpressing PtHSF21 had a better growth state and higher reactive oxygen scavenging ability. A yeast one-hybrid experiment indicated PtHSF21 could improve salt tolerance by specifically binding to the anti-stress cis-acting element HSE. This study comprehensively profiled the fundamental information of poplar HSF family members and their responses to salt stress and specifically verified the biological function of PtHSF21, which provides clues for understanding the molecular mechanism of poplar HSF members in response to salt stress.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- School of Architecture and Civil Engineer, Heilongjiang University of Science and Technology, Harbin, China
| | - Ran Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Min Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guanzheng Qu, ; Tingbo Jiang,
| |
Collapse
|
13
|
Proteomic Analysis of Roots Response to Potassium Deficiency and the Effect of TaHAK1-4A on K+ Uptake in Wheat. Int J Mol Sci 2022; 23:ijms232113504. [PMID: 36362290 PMCID: PMC9659051 DOI: 10.3390/ijms232113504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Potassium (K+) is essential for plant growth and stress responses. A deficiency in soil K+ contents can result in decreased wheat quality and productivity. Thus, clarifying the molecular mechanism underlying wheat responses to low-K+ (LK) stress is critical. In this study, a tandem mass tag (TMT)-based quantitative proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in roots of the LK-tolerant wheat cultivar “KN9204” at the seedling stage after exposure to LK stress. A total of 104 DAPs were identified in the LK-treated roots. The DAPs related to carbohydrate and energy metabolism, transport, stress responses and defense, and post-translational modifications under LK conditions were highlighted. We identified a high-affinity potassium transporter (TaHAK1-4A) that was significantly up-regulated after the LK treatment. Additionally, TaHAK1-4A was mainly expressed in roots, and the encoded protein was localized in the plasma membrane. The complementation assay in yeast suggested that TaHAK1-4A mediates K+ uptake under extreme LK conditions. The overexpression of TaHAK1-4A increased the fresh weight and root length of Arabidopsis under LK conditions and improved the growth of Arabidopsis athak5 mutant seedlings, which grow poorly under LK conditions. Moreover, silencing of TaHAK1-4A in wheat roots treated with LK stress decreased the root length, dry weight, K+ concentration, and K+ influx. Accordingly, TaHAK1-4A is important for the uptake of K+ by roots exposed to LK stress. Our results reveal the protein metabolic changes in wheat induced by LK stress. Furthermore, we identified a candidate gene potentially relevant for developing wheat lines with increased K+ use efficiency.
Collapse
|
14
|
Yang F, Lv G. Characterization of the gene expression profile response to drought stress in Haloxylon using PacBio single-molecule real-time and Illumina sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:981029. [PMID: 36051288 PMCID: PMC9424927 DOI: 10.3389/fpls.2022.981029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Haloxylon ammodendron and Haloxylon persicum are important drought-tolerant plants in northwest China. The whole-genome sequencing of H. ammodendron and H. persicum grown in their natural environment is incomplete, and their transcriptional regulatory network in response to drought environment remains unclear. To reveal the transcriptional responses of H. ammodendron and H. persicum to an arid environment, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing. In total, 20,246,576 and 908,053 subreads and 435,938 and 210,334 circular consensus sequencing (CCS) reads were identified by SMRT sequencing of H. ammodendron and H. persicum, and 15,238 and 10,135 unigenes, respectively, were successfully obtained. In addition, 9,794 and 7,330 simple sequence repeats (SSRs) and 838 and 71 long non-coding RNAs were identified. In an arid environment, the growth of H. ammodendron was restricted; plant height decreased significantly; basal and branch diameters became thinner and hydrogen peroxide (H2O2) content and peroxidase (POD) activity were increased. Under dry and wet conditions, 11,803 and 15,217 differentially expressed genes (DEGs) were identified in H. ammodendron and H. persicum, respectively. There were 319 and 415 DEGs in the signal transduction pathways related to drought stress signal perception and transmission, including the Ca2+ signal pathway, the ABA signal pathway, and the MAPK signal cascade. In addition, 217 transcription factors (TFs) and 398 TFs of H. ammodendron and H. persicum were differentially expressed, including FAR1, MYB, and AP2/ERF. Bioinformatic analysis showed that under drought stress, the expression patterns of genes related to active oxygen [reactive oxygen species (ROS)] scavenging, functional proteins, lignin biosynthesis, and glucose metabolism pathways were altered. Thisis the first full-length transcriptome report concerning the responses of H. ammodendron and H. persicum to drought stress. The results provide a foundation for further study of the adaptation to drought stress. The full-length transcriptome can be used in genetic engineering research.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Ürümqi, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Ürümqi, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Ürümqi, China
| |
Collapse
|
15
|
Liu M, Wang L, Ke Y, Xian X, Wang J, Wang M, Zhang Y. Identification of HbHSP90 gene family and characterization HbHSP90.1 as a candidate gene for stress response in rubber tree. Gene 2022; 827:146475. [PMID: 35378248 DOI: 10.1016/j.gene.2022.146475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Heat shock protein 90 (HSP90), an essential molecular chaperone, is triggered in response to stress situations in plants. However, the roles of HSP90 gene family members in rubber tree have not been totally specified. In this study, 7 HbHSP90 genes were identified from rubber tree genome. Classification of HbHSP90 family genes into three groups, namely A, B, and C was based on phylogenetic analysis. The structural and motif analyses showed similar structural features in the same group of HbHSP90 members, but differences between groups. Analysis of cis-regulatory element sequences of HbHSP90 genes indicates that the HbHSP90 gene promoter is rich in drought, temperature, and hormone elements. qRT-PCR analysis showed that the 7 HbHSP90 genes responded in different degrees to temperature, drought and powdery mildew infection, and in particularly, HbHSP90.1 was differentially expressed under both abiotic and biotic stresses. Meanwhile, HbHSP90.1 gene was significantly expressed under the treatment of different phytohormone and H2O2 (Hydrogen Peroxide) treatments, which means that HbHSP90.1 gene performs an essential part in the growth and development of rubber trees. Furthermore, the protein interaction results showed that HbHSP90.1 interacted with HbSGT1b. Subcellular localization showed that both HbHSP90.1 and HbSGT1b located in the nucleus. Taken together, we speculate that HbHSP90.1 interacts with HbSGT1b in the nucleus to respond to rubber tree stress processes. The results of this study provide a solid foundation for further studies on the mechanism of HbHSP90 family genes in the stress resistance response of rubber tree.
Collapse
Affiliation(s)
- Mingyang Liu
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China; Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, PR China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, PR China
| | - Yuhang Ke
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Xuemei Xian
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Jiali Wang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China
| | - Meng Wang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China.
| | - Yu Zhang
- Collaborative Innovation Center of Natural Rubber, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, School of Plant Protection, Hainan University Haikou, 570228, PR China.
| |
Collapse
|
16
|
Distinctive Physio-Biochemical Properties and Transcriptional Changes Unfold the Mungbean Cultivars Differing by Their Response to Drought Stress at Flowering Stage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mungbean is a nutritionally and economically important pulse crop cultivated around Asia, mainly in India. The crop is sensitive to drought at various developmental stages of its growing period. However, there is limited or almost no research on a comparative evaluation of mung-bean plants at the flowering stage under drought conditions. Hence, the aim of this research was to impose the drought stress on two mungbean cultivars VRM (Gg) 1 and CO6 at the flowering stage and assess the physio-biochemical and transcriptional changes. After imposing the drought stress, we found that VRM (Gg) 1 exhibited a low reduction in physiological traits (Chlorophyll, relative water content, and plant dry mass) and high proline content than CO6. Additionally, VRM (Gg) 1 has a low level of H2O2 and MDA contents and higher antioxidant enzymes (SOD, POD, and CAT) activity than CO6 during drought stress. The transcriptional analysis of photosynthesis (PS II-PsbP, PS II-LHC, PS I-PsaG/PsaK, and PEPC 3), antioxidant (SOD 2, POD, CAT 2), and drought-responsive genes (HSP-90, DREB2C, NAC 3 and AREB 2) show that VRM (Gg) 1 had increased transcripts more than CO6 under drought stress. Taken together, VRM (Gg) 1 had a better photosynthetic performance which resulted in fewer reductions in chlorophyll, relative water content, and plant dry mass during drought stress. In addition, higher antioxidative enzyme activities led to lower H2O2 and MDA levels, limiting oxidative damage in VRM (Gg) 1. This was positively correlated with increased transcripts of photosynthesis and antioxidant-related genes in VRM (Gg) 1. Further, the increased transcripts of drought-responsive genes indicate that VRM (Gg) 1 has a better genetic basis against drought stress than CO6. These findings help to understand the mungbean response to drought stress and will aid in the development of genotypes with greater drought tolerance by utilizing natural genetic variants.
Collapse
|
17
|
Wang L, Liu F, Ju L, Xue B, Wang Y, Wang D, Hou D. Genome Structures and Evolution Analysis of Hsp90 Gene Family in Brassica napus Reveal the Possible Roles of Members in Response to Salt Stress and the Infection of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2022; 13:854034. [PMID: 35463405 PMCID: PMC9022010 DOI: 10.3389/fpls.2022.854034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Heat shock proteins 90 (Hsp90s) are conserved proteins participating in the responses to heat stress and are found to be involved in different kinds of abiotic and biotic stresses. Brassica napus (B. napus) is an important heteropolyploid crop, producing edible oil. Salt stress is one of the most important hazards to the growth of rape in the world, while Sclerotinia stem rot is one of the most serious diseases, caused by Sclerotinia sclerotiorum (S. sclerotiorum). In this study, the evolution of Hsp90 genes and their responses to these two stresses were elucidated. Bioinformatic analysis through the whole genome of B. napus identified 35 Hsp90 gene family members. Five groups were obtained via phylogenetic analysis with the 35 Hsp genes, Hsps from its two ancestor species Brassica rapa, Brassica oleracea, and AtHsps. Gene structure and conservative motif analysis of these 35 Hsps indicated that the Hsps were relatively conservative in each group. Strong collinearity was also detected between the genomes of Brassica rapa, Brassica oleracea and B. napus, along with identifying syntenic gene pairs of Hsps among the three genomes. In addition, whole genome duplication was discovered as the main reason for the generation of BnHsp gene family. The analysis of cis-acting elements indicated that BnHsp90 might be involved in a variety of abiotic and biotic stress responses. Analysis of the expression pattern indicated that BnHsp90 participates in the responses of B. napus to salt stress and the infection of S. sclerotiorum. Fourteen and nine BnHsp90s were validated to be involved in the defense responses of B. napus against salt stress and S. sclerotiorum, respectively. Our results provide new insights for the roles of BnHsp90s in the responses of B. napus to salt stress and S. sclerotiorum.
Collapse
Affiliation(s)
- Long Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fei Liu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Lingyue Ju
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bing Xue
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yongfeng Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Daojie Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Agriculture, Henan University, Kaifeng, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
18
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
19
|
Mao X, Hou N, Liu Z, He J. Profiling of N 6-Methyladenosine (m 6A) Modification Landscape in Response to Drought Stress in Apple ( Malus prunifolia (Willd.) Borkh). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010103. [PMID: 35009106 PMCID: PMC8747461 DOI: 10.3390/plants11010103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/26/2023]
Abstract
Drought stress is a significant environmental factor limiting crop growth worldwide. Malus prunifolia is an important apple species endemic to China and is used for apple cultivars and rootstocks with great drought tolerance. N6-methyladenosine (m6A) is a common epigenetic modification on messenger RNAs (mRNAs) in eukaryotes which is critical for various biological processes. However, there are no reports on m6A methylation in apple response to drought stress. Here, we assessed the m6A landscape of M. prunifolia seedlings in response to drought and analyzed the association between m6A modification and transcript expression. In total, we found 19,783 and 19,609 significant m6A peaks in the control and drought treatment groups, respectively, and discovered a UGUAH (H: A/U/C) motif. In M. prunifolia, under both control and drought conditions, peaks were highly enriched in the 3' untranslated region (UTR) and coding sequence (CDS). Among 4204 significant differential m6A peaks in drought-treated M. prunifolia compared to control-treated M. prunifolia, 4158 genes with m6A modification were identified. Interestingly, a large number of hypermethylated peaks (4069) were stimulated by drought treatment compared to hypomethylation. Among the hypermethylated peak-related genes, 972 and 1238 differentially expressed genes (DEGs) were up- and down-regulated in response to drought, respectively. Gene ontology (GO) analyses of differential m6A-modified genes revealed that GO slims related to RNA processing, epigenetic regulation, and stress tolerance were significantly enriched. The m6A modification landscape depicted in this study sheds light on the epigenetic regulation of M. prunifolia in response to drought stress and indicates new directions for the breeding of drought-tolerant apple trees.
Collapse
Affiliation(s)
- Xiushan Mao
- Shandong Transport Vocational College, 7369 Bohai Road, Weifang 261206, China;
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Xianyang 712100, China;
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhenzhong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Xianyang 712100, China;
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Xianyang 712100, China;
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
20
|
Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol 2021; 19:173. [PMID: 34751850 PMCID: PMC8578521 DOI: 10.1186/s43141-021-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The era of first green revolution brought about by the application of chemical fertilizers surely led to the explosion of food grains, but left behind the notable problem of salinity. Continuous application of these fertilizers coupled with fertilizer-responsive crops make the country self-reliant, but continuous deposition of these led to altered the water potential and thus negatively affecting the proper plant functioning from germination to seed setting. MAIN BODY Increased concentration of anion and cations and their accumulation and distribution cause cellular toxicity and ionic imbalance. Plants respond to salinity stress by any one of two mechanisms, viz., escape or tolerate, by either limiting their entry via root system or controlling their distribution and storage. However, the understanding of tolerance mechanism at the physiological, biochemical, and molecular levels will provide an insight for the identification of related genes and their introgression to make the crop more resilient against salinity stress. SHORT CONCLUSION Novel emerging approaches of plant breeding and biotechnologies such as genome-wide association studies, mutational breeding, marker-assisted breeding, double haploid production, hyperspectral imaging, and CRISPR/Cas serve as engineering tools for dissecting the in-depth physiological mechanisms. These techniques have well-established implications to understand plants' adaptions to develop more tolerant varieties and lower the energy expenditure in response to stress and, constitutively fulfill the void that would have led to growth resistance and yield penalty.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Usha Nara
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Hardeep Singh
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sittal Thapa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
21
|
Qiu C, Sun J, Shen J, Zhang S, Ding Y, Gai Z, Fan K, Song L, Chen B, Ding Z, Wang Y. Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose metabolism and certain secondary metabolism. J Proteomics 2021; 247:104337. [PMID: 34298183 DOI: 10.1016/j.jprot.2021.104337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
The aim of this work was to gain insight into the molecular mechanisms underlying the effect of fulvic acid on drought-exposed tea plants. We performed proteomic analysis of fulvic acid-treated tea leaves from the target plants using tandem mass tag quantitative labeling technology and compared the results with those of a previous transcriptomic analysis. We identified 48 and 611 differentially abundant proteins in the leaves of tea plants treated with fulvic acid compared with the control under mild and severe drought, respectively. Comparative analysis showed that, under severe drought, 55 genes had similar expression patterns at the transcriptome and proteome levels, such as PAL, GBE, GBSS and bAS. Bioinformatic analysis revealed that those genes were mainly related to the starch and sucrose metabolism, phenylpropanoid biosynthesis and triterpenoid biosynthesis. SIGNIFICANCE: This study broadens the understanding of the molecular mechanisms underlying the improved drought resistance seen in tea plants in the presence of fulvic acid and provides a basis for further research on the genomics of drought tolerance in these plants. In addition, these findings could be used to develop new guidance strategies for improved drought management systems in tea plantation.
Collapse
Affiliation(s)
- Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jianhao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China
| | - Shuning Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhongshuai Gai
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lubin Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Bo Chen
- Tai'an Agricultural and Rural Bureau, Taian, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China; Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China.
| | - Yu Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, Shandong, China; Tea Research Institute, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
22
|
Tamang TM, Sprague SA, Kakeshpour T, Liu S, White FF, Park S. Ectopic Expression of a Heterologous Glutaredoxin Enhances Drought Tolerance and Grain Yield in Field Grown Maize. Int J Mol Sci 2021; 22:ijms22105331. [PMID: 34069397 PMCID: PMC8158702 DOI: 10.3390/ijms22105331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Drought stress is a major constraint in global maize production, causing almost 30–90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions.
Collapse
Affiliation(s)
- Tej Man Tamang
- Department of Horticulture and Natural resources, Kansas State University, Manhattan, KS 66506, USA; (T.M.T.); (S.A.S.); (T.K.)
| | - Stuart A. Sprague
- Department of Horticulture and Natural resources, Kansas State University, Manhattan, KS 66506, USA; (T.M.T.); (S.A.S.); (T.K.)
| | - Tayebeh Kakeshpour
- Department of Horticulture and Natural resources, Kansas State University, Manhattan, KS 66506, USA; (T.M.T.); (S.A.S.); (T.K.)
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA;
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA;
| | - Sunghun Park
- Department of Horticulture and Natural resources, Kansas State University, Manhattan, KS 66506, USA; (T.M.T.); (S.A.S.); (T.K.)
- Correspondence:
| |
Collapse
|
23
|
Zhang K, He S, Sui Y, Gao Q, Jia S, Lu X, Jia L. Genome-Wide Characterization of HSP90 Gene Family in Cucumber and Their Potential Roles in Response to Abiotic and Biotic Stresses. Front Genet 2021; 12:584886. [PMID: 33613633 PMCID: PMC7889589 DOI: 10.3389/fgene.2021.584886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) possesses critical functions in plant developmental control and defense reactions. The HSP90 gene family has been studied in various plant species. However, the HSP90 gene family in cucumber has not been characterized in detail. In this study, a total of six HSP90 genes were identified from the cucumber genome, which were distributed to five chromosomes. Phylogenetic analysis divided the cucumber HSP90 genes into two groups. The structural characteristics of cucumber HSP90 members in the same group were similar but varied among different groups. Synteny analysis showed that only one cucumber HSP90 gene, Csa1G569290, was conservative, which was not collinear with any HSP90 gene in Arabidopsis and rice. The other five cucumber HSP90 genes were collinear with five Arabidopsis HSP90 genes and six rice HSP90 genes. Only one pair of paralogous genes in the cucumber HSP90 gene family, namely one pair of tandem duplication genes (Csa1G569270/Csa1G569290), was detected. The promoter analysis showed that the promoters of cucumber HSP90 genes contained hormone, stress, and development-related cis-elements. Tissue-specific expression analysis revealed that only one cucumber HSP90 gene Csa3G183950 was highly expressed in tendril but low or not expressed in other tissues, while the other five HSP90 genes were expressed in all tissues. Furthermore, the expression levels of cucumber HSP90 genes were differentially induced by temperature and photoperiod, gibberellin (GA), downy mildew, and powdery mildew stimuli. Two cucumber HSP90 genes, Csa1G569270 and Csa1G569290, were both differentially expressed in response to abiotic and biotic stresses, which means that these two HSP90 genes play important roles in the process of cucumber growth and development. These findings improve our understanding of cucumber HSP90 family genes and provide preliminary information for further studies of cucumber HSP90 gene functions in plant growth and development.
Collapse
Affiliation(s)
- Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuaishuai He
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yihu Sui
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Qinghai Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuangshuang Jia
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li Jia
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
24
|
Li W, Chen Y, Ye M, Wang D, Chen Q. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Mol Biol Rep 2020; 47:6679-6691. [PMID: 32780253 DOI: 10.1007/s11033-020-05722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
Heat shock protein 90 genes/proteins (Hsp90s) are related to the stress resistance found in various plant species. These proteins affect the growth and development of plants and have important effects on the plants under various stresses (cold, drought and salt) in the environment. In this study, we identified 334 Hsp90s from 43 plant species, and Hsp90s were found in all species. Phylogenetic tree and conserved domain database analysis of all Hsp90s showed three independent clades. The analysis of motifs, gene duplication events, and the expression data from PGSC website revealed the gene structures, evolution relationships, and expression patterns of the Hsp90s. In addition, analysis of the transcript levels of the 7 Hsp90s in potato (Solanum tuberosum) under low temperature and high temperature stresses showed that these genes were related to the temperature stresses. Especially StHsp90.2 and StHsp90.4, under high or low temperature conditions, the expression levels in leaves, stems, or roots were significantly up-regulated. Our findings revealed the evolution of the Hsp90s, which had guiding significance for further researching the precise functions of the Hsp90s.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Minghui Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
26
|
Wang W, Wu Y, Shi R, Sun M, Li Q, Zhang G, Wu J, Wang Y, Wang W. Overexpression of wheat α-mannosidase gene TaMP impairs salt tolerance in transgenic Brachypodium distachyon. PLANT CELL REPORTS 2020; 39:653-667. [PMID: 32123996 DOI: 10.1007/s00299-020-02522-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The TaMP gene from wheat encodes an α-mannosidase induced by salt stress that functions as negative regulator of salt tolerance in plants. Salt stress significantly affects growth and yield of crop plants. The α-mannosidases function in protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotic cells, and they are involved in abiotic stress tolerance in plants. Previously, we identified the α-mannosidase gene TaMP in wheat (Triticum aestivum). In this study, we investigated the function of TaMP in salt stress tolerance. TaMP expression was induced in wheat leaves by salt, drought, abscisic acid, and H2O2 treatments. Overexpressing TaMP in Brachypodium distachyon was associated with a salt-sensitive phenotype. Under salt stress, the overexpressing plants had reduced height, delayed growth status, low photosynthetic rate, decreased survival rate, and diminished yield. Moreover, the overexpression of TaMP aggravated the tendency for ions to become toxic under salt stress by significantly affecting the Na+ and K+ contents in cells. In addition, TaMP could negatively regulate salt tolerance by affecting the antioxidant enzyme system capacity and increasing the reactive oxygen species accumulation. Our study was helpful to understand the underlying physiological and molecular mechanisms of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Wenlong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ruirui Shi
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mengwei Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
27
|
Sun X, Zhu J, Li X, Li Z, Han L, Luo H. AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC PLANT BIOLOGY 2020; 20:184. [PMID: 32345221 PMCID: PMC7189581 DOI: 10.1186/s12870-020-02369-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Small heat shock proteins (sHSPs) are critical for plant response to biotic and abiotic stresses, especially heat stress. They have also been implicated in various aspects of plant development. However, the acting mechanisms of the sHSPs in plants, especially in perennial grass species, remain largely elusive. RESULTS In this study, AsHSP26.8a, a novel chloroplast-localized sHSP gene from creeping bentgrass (Agrostis stolonifera L.) was cloned and its role in plant response to environmental stress was studied. AsHSP26.8a encodes a protein of 26.8 kDa. Its expression was strongly induced in both leaf and root tissues by heat stress. Transgenic Arabidopsis plants overexpressing AsHSP26.8a displayed reduced tolerance to heat stress. Furthermore, overexpression of AsHSP26.8a resulted in hypersensitivity to hormone ABA and salinity stress. Global gene expression analysis revealed AsHSP26.8a-modulated expression of heat-shock transcription factor gene, and the involvement of AsHSP26.8a in ABA-dependent and -independent as well as other stress signaling pathways. CONCLUSIONS Our results suggest that AsHSP26.8a may negatively regulate plant response to various abiotic stresses through modulating ABA and other stress signaling pathways.
Collapse
Affiliation(s)
- Xinbo Sun
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Junfei Zhu
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xin Li
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| |
Collapse
|
28
|
Cadavid IC, Guzman F, de Oliveira-Busatto L, de Almeida RMC, Margis R. Transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep 2020; 47:2871-2888. [PMID: 32227253 DOI: 10.1007/s11033-020-05398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/25/2020] [Indexed: 01/12/2023]
Abstract
Soybean is an economically important plant, and its production is affected in soils with high salinity levels. It is important to understand the adaptive mechanisms through which plants overcome this kind of stress and to identify potential genes for improving abiotic stress tolerance. RNA-Seq data of two Glycine max cultivars, a drought-sensitive (C08) and a tolerant (Conquista), subjected to different periods of salt stress were analyzed. The transcript expression profile was obtained using a transcriptogram approach, comparing both cultivars and different times of treatment. After 4 h of salt stress, Conquista cultivar had 1400 differentially expressed genes, 647 induced and 753 repressed. Comparative expression revealed that 719 genes share the same pattern of induction or repression between both cultivars. Among them, 393 genes were up- and 326 down-regulated. Salt stress also modified the expression of 54 isoforms of miRNAs in Conquista, by the maturation of 39 different pre-miRNAs. The predicted targets for 12 of those mature miRNAs also have matches with 15 differentially expressed genes from our analyses. We found genes involved in important pathways related to stress adaptation. Genes from both ABA and BR signaling pathways were modulated, with possible crosstalk between them, and with a likely post-transcriptional regulation by miRNAs. Genes related to ethylene biosynthesis, DNA repair, and plastid translation process were those that could be regulated by miRNA.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Frank Guzman
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Av. La Molina, 1981, Lima 12, Perú
| | - Luisa de Oliveira-Busatto
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita M C de Almeida
- Instituto de Física, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência E Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós Graduação Em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rogerio Margis
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas (LGPP), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43422, Laboratório 206, Porto Alegre, Brazil.
| |
Collapse
|
29
|
Wei Y, Liu W, Hu W, Yan Y, Shi H. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. THE NEW PHYTOLOGIST 2020; 226:476-491. [PMID: 31782811 DOI: 10.1111/nph.16346] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/23/2019] [Indexed: 05/25/2023]
Abstract
The 90 kDa heat shock protein (HSP90) is widely involved in various developmental processes and stress responses in plants. However, the molecular chaperone HSP90-constructed protein complex and its function in cassava remain elusive. In this study, we report that HSP90 is essential for drought stress resistance in cassava by regulating abscisic acid (ABA) and hydrogen peroxide (H2 O2 ) using two specific protein inhibitors of HSP90 (geldanamycin (GDA) and radicicol (RAD)). Among 10 MeHSP90s, the transcript of MeHSP90.9 is largely induced during drought stress. Further investigation identifies MeWRKY20 and MeCatalase1 as MeHSP90.9-interacting proteins. MeHSP90.9-, MeWRKY20-, or MeCatalase1-silenced plants through virus-induced gene silencing display drought sensitivity in cassava, indicating that they are important to drought stress response. MeHSP90.9 can promote the direct transcriptional activation of MeWRKY20 on the W-box element of MeNCED5 promoter, encoding a key enzyme in ABA biosynthesis. Moreover, MeHSP90.9 positively regulates the activity of MeCatalase1, and MeHSP90.9-silenced cassava leaves accumulate more H2 O2 under drought stress. Taken together, we demonstrate that the MeHSP90.9 chaperone complex is a regulator of drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
30
|
Ding Y, Wang Y, Qiu C, Qian W, Xie H, Ding Z. Alternative splicing in tea plants was extensively triggered by drought, heat and their combined stresses. PeerJ 2020; 8:e8258. [PMID: 32030318 PMCID: PMC6995271 DOI: 10.7717/peerj.8258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022] Open
Abstract
Drought and heat stresses can influence the expressions of genes, and thereby affect the growth and development of plants. Alternative splicing (AS) of genes plays crucial roles through increasing transcriptome diversity in plant stress responses. Tea plants, widely cultivated in the tropics and subtropics, are often simultaneously exposed to drought and heat stresses. In the present study, we performed a global transcriptome of tea leaves treated with drought, heat or their combination. In total, 19,019, 20,025 and 20,253 genes underwent AS in response to drought (DT), heat (HT) and their combined stress (HD), respectively, of which 12,178, 11,912 and 14,413 genes differentially spliced in response to DT, HT and HD, respectively. Also, 2,447 specific differentially spliced genes (DSGs) were found only in response to HD. All DSGs accounted for 48% of the annotated genes in tea tree genome. Comparison of DSGs and differentially expressive genes (DEGs) showed that the proportions of HT and HD-induced DSGs were 13.4% and 9.2%, while the proportion of DT increased to 28.1%. Moreover, the DEG-DSG overlapped genes tended to be enriched in a wide large of pathways in response to DT. The results indicated that the AS of genes in tea leaves was extensively triggered by drought, heat and their combined stresses. In addition, the AS enhanced the transcriptome adaption in response to drought and heat stresses, and the AS also provoked specific molecular functions in response to drought and heat synergy stress. The study might have practical significance for molecular genetic breeding of tea plants with stress resistance.
Collapse
Affiliation(s)
- Yiqian Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Hui Xie
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
32
|
Zhang N, Xu J, Liu X, Liang W, Xin M, Du J, Hu Z, Peng H, Guo W, Ni Z, Sun Q, Yao Y. Identification of HSP90C as a substrate of E3 ligase TaSAP5 through ubiquitylome profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110170. [PMID: 31481192 DOI: 10.1016/j.plantsci.2019.110170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Protein ubiquitination is a major post-translational modification important for diverse biological processes. In wheat (Triticum aestivum) and Arabidopsis thaliana, STRESS-ASSOCIATED PROTEIN 5 (SAP5) is involved in drought tolerance, acting as an E3 ubiquitin ligase to target DRIP and MBP-1 for degradation. To identify further target proteins of SAP5, we implemented two independent approaches in this work. We used ubiquitylome capture with a di-Gly-Lys antibody-based peptide enrichment and affinity purification with a polyubiquitin antibody coupled with mass spectrometry to elucidate the SAP5-dependent ubiquitylation of its target proteins in response to osmotic stress. Wild type or TaSAP5-overexpressing Arabidopsis line, which was more tolerant to osmotic stress according to our previous study, were used here. We identified HSP90C (chloroplast heat shock protein 90) as a substrate of TaSAP5. Further biochemical experiments indicated that TaSAP5 interacts with HSP90C and mediates its degradation by the 26S proteasome. Our work also demonstrates that ubiquitylome profiling is an effective approach to search for substrates of the TaSAP5 E3 ubiquitin ligase when heterologously expressed in Arabidopsis.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jing Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
34
|
He Z, Wu J, Sun X, Dai M. The Maize Clade A PP2C Phosphatases Play Critical Roles in Multiple Abiotic Stress Responses. Int J Mol Sci 2019; 20:ijms20143573. [PMID: 31336603 PMCID: PMC6679055 DOI: 10.3390/ijms20143573] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
As the core components of abscisic acid (ABA) signal pathway, Clade A PP2C (PP2C-A) phosphatases in ABA-dependent stress responses have been well studied in Arabidopsis. However, the roles and natural variations of maize PP2C-A in stress responses remain largely unknown. In this study, we investigated the expression patterns of ZmPP2C-As treated with multiple stresses and generated transgenic Arabidopsis plants overexpressing most of the ZmPP2C-A genes. The results showed that the expression of most ZmPP2C-As were dramatically induced by multiple stresses (drought, salt, and ABA), indicating that these genes may have important roles in response to these stresses. Compared with wild-type plants, ZmPP2C-A1, ZmPP2C-A2, and ZmPP2C-A6 overexpression plants had higher germination rates after ABA and NaCl treatments. ZmPP2C-A2 and ZmPP2C-A6 negatively regulated drought responses as the plants overexpressing these genes had lower survival rates, higher leaf water loss rates, and lower proline accumulation compared to wild type plants. The natural variations of ZmPP2C-As associated with drought tolerance were also analyzed and favorable alleles were detected. We widely studied the roles of ZmPP2C-A genes in stress responses and the natural variations detected in these genes have the potential to be used as molecular markers in genetic improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Zhenghua He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jinfeng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Donato M, Geisler M. HSP
90 and co‐chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 2019; 593:1415-1430. [DOI: 10.1002/1873-3468.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Donato
- Department of Biology University of Fribourg Switzerland
| | - Markus Geisler
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
36
|
Dilnur T, Peng Z, Pan Z, Palanga KK, Jia Y, Gong W, Du X. Association Analysis of Salt Tolerance in Asiatic cotton ( Gossypium arboretum) with SNP Markers. Int J Mol Sci 2019; 20:ijms20092168. [PMID: 31052464 PMCID: PMC6540053 DOI: 10.3390/ijms20092168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.
Collapse
Affiliation(s)
- Tussipkan Dilnur
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
37
|
Xiang J, Chen X, Hu W, Xiang Y, Yan M, Wang J. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. PLANT CELL REPORTS 2018; 37:1585-1595. [PMID: 30099612 DOI: 10.1007/s00299-018-2331-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/06/2018] [Indexed: 05/24/2023]
Abstract
OsHSP50.2, an HSP90 family gene up-regulated by heat and osmotic stress treatments, positively regulates drought stress tolerance probably by modulating ROS homeostasis and osmotic adjustment in rice. Heat-shock proteins (HSPs) serve as molecular chaperones for a variety of client proteins in abiotic stress response and play pivotal roles in protecting plants against stress, but the molecular mechanism remains largely unknown. Here, we report an HSP90 family gene, OsHSP50.2, which acts as a positive regulator in drought stress tolerance in rice (Oryza sativa). OsHSP50.2 was ubiquitously expressed and its transcript level was up-regulated by heat and osmotic stress treatments. Overexpression of OsHSP50.2 in rice reduced water loss and enhanced the transgenic plant tolerance to drought and osmotic stresses. The OsHSP50.2-overexpressing plants exhibited significantly lower levels of electrolyte leakage and malondialdehyde (MDA) and less decrease of chlorophyll than wild-type plants under drought stress. Moreover, the OsHSP50.2-overexpressing plants had significantly higher SOD activity under drought stress compared with the wild type. These results imply that OsHSP50.2 positively regulates drought stress tolerance in rice, probably through the modulation of reactive oxygen species (ROS) homeostasis. Additionally, the OsHSP50.2-overexpressing plants accumulated significantly higher content of proline than the wild type under drought stress, which contributes to the improved protection ability from drought stress damage via osmotic adjustment. Our findings reveal that OsHSP50.2 plays a crucial role in drought stress response, and it may possess high potential usefulness in drought tolerance improvement of rice.
Collapse
Affiliation(s)
- Jianhua Xiang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China.
| | - Xinbo Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Hu
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | - Yanci Xiang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jieming Wang
- Institute of Ecological Landscape Restoration, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| |
Collapse
|
38
|
Identification and characterization of evolutionarily conserved alternative splicing events in a mangrove genus Sonneratia. Sci Rep 2018. [PMID: 29535339 PMCID: PMC5849712 DOI: 10.1038/s41598-018-22406-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing (AS), which produces multiple mRNA transcripts from a single gene, plays crucial roles in plant growth, development and environmental stress responses. Functional significances of conserved AS events among congeneric species have not been well characterized. In this study, we performed transcriptome sequencing to characterize AS events in four common species of Sonneratia, a mangrove genus excellently adaptive to intertidal zones. 7,248 to 12,623 AS events were identified in approximately 25% to 35% expressed genes in the roots of the four species. The frequency of AS events in Sonneratia was associated with genomic features, including gene expression level and intron/exon number and length. Among the four species, 1,355 evolutionarily conserved AS (ECAS) events were identified from 1,170 genes. Compared with non-ECAS events, ECAS events are of shorter length and less possibility to introduce premature stop codons (PTCs) and frameshifts. Functional annotations of the genes containing ECAS events showed that four of the 26 enriched Gene Ontology (GO) terms are involved in proton transport, signal transduction and carbon metabolism, and 60 genes from another three GO terms are implicated in responses to osmotic, oxidative and heat stresses, which may contribute to the adaptation of Sonneratia species to harsh intertidal environments.
Collapse
|
39
|
Sun Y, Guo H, Yuan E, Ge F. Elevated CO 2 increases R gene-dependent resistance of Medicago truncatula against the pea aphid by up-regulating a heat shock gene. THE NEW PHYTOLOGIST 2018; 217:1696-1711. [PMID: 29154460 DOI: 10.1111/nph.14892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/11/2017] [Indexed: 05/23/2023]
Abstract
Resistance against pathogens and herbivorous insects in many plant results from the expression of resistance (R) genes. Few reports, however, have considered the effects of elevated CO2 on R gene-based resistance in plants. The current study determined the responses of two near isogenic Medicago truncatula genotypes (Jester has an R gene and A17 does not) to the pea aphid and elevated CO2 in open-top chambers in the field. Aphid abundance, mean relative growth rate and feeding efficiency were increased by elevated CO2 on A17 plants but were reduced on Jester plants. According to proteomic and gene expression data, elevated CO2 enhanced pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) but decreased the effector-triggered immunity (ETI) in aphid-infested A17 plants. For aphid-infested Jester plants, by contrast, elevated CO2 enhanced the ETI-related heat shock protein (HSP) 90 and its co-chaperones, the jasmonic acid (JA) signaling pathway, and ubiquitin-mediated proteolysis. In a loss-of-function experiment, silencing of the HSP90 gene in Jester plants impaired the JA signaling pathway and ubiquitin-mediated proteolysis against the aphid under ambient CO2 , and negated the increased resistance against the aphid under elevated CO2 . Our results suggest that increases in expression of HSP90 are responsible for the enhanced resistance against the aphid under elevated CO2 .
Collapse
Affiliation(s)
- Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Jiang T, Oh ES, Bonea D, Zhao R. HSP90C interacts with PsbO1 and facilitates its thylakoid distribution from chloroplast stroma in Arabidopsis. PLoS One 2017; 12:e0190168. [PMID: 29281724 PMCID: PMC5745004 DOI: 10.1371/journal.pone.0190168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/08/2017] [Indexed: 11/29/2022] Open
Abstract
Arabidopsis plastidic HSP90C is an HSP90 family molecular chaperone that is required for chloroplast development and function. To understand the mechanism of action of HSP90C within the chloroplast, we conducted a yeast two-hybrid screening and revealed it interacts directly with the photosystem II extrinsic protein PsbO1, which performs a canonical function in the thylakoid lumen. To understand the biological significance of HSP90C-PsbO1 interaction, we investigated the role of HSP90C in modulating the stromal and thylakoid distribution of PsbO1GFP fusion protein. Fusion to GFP significantly delays the PsbO1 thylakoid transport and induces a variegation phenotype. Overexpression of HSP90C promotes the thylakoid distribution of PsbO1GFP and alleviates the leaf variegation. By tracking the chloroplast maturation during photomorphogenesis, we observed PsbO1GFP tends to form distinct fluorescent clusters within the stroma with delayed thylakoid membrane biogenesis, while HSP90C overexpression corrects these adverse effects. We also demonstrated that active HSP90C function is specifically required for stable accumulation of mature PsbO1GFP in thylakoid by using specific inhibitor geldanamycin. This study therefore not only identified novel HSP90C interactors, but also reports for the first time that PsbO1 enroute from the cytoplasm to thylakoid lumen is tightly regulated by the HSP90C chaperone complex in plastid stroma; whereas the proper HSP90C homeostasis is also critical for chloroplast maturation and function.
Collapse
Affiliation(s)
- Tim Jiang
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Edward Saehong Oh
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Bonea
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Departments of Biological Sciences and Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Zhang M, Shen Z, Meng G, Lu Y, Wang Y. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses. PLoS One 2017; 12:e0189187. [PMID: 29216330 PMCID: PMC5720741 DOI: 10.1371/journal.pone.0189187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/21/2017] [Indexed: 01/31/2023] Open
Abstract
The structure, evolution, and function of heat shock proteins 90 (Hsp90s) have been investigated in great detail in fungi and animals. However, studies on the Hsp90 genes in plants are generally limited. Brachypodium distachyon (L.) P. Beauv., as a model plant for cereal crops, has become a potential biofuel grass. During its long evolution, the Hsp90 gene family in Brachypodium has developed some strategies to cope with adverse environments. How the Hsp90 gene family in Brachypodium evolved in different plant lineages and what its role is in plant responses to drought and salt stresses remains to be elucidated. We used a set of different bioinformatics tools to identify 94 Hsp90 genes from 10 species representing four plant lineages and classified into three subgroups. Eight BdHsp90 genes were detected from B. distachyon. The number of exon-intron structures differed in each subgroup, and the motif analysis revealed that these genes were relatively conservative in each group. The fragments duplication and tandem duplication, which are the prime powers for functional diversity, generally occurred during the duplication of the whole plant genome. Transcriptional analysis of the BdHsp90 genes under salt and drought stress conditions indicated that the expression of these genes was delayed or increased at different stress time points; The expression was more affected in that of Bradi3g39630, Bradi4g06370, and Bradi1g30130. Our findings suggest the involvement of BdHsp90s in plant abiotic stress response, and further consolidate our views on the stress response mechanism of Hsp90 in general.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Heze University, Shandong, China
| | - Zhiwei Shen
- College of Life Science, Heze University, Shandong, China
| | - Guoqing Meng
- College of Life Science, Heze University, Shandong, China
| | - Yu Lu
- College of Life Science, Heze University, Shandong, China
| | - Yilei Wang
- College of Life Science, Heze University, Shandong, China
- * E-mail:
| |
Collapse
|
43
|
Gu X, Gao Z, Yan Y, Wang X, Qiao Y, Chen Y. RdreB1BI enhances drought tolerance by activating AQP-related genes in transgenic strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:33-42. [PMID: 28843134 DOI: 10.1016/j.plaphy.2017.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 05/08/2023]
Abstract
The dehydration-responsive element binding protein (DREB) family of transcription factors is associated with abiotic stress responses during plant growth and development. This study focussed on the subfamily member DREB1B, which was initially described as highly and specifically responsive to low temperature. However, here it is shown that DREB1B is not only involved in cold tolerance but also other abiotic stress tolerances, such as that of drought. To further understand the genetic improvement effects of the drought tolerance provided by RdreB1BI in transgenic strawberry, drought stress responses of transgenic plants were evaluated at the morphological, physiological, and transcriptional levels. Transactivation assays revealed that RdreB1BI could activate the FvPIP2;1 like 1 promoter. RdreB1BI transgenic plants showed enhanced drought tolerance on the basis of lower rates of electrolyte leakage (EL), higher relative water content (RWC), and less stomatal aperture as well as increased peroxidase (POD) and superoxide dismutase (SOD) activities and less malondialdehyde (MDA) accumulation. The transgenic plants also accumulated higher levels of drought-related regulatory genes and functional gene transcripts, including those of PIP, NAC, RD22, ABI, and NCED. Together, these results demonstrate that RdreB1BI plays an essential role in the regulation of the drought stress response. DREB1B transcription constitutes a useful strategy to exploit in transgenic plants for coping with abiotic stresses, at least cold and drought stresses. The approach may be helpful for genetic engineering horticultural plants to have increased environmental adaptations.
Collapse
Affiliation(s)
- Xianbin Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People's Republic of China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Yichao Yan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiuyun Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yushan Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
44
|
Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 2017; 7:7849. [PMID: 28798368 PMCID: PMC5552879 DOI: 10.1038/s41598-017-08073-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
The universal nature of networks’ structural and physical properties across diverse systems offers a better prospect to elucidate the interplay between a system and its environment. In the last decade, several large-scale transcriptome and interactome studies were conducted to understand the complex and dynamic nature of interactions between Arabidopsis and its bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. We took advantage of these publicly available datasets and performed “-omics”-based integrative, and network topology analyses to decipher the transcriptional and protein-protein interaction activities of effector targets. We demonstrated that effector targets exhibit shorter distance to differentially expressed genes (DEGs) and possess increased information centrality. Intriguingly, effector targets are differentially expressed in a sequential manner and make for 1% of the total DEGs at any time point of infection with virulent or defense-inducing DC3000 strains. We revealed that DC3000 significantly alters the expression levels of 71% effector targets and their downstream physical interacting proteins in Arabidopsis interactome. Our integrative “-omics”-–based analyses identified dynamic complexes associated with MTI and disease susceptibility. Finally, we discovered five novel plant defense players using a systems biology-fueled top-to-bottom approach and demonstrated immune-related functions for them, further validating the power and resolution of our network analyses.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Hadia Ahmed
- Department of Computer & Information Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Xiaoyu Liu
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA. .,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
45
|
Zhang X, Liu X, Zhang D, Tang H, Sun B, Li C, Hao L, Liu C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One 2017; 12:e0179477. [PMID: 28700592 PMCID: PMC5507481 DOI: 10.1371/journal.pone.0179477] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y, Reiter RJ, He C, Shi H. Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J Pineal Res 2017; 62. [PMID: 27627033 DOI: 10.1111/jpi.12367] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
As one popular fresh fruit, banana (Musa acuminata) is cultivated in the world's subtropical and tropical areas. In recent years, pathogen Fusarium oxysporum f. sp. cubense (Foc) has been widely and rapidly spread to banana cultivated areas, causing substantial yield loss. However, the molecular mechanism of banana response to Foc remains unclear, and functional identification of disease-related genes is also very limited. In this study, nine 90 kDa heat-shock proteins (HSP90s) were genomewide identified. Moreover, the expression profile of them in different organs, developmental stages, and in response to abiotic and fungal pathogen Foc were systematically analyzed. Notably, we found that the transcripts of 9 MaHSP90s were commonly regulated by melatonin (N-acetyl-5-methoxytryptamine) and Foc infection. Further studies showed that exogenous application of melatonin improved banana resistance to Fusarium wilt, but the effect was lost when cotreated with HSP90 inhibitor (geldanamycin, GDA). Moreover, melatonin and GDA had opposite effect on auxin level in response to Foc4, while melatonin and GDA cotreated plants had no significant effect, suggesting the involvement of MaHSP90s in the cross talk of melatonin and auxin in response to fungal infection. Taken together, this study demonstrated that MaHSP90s are essential for melatonin-mediated plant response to Fusarium wilt, which extends our understanding the putative roles of MaHSP90s as well as melatonin in the biological control of banana Fusarium wilt.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan Province, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Xiaolin Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, China
| |
Collapse
|
47
|
Sun X, Sun C, Li Z, Hu Q, Han L, Luo H. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1320-37. [PMID: 26610288 DOI: 10.1111/pce.12683] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Xinbo Sun
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
- Key Laboratory of Crop Growth Regulation of Hebei Province, Agricultural University of Hebei, Baoding, 071001, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| |
Collapse
|
48
|
Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1703-13. [PMID: 26733691 DOI: 10.1093/jxb/erv562] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Histone modification is an important epigenetic regulation in higher plants adapting to environment changes including salt and drought stresses. In this report, we show that the Arabidopsis RPD3-type histone deacetylase HDA9 is involved in modulating plant responses to salt and drought stresses in Arabidopsis. Loss-of-function mutants of the gene displayed phenotypes (such as seedling root growth and seed germination) insensitive to NaCl and polyethylene glycol (PEG) treatments. HDA9 mutation led to up-regulation of many genes, among which those involved in response to water deprivation stress (GO: 0009414) were enriched. These genes were much more induced in the mutants than wild-type plants when treated with PEG and NaCl. In addition, we found that in the mutants, salt and drought stresses led to much higher levels of histone H3K9 acetylation at promoters of 14 genes randomly selected from those that respond to water-deprivation stress than in wild-type plants. Our study suggested that HDA9 might be a novel chromatin protein that negatively regulates plant sensitivity to salt and drought stresses by regulating histone acetylation levels of a large number of stress-responsive genes in Arabidopsis.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Yue Ding
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xuan Sun
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Sisi Xie
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dan Wang
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Wei Wei
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lei Pan
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
49
|
Daurelio LD, Tondo ML, Romero MS, Merelo P, Cortadi AA, Talón M, Tadeo FR, Orellano EG. Novel insights into the Citrus sinensis nonhost response suggest photosynthesis decline, abiotic stress networks and secondary metabolism modifications. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:758-769. [PMID: 32480719 DOI: 10.1071/fp14307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/24/2015] [Indexed: 06/11/2023]
Abstract
Plants are constantly exposed to stress factors. Biotic stress is produced by living organisms such as pathogens, whereas abiotic stress by unfavourable environmental conditions. In Citrus species, one of the most important fruit crops in the world, these stresses generate serious limitations in productivity. Through biochemical and transcriptomic assays, we had previously characterised the Citrus sinensis (L.) Osbeck nonhost response to Xanthomonas campestris pv. vesicatoria (Doidge), in contrast to Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri (Hasse). A hypersensitive response (HR) including changes in the expression of several transcription factors was reported. Here, a new exhaustive analysis of the Citrus sinensis transcriptomes previously obtained was performed, allowing us to detect the over-representation of photosynthesis, abiotic stress and secondary metabolism processes during the nonhost HR. The broad downregulation of photosynthesis-related genes was correlated with an altered photosynthesis physiology. The high number of heat shock proteins and genes related to abiotic stress, including aquaporins, suggests that stresses crosstalk. Additionally, the secondary metabolism exhibited lignin and carotenoid biosynthesis modifications and expression changes in the cell rescue GSTs. In conclusion, novel features of the Citrus nonhost HR, an important part of the plants' defence against disease that has yet to be fully exploited in plant breeding programs, are presented.
Collapse
Affiliation(s)
- Lucas D Daurelio
- Instituto de Biología Molecular y Celular de Rosario - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF) - Universidad Nacional de Rosario (UNR), Suipacha 531 (S2002 LRK), Rosario, Santa Fe, Argentina
| | - M Laura Tondo
- Instituto de Biología Molecular y Celular de Rosario - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF) - Universidad Nacional de Rosario (UNR), Suipacha 531 (S2002 LRK), Rosario, Santa Fe, Argentina
| | - M Soledad Romero
- Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis, Predio CCT Rosario, (2000), Rosario, Santa Fe, Argentina
| | - Paz Merelo
- European Molecular Biology Laboratory, Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Adriana A Cortadi
- Área de Biología Vegetal, FBIOYF - UNR, Suipacha 531 (S2002 LRK), Rosario, Santa Fe, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d'Investigacions Agràries, Apt. Oficial, 46113 Montcada, València, Spain
| | - Francisco R Tadeo
- Centre de Genómica, Institut Valencià d'Investigacions Agràries, Apt. Oficial, 46113 Montcada, València, Spain
| | - Elena G Orellano
- Instituto de Biología Molecular y Celular de Rosario - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF) - Universidad Nacional de Rosario (UNR), Suipacha 531 (S2002 LRK), Rosario, Santa Fe, Argentina
| |
Collapse
|
50
|
Miguel A, de Vega-Bartol J, Marum L, Chaves I, Santo T, Leitão J, Varela MC, Miguel CM. Characterization of the cork oak transcriptome dynamics during acorn development. BMC PLANT BIOLOGY 2015; 15:158. [PMID: 26109289 PMCID: PMC4479327 DOI: 10.1186/s12870-015-0534-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. RESULTS A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. CONCLUSIONS To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.
Collapse
Affiliation(s)
- Andreia Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José de Vega-Bartol
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Liliana Marum
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- KLÓN, Innovative Technologies from Cloning, Biocant Park, Núcleo 4, Lote 4A, 3060-197, Cantanhede, Portugal.
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tatiana Santo
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - José Leitão
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - Maria Carolina Varela
- INIAV- Instituto Nacional de Investigação Agrária e Veterinária, IP, Quinta do, Marquês, Oeiras, 2780-159, Portugal.
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|