1
|
Wang Q, Wu J, Di G, Zhao Q, Gao C, Zhang D, Wang J, Shen Z, Han W. Identification of Cold Tolerance Transcriptional Regulatory Genes in Seedlings of Medicago sativa L. and Medicago falcata L. Int J Mol Sci 2024; 25:10345. [PMID: 39408674 PMCID: PMC11476818 DOI: 10.3390/ijms251910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alfalfa species Medicago sativa L. (MS) and Medicago falcata L. (MF), globally prominent perennial leguminous forages, hold substantial economic value. However, our comprehension of the molecular mechanisms governing their resistance to cold stress remains limited. To address this knowledge gap, we scrutinized and compared MS and MF cold-stress responses at the molecular level following 24 h and 120 h low-temperature exposure (4 °C). Our study revealed that MF had superior physiological resilience to cold stress compared with MS, and its morphology was healthier under cold stress, and its malondialdehyde content and superoxide dismutase activity increased, first, and then decreased, while the soluble sugar content continued to accumulate. Transcriptome analysis showed that after 120 h of exposure, there were different gene-expression patterns between MS and MF, including 1274 and 2983 genes that were continuously up-regulated, respectively, and a total of 923 genes were included, including star cold-resistant genes such as ICE1 and SIP1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed numerous inter-species differences in sustained cold-stress responses. Notably, MS-exclusive genes included a single transcription factor (TF) gene and several genes associated with a single DNA repair-related pathway, whereas MF-exclusive genes comprised nine TF genes and genes associated with 14 pathways. Both species exhibited high-level expression of genes encoding TFs belonging to AP2-EREBP, ARR-B, and bHLH TF families, indicating their potential roles in sustaining cold resistance in alfalfa-related species. These findings provide insights into the molecular mechanisms governing cold-stress responses in MS and MF, which could inform breeding programs aimed at enhancing cold-stress resistance in alfalfa cultivars.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Guili Di
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chao Gao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| |
Collapse
|
2
|
Dong D, Qi C, Zhang J, Deng Q, Xia P, Li P, Jia C, Zhao B, Zhang N, Guo YD. CsHSFA1d Promotes Drought Stress Tolerance by Increasing the Content of Raffinose Family Oligosaccharides and Scavenging Accumulated Reactive Oxygen Species in Cucumber. PLANT & CELL PHYSIOLOGY 2024; 65:809-822. [PMID: 38564325 DOI: 10.1093/pcp/pcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.
Collapse
Affiliation(s)
- Danhui Dong
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Chuandong Qi
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan Hongshan District, Nanhudadao No. 43, Wuhan, Hubei Province 430064, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Pingxin Xia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Ping Li
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Congyang Jia
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing HaiDian District, Yuanmingyuanxilu No. 2, Beijing 100193, China
| |
Collapse
|
3
|
Jahed KR, Saini AK, Sherif SM. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1246093. [PMID: 37649996 PMCID: PMC10465183 DOI: 10.3389/fpls.2023.1246093] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Low temperature stress significantly threatens crop productivity and economic sustainability. Plants counter this by deploying advanced molecular mechanisms to perceive and respond to cold stress. Transmembrane proteins initiate these responses, triggering a series of events involving secondary messengers such as calcium ions (Ca2+), reactive oxygen species (ROS), and inositol phosphates. Of these, calcium signaling is paramount, activating downstream phosphorylation cascades and the transcription of cold-responsive genes, including cold-regulated (COR) genes. This review focuses on how plants manage freeze-induced damage through dual strategies: cold tolerance and cold avoidance. Tolerance mechanisms involve acclimatization to decreasing temperatures, fostering gradual accumulation of cold resistance. In contrast, avoidance mechanisms rely on cryoprotectant molecules like potassium ions (K+), proline, glycerol, and antifreeze proteins (AFPs). Cryoprotectants modulate intracellular solute concentration, lower the freezing point, inhibit ice formation, and preserve plasma membrane fluidity. Additionally, these molecules demonstrate antioxidant activity, scavenging ROS, preventing protein denaturation, and subsequently mitigating cellular damage. By forming extensive hydrogen bonds with water molecules, cryoprotectants also limit intercellular water movement, minimizing extracellular ice crystal formation, and cell dehydration. The deployment of cryoprotectants is a key adaptive strategy that bolsters plant resilience to cold stress and promotes survival in freezing environments. However, the specific physiological and molecular mechanisms underlying these protective effects remain insufficiently understood. Therefore, this review underscores the need for further research to elucidate these mechanisms and assess their potential impact on crop productivity and sustainability, contributing to the progressive discourse in plant biology and environmental science.
Collapse
Affiliation(s)
| | | | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA, United States
| |
Collapse
|
4
|
Yu J, Yuan Y, Dong L, Cui G. Genome-wide investigation of NLP gene family members in alfalfa (Medicago sativa L.): evolution and expression profiles during development and stress. BMC Genomics 2023; 24:320. [PMID: 37312045 DOI: 10.1186/s12864-023-09418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND NIN-like protein (NLP) transcription factors (TFs) compose a plant-specific gene family whose members play vital roles in plant physiological processes, especially in the regulation of plant growth and the response to nitrate-nitrogen. However, no systematic identification or analysis of the NLP gene family has been reported in alfalfa. The recently completed whole-genome sequence of alfalfa has allowed us to investigate genome-wide characteristics and expression profiles. RESULTS 53 MsNLP genes were identified from alfalfa and renamed according to their respective chromosome distributions. Phylogenetic analysis demonstrated that these MsNLPs can be classified into three groups on the basis of their conserved domains. Gene structure and protein motif analyses showed that closely clustered MsNLP genes were relatively conserved within each subgroup. Synteny analysis revealed four fragment duplication events of MsNLPs in alfalfa. The ratios of nonsynonymous (Ka) and synonymous (Ks) substitution rates of gene pairs indicated that the MsNLP genes underwent purifying selection during evolution. Examination of the expression patterns of different tissues revealed specific expression patterns of the MsNLP genes in the leaves, indicating that these genes are involved in plant functional development. Prediction of cis-acting regulatory elements and expression profiles further demonstrated that the MsNLP genes might play important roles in the response to abiotic stress and in phytohormone signal transduction processes. CONCLUSION This study represents the first genome-wide characterization of MsNLP in alfalfa. Most MsNLPs are expressed mainly in leaves and respond positively to abiotic stresses and hormonal treatments. These results provide a valuable resource for an improved understanding of the characteristics and biological roles of the MsNLP genes in alfalfa.
Collapse
Affiliation(s)
- Jinqiu Yu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuying Yuan
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Linling Dong
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
5
|
Yu S, Wu J, Sun Y, Zhu H, Sun Q, Zhao P, Huang R, Guo Z. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. PLANT PHYSIOLOGY 2022; 190:1321-1333. [PMID: 35751606 PMCID: PMC9516781 DOI: 10.1093/plphys/kiac311] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/04/2022] [Indexed: 05/23/2023]
Abstract
Calmodulin-like proteins (CMLs) are calcium (Ca2+) sensors involved in plant growth and development as well as adaptation to environmental stresses; however, their roles in plant responses to cold are not well understood. To reveal the role of MsCML10 from alfalfa (Medicago sativa) in regulating cold tolerance, we examined transgenic alfalfa and Medicago truncatula overexpressing MsCML10, MsCML10-RNAi alfalfa, and a M. truncatula cml10-1 mutant and identified MsCML10-interacting proteins. MsCML10 and MtCML10 transcripts were induced by cold treatment. Upregulation or downregulation of MsCML10 resulted in increased or decreased cold tolerance, respectively, while cml10-1 showed decreased cold tolerance that was complemented by expressing MsCML10, suggesting that MsCML10 regulates cold tolerance. MsCML10 interacted with glutathione S-transferase (MsGSTU8) and fructose 1,6-biphosphate aldolase (MsFBA6), and the interaction depended on the presence of Ca2+. The altered activities of Glutathione S-transferase and FBA and levels of ROS and sugars were associated with MsCML10 transcript levels. We propose that MsCML10 decodes the cold-induced Ca2+ signal and regulates cold tolerance through activating MsGSTU8 and MsFBA6, leading to improved maintenance of ROS homeostasis and increased accumulation of sugars for osmoregulation, respectively.
Collapse
Affiliation(s)
- Shuhan Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaxuan Wu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiguo Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
6
|
Zhang X, Sun Y, Qiu X, Lu H, Hwang I, Wang T. Tolerant mechanism of model legume plant Medicago truncatula to drought, salt, and cold stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:847166. [PMID: 36160994 PMCID: PMC9490062 DOI: 10.3389/fpls.2022.847166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Legume plants produce one-third of the total yield of primary crops and are important food sources for both humans and animals worldwide. Frequent exposure to abiotic stresses, such as drought, salt, and cold, greatly limits the production of legume crops. Several morphological, physiological, and molecular studies have been conducted to characterize the response and adaptation mechanism to abiotic stresses. The tolerant mechanisms of the model legume plant Medicago truncatula to abiotic stresses have been extensively studied. Although many potential genes and integrated networks underlying the M. truncatula in responding to abiotic stresses have been identified and described, a comprehensive summary of the tolerant mechanism is lacking. In this review, we provide a comprehensive summary of the adaptive mechanism by which M. truncatula responds to drought, salt, and cold stress. We also discuss future research that need to be explored to improve the abiotic tolerance of legume plants.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
| | - Yu Sun
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciencess, Changchun, China
| | - Xiao Qiu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciencess, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li Q, Gu L, Song J, Li C, Zhang Y, Wang Y, Pang Y, Zhang B. Physiological and transcriptome analyses highlight multiple pathways involved in drought stress in Medicago falcata. PLoS One 2022; 17:e0266542. [PMID: 35390072 PMCID: PMC8989214 DOI: 10.1371/journal.pone.0266542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Medicago falcata is one of the leguminous forage crops, which grows well in arid and semiarid region. To fully investigate the mechanism of drought resistance response in M. falcata, we challenged the M. falcata plants with 30% PEG-6000, and performed physiological and transcriptome analyses. It was found that, the activities of antioxidant enzymes (eg. SOD, POD, and CAT) and soluble sugar content were all increased in the PEG-treated group, as compared to the control group. Transcriptome results showed that a total of 706 genes were differentially expressed in the PEG-treated plants in comparison with the control. Gene enrichment analyses on differentially expressed genes revealed that a number of genes in various pathway were significantly enriched, including the phenylpropanoid biosynthesis (ko00940) and glycolysis/gluconeogenesis (ko00010), indicating the involvement of these key pathways in drought response. Furthermore, the expression levels of seven differentially expressed genes were verified to be involved in drought response in M. falcata by qPCR. Taken together, these results will provide valuable information related to drought response in M. falcata and lay a foundation for molecular studies and genetic breeding of legume crops in future research.
Collapse
Affiliation(s)
- Qian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Gu
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Jiaxing Song
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Chenjian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yanhui Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yuxiang Wang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (BZ); (YP)
| | - Bo Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- * E-mail: (BZ); (YP)
| |
Collapse
|
8
|
Zhou Y, Sun M, Sun P, Gao H, Yang H, Jing Y, Hussain MA, Saxena RK, Carther FI, Wang Q, Li H. Tonoplast inositol transporters: Roles in plant abiotic stress response and crosstalk with other signals. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153660. [PMID: 35240513 DOI: 10.1016/j.jplph.2022.153660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Inositol transporters (INT) are thought to be the pivotal transporters for vital metabolites, in particular lipids, minerals, and sugars. These transporters play an important role in transitional metabolism and various signaling pathways in plants through regulating the transduction of messages from hormones, neurotransmitters, and immunologic and growth factors. Extensive studies have been conducted on animal INT, with promising outcomes. However, only few recent studies have highlighted the importance and complexity of INT genes in the regulation of plant physiology stages, including growth and tolerance to stress conditions. The present review summarizes the most recent findings concerning the role of INT or inositol genes in plant metabolism and the response mechanisms triggered by external stressors. Moreover, we highlight the emerging role of vacuoles and vacuolar INT in plant molecular transition and their related roles in plant growth and development. INTs are the essential mediators of inositol uptake and its intracellular broadcasting for various metabolic pathways where they play crucial roles. Additionally, we report evidence on Na+/inositol transporters, which until now have only been characterized in animals, as well as H+/inositol symporters and their kinetic functions and physiological role and suggest their roles and operating mode in plants. A more comprehensive understanding of the INT functioning system, in particular the coordinated movement of inositol and the relation between inositol generation and other important plant signaling pathways, would greatly advance the study of plant stress adaptation.
Collapse
Affiliation(s)
- Yonggang Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Monan Sun
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Pengyu Sun
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Hongtao Gao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - He Yang
- RDFZ Sanya School, Sanya, 572025, China.
| | - Yan Jing
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Muhammad Azhar Hussain
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Foka Idrice Carther
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Haiyan Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China; College of Tropical Crops, Hainan University, Haikou, 570288, China.
| |
Collapse
|
9
|
Li W, Fu Y, Lv W, Zhao S, Feng H, Shao L, Li C, Yang J. Characterization of the early gene expression profile in Populus ussuriensis under cold stress using PacBio SMRT sequencing integrated with RNA-seq reads. TREE PHYSIOLOGY 2022; 42:646-663. [PMID: 34625806 DOI: 10.1093/treephys/tpab130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Populus ussuriensis is an important and fast-growing afforestation plant species in north-eastern China. The whole-genome sequencing of P. ussuriensis has not been completed. Also, the transcriptional network of P. ussuriensis response to cold stress remains unknown. To unravel the early response of P. ussuriensis to chilling (3 °C) stress and freezing (-3 °C) stresses at the transcriptional level, we performed single-molecule real-time (SMRT) and Illumina RNA sequencing for P. ussuriensis. The SMRT long-read isoform sequencing led to the identification of 29,243,277 subreads and 575,481 circular consensus sequencing reads. Approximately 50,910 high-quality isoforms were generated, and 2272 simple sequence repeats and 8086 long non-coding RNAs were identified. The Ca2+ content and abscisic acid (ABA) content in P. ussuriensis were significantly increased under cold stresses, while the value in the freezing stress treatment group was significantly higher than the chilling stress treatment group. A total of 49 genes that are involved in the signal transduction pathways related to perception and transmission of cold stress signals, such as the Ca2+ signaling pathway, ABA signaling pathway and MAPK signaling cascade, were found to be differentially expressed. In addition, 158 transcription factors from 21 different families, such as MYB, WRKY and AP2/ERF, were differentially expressed during chilling and freezing treatments. Moreover, the measurement of physiological indicators and bioinformatics observations demonstrated the altered expression pattern of genes involved in reactive oxygen species balance and the sugar metabolism pathway during chilling and freezing stresses. This is the first report of the early responses of P. ussuriensis to cold stress, which lays the foundation for future studies on the regulatory mechanisms in cold-stress response. In addition the full-length reference transcriptome of P. ussuriensis deciphered could be used in future studies on P. ussuriensis.
Collapse
Affiliation(s)
- Wenlong Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wanqiu Lv
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shicheng Zhao
- School of Pharmacy, Harbin University of Commerce, No.138 Tongdajie Street, Harbin 150028, China
| | - He Feng
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liying Shao
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
10
|
Geng B, Wang Q, Huang R, Liu Y, Guo Z, Lu S. A novel LRR-RLK (CTLK) confers cold tolerance through regulation on the C-repeat-binding factor pathway, antioxidants, and proline accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1679-1689. [PMID: 34626033 DOI: 10.1111/tpj.15535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Leucine-rich repeat-receptor-like kinase (LRR-RLK) is a large subfamily of plant RLKs; however, its role in cold tolerance is still unknown. A novel cold tolerance LRR-RLK gene (MtCTLK1) in Medicago truncatula was identified using the transgenic lines overexpressing MtCTLK1 (MtCTLK1-OE) and mtctlk1 lines with Tnt1 retrotransposon insertion. Compared with the wild-type, MtCTLK1-OE lines had increased cold tolerance and mtctlk1 showed decreased cold tolerance. The impaired cold tolerance in mtctlk1 could be complemented by the transgenic expression of MtCTLK1 or its homolog MfCTLK1 from Medicago falcata. Antioxidant enzyme activities and proline accumulation as well as transcript levels of the associated genes were increased in response to cold, with higher levels in MtCTLK1-OE or lower levels in mtctlk1 lines as compared with wild type. C-Repeat-Binding Factors (CBFs) and CBF-dependent cold-responsive genes were also induced in response to cold, and higher transcript levels of CBFs and CBF-dependent cold-responsive genes were observed in MtCTLK1-OE lines whereas lower levels in mtctlk1 mutants. The results validate the role of MtCTLK1 or MfCTLK1 in the regulation of cold tolerance through the CBF pathway, antioxidant defense system and proline accumulation. It also provides a valuable gene for the molecular breeding program to improve cold tolerance in crops.
Collapse
Affiliation(s)
- Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Sun Q, Huang R, Zhu H, Sun Y, Guo Z. A novel Medicago truncatula calmodulin-like protein (MtCML42) regulates cold tolerance and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1069-1082. [PMID: 34528312 DOI: 10.1111/tpj.15494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 05/20/2023]
Abstract
Calmodulin-like proteins (CMLs) are one of the Ca2+ sensors in plants, but the functions of most CMLs remain unknown. The regulation of cold tolerance and flowering time by MtCML42 in Medicago truncatula and the underlying mechanisms were investigated using MtCML42-overexpressing plants and cml42 Medicago mutants with a Tnt1 retrotransposon insertion. Compared with the wild type (WT), MtCML42-overexpressing lines had increased cold tolerance, whereas cml42 mutants showed decreased cold tolerance. The impaired cold tolerance in cml42 could b complemented by MtCML42 expression. The transcript levels of MtCBF1, MtCBF4, MtCOR413, MtCAS15, MtLTI6A, MtGolS1 and MtGolS2 and the concentrations of raffinose and sucrose were increased in response to cold treatment, whereas higher levels were observed in MtCML42-overexpressing lines and lower levels were observed in cml42 mutants. In addition, early flowering with upregulated MtFTa1 and downregulated MtABI5 transcripts was observed in MtCML42-overexpressing lines, whereas delayed flowering with downregulated MtFTa1 and upregulated MtABI5 was observed in cml42. MtABI5 expression could complement the flowering phenotype in the Arabidopsis mutant abi5. Our results suggest that MtCML42 positively regulates MtCBF1 and MtCBF4 expression, which in turn upregulates the expression of some COR genes, MtGolS1 and MtGolS2, which leads to raffinose accumulation and increased cold tolerance. MtCML42 regulates flowering time through sequentially downregulating MtABI5 and upregulating MtFTa1 expression.
Collapse
Affiliation(s)
- Qiguo Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Wang Q, Shi H, Huang R, Ye R, Luo Y, Guo Z, Lu S. AIR12 confers cold tolerance through regulation of the CBF cold response pathway and ascorbate homeostasis. PLANT, CELL & ENVIRONMENT 2021; 44:1522-1533. [PMID: 33547695 DOI: 10.1111/pce.14020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Auxin induced in root culture (AIR12) is a single gene in Arabidopsis and codes for a mono-heme cytochrome b, but it is unknown whether plant AIR12 is involved in abiotic stress responses. MfAIR12 was identified from Medicago falcata that is legume germplasm with great cold tolerance. Transcript levels of MfAIR12 and its homolog MtAIR12 from Medicago truncatula was induced under low temperature. Overexpression of MfAIR12 led to the accumulation of H2 O2 in apoplast and enhanced cold tolerance, which was blocked by H2 O2 scavengers, indicating that the increased cold tolerance was dependent upon the accumulated H2 O2 . In addition, declined cold tolerance was observed in Arabidopsis mutant air12, which could be restored by expressing MfAIR12. Compared to the wild type, higher levels of ascorbic acid and ascorbate redox state, as well as transcripts of the C repeat/dehydration responsive element-binding factor (CBF) transcription factors and their downstream cold-responsive genes, were observed in MfAIR12 transgenic lines, but lower levels of those in air12 mutant. It is suggested AIR12 confers cold tolerance as a result of the altered H2 O2 in the apoplast that is signaling in the regulation of CBF cold response pathway and ascorbate homeostasis.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Rong Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yurong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Zhao M, Wang T, Sun T, Yu X, Tian R, Zhang WH. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. BMC PLANT BIOLOGY 2020; 20:99. [PMID: 32138663 PMCID: PMC7059299 DOI: 10.1186/s12870-020-2301-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of plant responses to environmental stress by acting as essential regulators of gene expression. However, whether and how lncRNAs are involved in cold acclimation-dependent freezing tolerance in plants remains largely unknown. Medicago truncatula is a prominent model for studies of legume genomics, and distinguished by its cold-acclimation characteristics. To determine the roles of lncRNAs in plant cold stress response, we conducted genome-wide high-throughput sequencing in the legume model plant M. truncatula. RESULTS RNA-seq data were generated from twelve samples for the four treatments, i.e., non-cold treated leaves and roots, cold-treated leaves and roots of M. truncatula Jemalong A17 seedlings. A total of 1204 million raw reads were generated. Of them, 1150 million filtered reads after quality control (QC) were subjected to downstream analysis. A large number of 24,368 unique lncRNAs were identified from the twelve samples. Among these lncRNAs, 983 and 1288 were responsive to cold treatment in the leaves and roots, respectively. We further found that the intronic-lncRNAs were most sensitive to the cold treatment. The cold-responsive lncRNAs were unevenly distributed across the eight chromosomes in M. truncatula seedlings with obvious preferences for locations. Further analyses revealed that the cold-responsive lncRNAs differed between leaves and roots. The putative target genes of the lncRNAs were predicted to mainly involve the processes of protein translation, transport, metabolism and nucleic acid transcription. Furthermore, the networks of a tandem array of CBF/DREB1 genes that were reported to be located in a major freezing tolerance QTL region on chromosome 6 and their related lncRNAs were dissected based on their gene expression and chromosome location. CONCLUSIONS We identified a comprehensive set of lncRNAs that were responsive to cold treatment in M. truncatula seedlings, and discovered tissue-specific cold-responsive lncRNAs in leaves and roots. We further dissected potential regulatory networks of CBF Intergenic RNA (MtCIR1) and MtCBFs that play critical roles in response and adaptation of M. truncatula to cold stress.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tianyang Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoxi Yu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rui Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- Research Network of Global Change Biology, Beijing Institutes of Life Science, the Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Inner Mongolia Research Center for Prataculture, the Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
| |
Collapse
|
14
|
Zhang L, Jia X, Zhao J, Hasi A, Niu Y. Molecular characterisation and expression analysis of NAC transcription factor genes in wild Medicago falcata under abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:327-341. [PMID: 32092285 DOI: 10.1071/fp19199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
The No apical meristem-Arabidopsis transcription activation factor-Cup-shaped cotyledon (NAC) proteins play vital roles in plant development processes and responses to abiotic stress. In this study, 146 unigenes were identified as NAC genes from wild Medicago falcata L. by RNA sequencing. Among these were 30 full-length NACs, which, except for MfNAC63, MfNAC64 and MfNAC91, contained a complete DNA-binding domain and a variable transcriptional activation region. Sequence analyses of MfNACs along with their Arabidopsis thaliana (L.) Heynh. counterparts allowed these proteins to be phylogenetically classified into nine groups. MfNAC35, MfNAC88, MfNAC79, MfNAC26 and MfNAC95 were found to be stress-responsive genes. The eight MfNAC genes that were chosen for further analysis had different expression abilities in the leaves, stems and roots of M. falcata. Additionally, their expression levels were regulated by salinity, drought and cold stress, and ABA. This study will be useful for understanding the roles of MfNACs in wild M. falcata and could provide important information for the selection of candidate genes associated with stress tolerance.
Collapse
Affiliation(s)
- Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| | - Xuhui Jia
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Jingwei Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Agula Hasi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R. China; and State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, P.R.China; and Corresponding authors. Emails: ;
| |
Collapse
|
15
|
Response of Alfalfa (Medicago sativa L.) to Abrupt Chilling as Reflected by Changes in Freezing Tolerance and Soluble Sugars. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abrupt-chilling events threaten the survival of alfalfa plants, the ability to cope with such condition should be considered during cultivar selection in the production. To assess biochemical and molecular responses of alfalfa to abrupt chilling, the cultivars “WL440HQ” (WL) and “ZhaoDong” (ZD) were subjected to a five-phase experimental regime that included two abrupt-chilling events. The freezing tolerance of the crown was determined as the semi-lethal temperature (LT50) calculated from electrolyte leakage. Soluble sugar concentrations were quantified by ion chromatography. The mRNA transcript levels of four genes encoding enzymes (β-amylase, sucrose phosphate synthase, galactinol synthase, and stachyose synthase) involved in sugar metabolism and two cold-regulated genes (Cas15A and K3-dehydrin) were quantified using quantitative real-time PCR analysis. During the abrupt-chilling events, the LT50 decreased significantly in ZD but not in WL. The rapid response of ZD to abrupt chilling may have been due to the large increases in raffinose and stachyose concentrations, which were consistent with increased transcript levels of the galactinol synthase and stachyose synthase genes. Transcript levels of the cold-regulated genes Cas15A and K3-dehydrin were correlated with increased freezing tolerance under abrupt chilling. The results provide a reference for selection of appropriate cultivars to reduce the risk of crop damage in production areas where early autumn or late spring frosts are likely.
Collapse
|
16
|
Samarina LS, Malyukova LS, Gvasaliya MV, Efremov AM, Malyarovskaya VI, Loshkareva SV, Tuov MT. Genes underlying cold acclimation in the tea plant (<i>Camellia sinensis</i> (L.) Kuntze). Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The article reviews the latest studies showing the diversity of genetic mechanisms and gene families underlying the increased cold and frost tolerance of tea and other plant species. It has been shown that cell responses to chilling (0…+15°C) and freezing (< 0°C) are not the same and gene expression under cold stress is genotype-specific. In recent decades, progress has been made in understanding the genetic mechanisms underlying the cold response of plants – ICE1 (inducer of CBF expression 1), CBF (C-repeat-binding factor), COR (cold-regulated genes) pathways and signaling have been discovered. The ICE, CBF and DHN gene groups play a key role in the cold acclimation of the tea plant. The accumulation of CBF transcripts occurs after 15 min of chilling induction, and longer cold stress leads to accumulation of CBF transcripts. It is shown that the transcripts of the CsDHN1, CsDHN2 and CsDHN3 genes accumulate at a higher level in resistant genotypes of tea in comparison with susceptible cultivars during freezing. CBF-independent pathways include genes involved in metabolism and transcription factors such as HSFC1, ZAT12, CZF1, PLD (phospholipase D), WRKY, HD-Zip, CsLEA, LOX, NAC, HSP, which are widely distributed in plants and are involved in the basic mechanisms of tea resistance to cold and frost. The most recent studies show an important role of miRNA in the mechanisms of response to chilling and freezing in tea. The data obtained on different plant species may correlate with the mechanisms of frost tolerance of tea and are the basis for future studies of the signaling pathways of response to cold in the tea plant. The results of the research emphasize the need to further explore the ways in which various genes regulate the tolerance of tea to cold stress to find the molecular markers of frost tolerance.
Collapse
Affiliation(s)
- L. S. Samarina
- Russian Research Institute of Floriculture and Subtropical Crops
| | - L. S. Malyukova
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. V. Gvasaliya
- Russian Research Institute of Floriculture and Subtropical Crops
| | - A. M. Efremov
- Russian Research Institute of Floriculture and Subtropical Crops
| | | | - S. V. Loshkareva
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. T. Tuov
- Russian Research Institute of Floriculture and Subtropical Crops
| |
Collapse
|
17
|
Cui G, Chai H, Yin H, Yang M, Hu G, Guo M, Yi R, Zhang P. Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC PLANT BIOLOGY 2019; 19:575. [PMID: 31864302 PMCID: PMC6925873 DOI: 10.1186/s12870-019-2192-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Low temperature is one of the main environmental factors that limits crop growth, development, and production. Medicago falcata is an important leguminous herb that is widely distributed worldwide. M. falcata is related to alfalfa but is more tolerant to low temperature than alfalfa. Understanding the low temperature tolerance mechanism of M. falcata is important for the genetic improvement of alfalfa. RESULTS In this study, we explored the transcriptomic changes in the roots of low-temperature-treated M. falcata plants by combining SMRT sequencing and NGS technologies. A total of 115,153 nonredundant sequences were obtained, and 8849 AS events, 73,149 SSRs, and 4189 lncRNAs were predicted. A total of 111,587 genes from SMRT sequencing were annotated, and 11,369 DEGs involved in plant hormone signal transduction, protein processing in endoplasmic reticulum, carbon metabolism, glycolysis/gluconeogenesis, starch and sucrose metabolism, and endocytosis pathways were identified. We characterized 1538 TF genes into 45 TF gene families, and the most abundant TF family was the WRKY family, followed by the ERF, MYB, bHLH and NAC families. A total of 134 genes, including 101 whose expression was upregulated and 33 whose expression was downregulated, were differentially coexpressed at all five temperature points. PB40804, PB75011, PB110405 and PB108808 were found to play crucial roles in the tolerance of M. falcata to low temperature. WGCNA revealed that the MEbrown module was significantly correlated with low-temperature stress in M. falcata. Electrolyte leakage was correlated with most genetic modules and verified that electrolyte leakage can be used as a direct stress marker in physiological assays to indicate cell membrane damage from low-temperature stress. The consistency between the qRT-PCR results and RNA-seq analyses confirmed the validity of the RNA-seq data and the analysis of the regulatory mechanism of low-temperature stress on the basis of the transcriptome. CONCLUSIONS The full-length transcripts generated in this study provide a full characterization of the transcriptome of M. falcata and may be useful for mining new low-temperature stress-related genes specific to M. falcata. These new findings could facilitate the understanding of the low-temperature-tolerance mechanism of M. falcata.
Collapse
Affiliation(s)
- Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Chai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161005, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mei Yang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guofu Hu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Mingying Guo
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Rugeletu Yi
- Hulunbuir Grassland Station, Hulunbuir, 021008, China
| | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
18
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
19
|
Liu YS, Geng JC, Sha XY, Zhao YX, Hu TM, Yang PZ. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:538. [PMID: 31114600 PMCID: PMC6503086 DOI: 10.3389/fpls.2019.00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Low temperature-induced stress is a major environmental factor limiting the growth and development of plants. Alfalfa (Medicago sativa L.) is a legume well known for its tolerance of extreme environments. In this study, we sought to experimentally investigate the role of rhizobium symbiosis in alfalfa's performance under a low-temperature stress condition. To do this, alfalfa "Ladak+" plants carrying active nodules (AN), inactive nodules (IN), or no nodules (NN) were exposed to an imposed low temperature stress and their survivorship calculated. The antioxidant defense responses, the accumulation of osmotic regulation substances, the cell membrane damage, and the expression of low temperature stress-related genes were determined in both the roots and the shoots of alfalfa plants. We found that more plants with AN survived than those with IN or NN under the same low temperature-stress condition. Greater activity of oxidation protective enzymes was observed in the AN and IN groups, conferring higher tolerance to low temperature in these plants. In addition, rhizobia nodulation also enhanced alfalfa's ability to tolerate low temperature by altering the expression of regulatory and metabolism-associated genes, which resulted in the accumulation of soluble proteins and sugars in the nodulated plants. Taken together, the findings of this study indicate that rhizobium inoculation offers a practical way to promote the persistence and growth potential of alfalfa "Ladak+" in cold areas.
Collapse
Affiliation(s)
- Yu-Shi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Xu-Yang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi-Xin Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tian-Ming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Zhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Zhang P, Li S, Zhao P, Guo Z, Lu S. Comparative Physiological Analysis Reveals the Role of NR-Derived Nitric Oxide in the Cold Tolerance of Forage Legumes. Int J Mol Sci 2019; 20:E1368. [PMID: 30893759 PMCID: PMC6470781 DOI: 10.3390/ijms20061368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/03/2022] Open
Abstract
The role of nitric oxide (NO) signaling in the cold acclimation of forage legumes was investigated in this study. Medicago sativa subsp. falcata (L.) Arcang. (hereafter M. falcata) is a forage legume with a higher cold tolerance than Medicago truncatula, a model legume. Cold acclimation treatment resulted in increased cold tolerance in both M. falcata and M. truncatula, which was suppressed by pretreatment with tungstate, an inhibitor of nitrate reductase (NR), and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of NO. Likely, NITRATE REDUCTASE 1 (NIA1), but not NIA2 transcript, NR activity, and NO production were increased after cold treatment. Treatments with exogenous NO donors resulted in increased cold tolerance in both species. Superoxide dismutase (SOD), catalase (CAT), and ascorbate-peroxidase (APX) activities and Cu,Zn-SOD2, Cu,Zn-SOD3, cytosolic APX1 (cAPX1), cAPX3 and chloroplastic APX1 (cpAPX1) transcript levels were induced in both species after cold treatment, which was suppressed by tungstate and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Treatment with exogenous NO resulted in enhanced activities of SOD, CAT, and APX. Moreover, higher levels of NIA1 transcript, NR activity, NO production, and antioxidant enzyme activities and transcripts were observed in M. falcata as compared with M. truncatula after cold treatment. The results suggest that NR-derived NO production and upregulated antioxidant defense are involved in cold acclimation in both species, while the higher levels of NO production and its derived antioxidant enzymes are associated with the higher cold tolerance in M. falcata as compared with M. truncatula.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Shuangshuang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Zhuo C, Liang L, Zhao Y, Guo Z, Lu S. A cold responsive ethylene responsive factor from Medicago falcata confers cold tolerance by up-regulation of polyamine turnover, antioxidant protection, and proline accumulation. PLANT, CELL & ENVIRONMENT 2018; 41:2021-2032. [PMID: 29216408 DOI: 10.1111/pce.13114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 05/25/2023]
Abstract
Ethylene responsive factor (ERF) subfamily transcription factors play an important role in plant abiotic and biotic stress tolerance. A cold responsive ERF, MfERF1, was isolated from Medicago falcata, an important forage legume that has great cold tolerance. Overexpression of MfERF1 resulted in an increased tolerance to freezing and chilling in transgenic tobacco plants, whereas down-regulation of the ortholog of MfERF1 in Medicago truncatula resulted in reduced freezing tolerance in RNAi plants. Higher transcript levels of some stress responsive genes (CHN50, OSM, ERD10C, and SAMS) and those involved in spermidine (Spd) and spermine (Spm) synthesis (SAMDC1, SAMDC2, SPDS1, SPDS2, and SPMS) and catabolism (PAO) were observed in transgenic plants than in wild type. However, neither Spd nor Spm level was accumulated in transgenic plants as a result of promoted polyamine oxidase activity. Transgenic plants had higher activities of antioxidants associated with the induced encoding genes including Cu, Zn-SOD, CAT1, CAT2, CAT3, and cpAPX and accumulated more proline associated with induced P5CS and reduced PROX2 transcription as compared with wild type. The results suggest that MfERF1 confers cold tolerance through promoted polyamine turnover, antioxidant protection, and proline accumulation.
Collapse
Affiliation(s)
- Chunliu Zhuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
Ban Q, Wang X, Pan C, Wang Y, Kong L, Jiang H, Xu Y, Wang W, Pan Y, Li Y, Jiang C. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS One 2017; 12:e0188514. [PMID: 29211766 PMCID: PMC5718485 DOI: 10.1371/journal.pone.0188514] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/08/2017] [Indexed: 12/04/2022] Open
Abstract
Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.
Collapse
Affiliation(s)
- Qiuyan Ban
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Xuewen Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China.,Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Cheng Pan
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yiwei Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Lei Kong
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Huiguang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yiqun Xu
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Wenzhi Wang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yuting Pan
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization/key Laboratory of Tea Biology and Processing, Ministry of Agriculture, Anhui Agricultural University, Hefei City, Anhui Province, PR China.,Henan Provincial Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, Henan Province, PR China
| |
Collapse
|
23
|
Shu Y, Li W, Zhao J, Zhang S, Xu H, Liu Y, Guo C. Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genet Mol Biol 2017; 40:824-833. [PMID: 29111565 PMCID: PMC5738619 DOI: 10.1590/1678-4685-gmb-2017-0053] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is an important perennial forage, with high nutritional value, which is widely grown in the world. Because of low freezing tolerance, its distribution and production are threatened and limited by winter weather. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed transcriptome sequencing analysis under cold (4 °C) and freezing (-8 °C) stresses. More than 66 million reads were generated, and we identified 5767 transcripts differentially expressed in response to cold and/or freezing stresses. These results showed that these genes were mainly classified as response to stress, transcription regulation, hormone signaling pathway, antioxidant, nodule morphogenesis, etc., implying their important roles in response to cold and freezing stresses. Furthermore, nine CBF transcripts differentially expressed were homologous to CBF genes of Mt-FTQTL6 site, conferring freezing tolerance in M. truncatula, which indicated that a genetic mechanism controlling freezing tolerance was conservative between M. truncatula and M. sativa. In summary, this transcriptome dataset highlighted the gene regulation response to cold and/or freezing stresses in alfalfa, which provides a valuable resource for future identification and functional analysis of candidate genes in determining freezing tolerance.
Collapse
Affiliation(s)
- Yongjun Shu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Wei Li
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Jinyue Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Sijia Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Hanyun Xu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Ying Liu
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin Heilongjiang, China
| |
Collapse
|
24
|
Wang W, Hao Q, Wang W, Li Q, Wang W. The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances. PLANT CELL REPORTS 2017; 36:1801-1814. [PMID: 28808769 DOI: 10.1007/s00299-017-2195-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway. Two wheat (Triticum aestivum) near isogenic lines (NIL) named tafs (freezing sensitivity) and taft (freezing tolerance) were isolated in the laboratory and their various cytological and physiological characteristics under freezing conditions were studied. Proplastid, cell membrane, and mitochondrial ultrastructure were less damaged by freezing treatment in taft than tafs plants. Chlorophyll, ATP, and thylakoid membrane protein contents were significantly higher, but malondialdehyde content was significantly lower in taft than tafs plants under freezing condition. Antioxidant capacity, as indicated by reactive oxygen species accumulation and antioxidant enzyme activity, and the relative gene expression were significantly greater in taft than tafs plants. Soluble sugars and abscisic acid (ABA) contents were significantly higher in taft plants than in tafs plants under both normal and freezing conditions. The upregulated expression levels of certain freezing tolerance-related genes were greater in taft than tafs plants under freezing treatment. The addition of sodium tungstate, an ABA synthesis inhibitor, led to only partial freezing tolerance inhibition in taft plants and the down-regulated expression of some ABA-dependent genes. Thus, both ABA-dependent and ABA-independent signaling pathways are involved in the freezing tolerance of taft plants. At the same time, freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway.
Collapse
Affiliation(s)
- Wenqiang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qunqun Hao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenlong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
25
|
Shahryar N, Maali-Amiri R. Metabolic acclimation of tetraploid and hexaploid wheats by cold stress-induced carbohydrate accumulation. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:44-53. [PMID: 27500556 DOI: 10.1016/j.jplph.2016.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Metabolic acclimation of plants to cold stress may be of great importance for their growth, survival and crop productivity. The accumulation carbohydrates associated with cold tolerance (CT), transcript levels for genes encoding related enzymes along with damage indices were comparatively studied in three genotypes of bread and durum wheats differing in sensitivity. Two (Norstar, bread wheat and Gerdish, durum wheat) were tolerant and the other, SRN (durum wheat), was susceptible to cold stress. During cold stress (-5°C for 24h), the contents of electrolyte leakage index (ELI) in Norstar and then Gerdish plants were lower than that of SRN plants, particularly in cold acclimated (CA) plants (4°C for 14days), confirming lethal temperature 50 (LT50) under field conditions. Increased carbohydrate abundances in the cases of sucrose, glucose, fructose, hexose phosphates, fructan, raffinose, arabinose resulted in different intensities of oxidative stress in bread (Norstar) plants compared to durum plants (SRN and Gerdish) plants as well as in CA plants compared to non-acclimated (NA) ones under cold, indicating metabolic/regulatory capacity along with a decrease in ELI content and enhanced defense activities. A significant decrease in these carbohydrates, particularly sucrose, under cold in NA plants showed an elevated level of cell damage (confirmed by ELI) compared to CA plants. On the other hand, an increase in hexose phosphates, particularly in NA plants, indicated sucrose degradation along with greater production of glucose and fructose compared to CA plants. Under such conditions, a significant increase in transcript levels of sucrose synthase and acidic invertase confirmed these results. Under cold, the high ABA-containing genotypes like Norstar and then Gerdish, which were obvious in CA plants, partly induced relative acclimation of cells for acquisition of CT compared to SRN. These results reveal an important role of carbohydrate metabolism in creating CT in durum wheats (particularly in Gerdish) as well as bread wheat with possible responsive components in metabolic and transcript levels.
Collapse
Affiliation(s)
- Negin Shahryar
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran; Department of Agronomy and Plant Breeding, Faculty of Agriculture, Science and Research Campus, Azad Islamic University, Karaj Branch, 31876-44511, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
26
|
Kovi MR, Ergon Å, Rognli OA. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:140-146. [PMID: 27479037 DOI: 10.1016/j.pbi.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 05/11/2023]
Abstract
Climate change creates new patterns of seasonal climate variation with higher temperatures, longer growth seasons and more variable winter climates. This is challenging the winter survival of perennial herbaceous plants. In this review, we focus on the effects of variable temperatures during autumn/winter/spring, and its interactions with light, on the development and maintenance of freezing tolerance. Cold temperatures induce changes at several organizational levels in the plant (cold acclimation), leading to the development of freezing tolerance, which can be reduced/lost during warm spells (deacclimation) in winters, and attained again during cold spells (reacclimation). We summarize how temperature interacts with components of the light regime (photoperiod, PSII excitation pressure, irradiance, and light quality) in determining changes in the transcriptome, proteome and metabolome.
Collapse
Affiliation(s)
- Mallikarjuna Rao Kovi
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
| |
Collapse
|
27
|
Zhuo C, Wang T, Guo Z, Lu S. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants. BMC PLANT BIOLOGY 2016; 16:138. [PMID: 27301445 PMCID: PMC4907284 DOI: 10.1186/s12870-016-0814-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/19/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. RESULTS MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. CONCLUSIONS The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.
Collapse
Affiliation(s)
- Chunliu Zhuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Song L, Jiang L, Chen Y, Shu Y, Bai Y, Guo C. Deep-sequencing transcriptome analysis of field-grown Medicago sativa L. crown buds acclimated to freezing stress. Funct Integr Genomics 2016; 16:495-511. [PMID: 27272950 DOI: 10.1007/s10142-016-0500-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/01/2022]
Abstract
Medicago sativa L. (alfalfa) 'Zhaodong' is an important forage legume that can safely survive in northern China where winter temperatures reach as low as -30 °C. Survival of alfalfa following freezing stress depends on the amount and revival ability of crown buds. In order to investigate the molecular mechanisms of frost tolerance in alfalfa, we used transcriptome sequencing technology and bioinformatics strategies to analyze crown buds of field-grown alfalfa during winter. We statistically identified a total of 5605 differentially expressed genes (DEGs) involved in freezing stress including 1900 upregulated and 3705 downregulated DEGs. We validated 36 candidate DEGs using qPCR to confirm the accuracy of the RNA-seq data. Unlike other recent studies, this study employed alfalfa plants grown in the natural environment. Our results indicate that not only the CBF orthologs but also membrane proteins, hormone signal transduction pathways, and ubiquitin-mediated proteolysis pathways indicate the presence of a special freezing adaptation mechanism in alfalfa. The antioxidant defense system may rapidly confer freezing tolerance to alfalfa. Importantly, biosynthesis of secondary metabolites and phenylalanine metabolism, which is of potential importance in coordinating freezing tolerance with growth and development, were downregulated in subzero temperatures. The adaptive mechanism for frost tolerance is a complex multigenic process that is not well understood. This systematic analysis provided an in-depth view of stress tolerance mechanisms in alfalfa.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Lin Jiang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yue Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China.
| |
Collapse
|
29
|
Shen Y, Wu X, Liu D, Song S, Liu D, Wang H. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochem Biophys Res Commun 2016; 474:271-276. [PMID: 27086112 DOI: 10.1016/j.bbrc.2016.04.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
Histone methylation is an epigenetic modification mechanism that regulates gene expression in eukaryotic cells. Jumonji C domain-containing demethylases are involved in removal of methyl groups at lysine or arginine residues. The JmjC domain-only member, JMJ30/JMJD5 of Arabidopsis, is a component of the plant circadian clock. Although some plant circadian clock genes undergo alternative splicing in response to external cues, there is no evidence that JMJ30/JMJD5 is regulated by alternative splicing. In this study, the expression of an Arabidopsis JMJ30/JMJD5 ortholog in Medicago truncatula, MtJMJC5, in response to circadian clock and abiotic stresses were characterized. The results showed that MtJMJC5 oscillates with a circadian rhythm, and undergoes cold specifically induced alternative splicing. The cold-induced alternative splicing could be reversed after ambient temperature returning to the normal. Sequencing results revealed four alternative splicing RNA isoforms including a full-length authentic protein encoding variant, and three premature termination condon-containing variants due to alternative 3' splice sites at the first and second intron. Under cold treatment, the variants that share a common 3' alternative splicing site at the second intron were intensively up-regulated while the authentic protein encoding variant and the premature termination condon-containing variant only undergoing a 3' alternative splicing at the first intron were down regulated. Although all the premature termination condon-harboring alternative splicing variants were sensitive to nonsense-mediated decay, the premature termination codon-harboring alternative splicing variants sharing the 3' alternative splicing site at the second intron showed less sensitivity than the one only containing the 3' alternative slicing site at the first intron under cold treatment. These results suggest that the cold-dependent alternative splicing of MtJMJC5 is likely a species or genus-specific mechanism of gene expression regulation on RNA levels, and might play a role in epigenetic regulation of the link between the circadian clock and ambient temperature fluctuation in Medicago.
Collapse
Affiliation(s)
- Yingfang Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100081, People's Republic of China
| | - Xiaopei Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100081, People's Republic of China
| | - Demei Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| | - Shengjing Song
- College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Dengcai Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| | - Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China.
| |
Collapse
|
30
|
Bertrand A, Bipfubusa M, Castonguay Y, Rocher S, Szopinska-Morawska A, Papadopoulos Y, Renaut J. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.). BMC PLANT BIOLOGY 2016; 16:65. [PMID: 26965047 PMCID: PMC4787020 DOI: 10.1186/s12870-016-0751-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Improvement of freezing tolerance of red clover (Trifolium pratense L.) would increase its persistence under cold climate. In this study, we assessed the freezing tolerance and compared the proteome composition of non-acclimated and cold-acclimated plants of two initial cultivars of red clover: Endure (E-TF0) and Christie (C-TF0) and of populations issued from these cultivars after three (TF3) and four (TF4) cycles of phenotypic recurrent selection for superior freezing tolerance. Through this approach, we wanted to identify proteins that are associated with the improvement of freezing tolerance in red clover. RESULTS Freezing tolerance expressed as the lethal temperature for 50 % of the plants (LT50) increased markedly from approximately -2 to -16 °C following cold acclimation. Recurrent selection allowed a significant 2 to 3 °C increase of the LT50 after four cycles of recurrent selection. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to study variations in protein abundance. Principal component analysis based on 2D-DIGE revealed that the largest variability in the protein data set was attributable to the cold acclimation treatment and that the two genetic backgrounds had differential protein composition in the acclimated state only. Vegetative storage proteins (VSP), which are essential nitrogen reserves for plant regrowth, and dehydrins were among the most striking changes in proteome composition of cold acclimated crowns of red clovers. A subset of proteins varied in abundance in response to selection including a dehydrin that increased in abundance in TF3 and TF4 populations as compared to TF0 in the Endure background. CONCLUSION Recurrent selection performed indoor is an effective approach to improve the freezing tolerance of red clover. Significant improvement of freezing tolerance by recurrent selection was associated with differential accumulation of a small number of cold-regulated proteins that may play an important role in the determination of the level of freezing tolerance.
Collapse
Affiliation(s)
| | | | | | - Solen Rocher
- />Agriculture and Agri-Food Canada, Québec City, Canada
| | | | | | - Jenny Renaut
- />Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| |
Collapse
|
31
|
Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ. Transcriptome Response Mediated by Cold Stress in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2016; 7:374. [PMID: 27066029 PMCID: PMC4811897 DOI: 10.3389/fpls.2016.00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 05/18/2023]
Abstract
Members of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h. High-throughput RNA sequencing was used to identify and classify 1077 differentially expressed genes, of which 713 were up-regulated and 364 were down-regulated. Up-regulated genes were principally related to lipid, cell wall, phenylpropanoid, sugar, and proline regulation, while down-regulated genes affected the photosynthetic process and chloroplast development. Together, a total of 41 cold-inducible transcription factors were identified, including members of the AP2/ERF, NAC, MYB, and WRKY families; two of them were described as putative novel transcription factors. Finally, DREB1/CBFs were described with respect to their cold stress expression profiles. This is the first transcriptome profiling of the model legume L. japonicus under cold stress. Data obtained may be useful in identifying candidate genes for breeding modified species of forage legumes that more readily acclimate to low temperatures.
Collapse
|
32
|
Lei P, Xu Z, Ding Y, Tang B, Zhang Y, Li H, Feng X, Xu H. Effect of Poly(γ-glutamic acid) on the Physiological Responses and Calcium Signaling of Rape Seedlings (Brassica napus L.) under Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10399-10406. [PMID: 26585291 DOI: 10.1021/acs.jafc.5b04523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cold stress adversely affects plant growth and development. Poly(γ-glutamic acid) (γ-PGA) is a potential plant growth regulator that may be an effective cryoprotectant that prevents crops from damage during cold weather. In this study, the effects of γ-PGA on the physiological responses of rape seedlings subject to cold stress were investigated using hydroponic experiments. We determined that the malondialdehyde content was decreased by 33.4% and the proline content was increased by 62.5% by γ-PGA after 144 h under cold stress. Antioxidant enzymes activities were also evidently enhanced after treatment with γ-PGA. These responses counteracted increases in the fresh weight and chlorophyll content of rape seedlings, which increased by 24.5 and 50.9%, respectively, after 144 h, which meant that growth inhibition caused by cold was mitigated by γ-PGA. Our results also showed that γ-PGA also regulated Ca(2+) concentrations in the cytoplasm and calcium-dependent protein kinases, which are associated with cold resistance. In conclusion, we suggest that the Ca(2+)/CPKs signal pathway is involved in the γ-PGA-mediated enhancement of cold resistance in rape seedlings.
Collapse
Affiliation(s)
- Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Zongqi Xu
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Yan Ding
- Nanjing Shineking Biological Technology Company, Ltd., Nanjing 210000, China
| | - Bao Tang
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Yunxia Zhang
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Huashan Li
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Xiaohai Feng
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University , Nanjing 211816, China
| |
Collapse
|
33
|
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 2015; 16:818. [PMID: 26481731 PMCID: PMC4615886 DOI: 10.1186/s12864-015-2019-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils. Methods We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR. Results We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family. Conclusions M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses. Our data provides many gene candidates that might be used for herbage and crop breeding. Additionally, FalcataBase (http://bioinformatics.cau.edu.cn/falcata/) was built for storing these data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2019-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Daofeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Xiaona Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zongyong Tong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Min Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wenjie Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Yue C, Cao HL, Wang L, Zhou YH, Huang YT, Hao XY, Wang YC, Wang B, Yang YJ, Wang XC. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. PLANT MOLECULAR BIOLOGY 2015; 88:591-608. [PMID: 26216393 DOI: 10.1007/s11103-015-0345-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed.
Collapse
Affiliation(s)
- Chuan Yue
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
O'Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, Lamb JFS, Monteros MJ, Graham MA, Gronwald JW, Krom N, Li J, Dai X, Zhao PX, Vance CP. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics 2015; 16:502. [PMID: 26149169 PMCID: PMC4492073 DOI: 10.1186/s12864-015-1718-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. Results A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. Conclusions The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/, a publicly available genomic resource for alfalfa improvement and legume research. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1718-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | - Fengli Fu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA.
| | | | - S Sam Yang
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA. .,Present Address: Monsanto Company, Molecular Breeding Technology, Chesterfield, MO, 63167, USA.
| | - Deborah A Samac
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | - JoAnn F S Lamb
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | | | - Michelle A Graham
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | - John W Gronwald
- USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| | - Nick Krom
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Jun Li
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Xinbin Dai
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Patrick X Zhao
- Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108, USA. .,USDA-ARS-Plant Science Research Unit, St. Paul, MN, 55108, USA.
| |
Collapse
|
36
|
He X, Sambe MAN, Zhuo C, Tu Q, Guo Z. A temperature induced lipocalin gene from Medicago falcata (MfTIL1) confers tolerance to cold and oxidative stress. PLANT MOLECULAR BIOLOGY 2015; 87:645-54. [PMID: 25744207 DOI: 10.1007/s11103-015-0304-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 05/15/2023]
Abstract
Temperature-induced lipocalins (TIL) are plasmalemma-localized proteins and responsive to environmental stresses. Physiological functions of MfTIL1 from Medicago sativa subsp. falcata (L.) Arcang. (hereafter falcata), a forage legume with cold and drought tolerance, were investigated in this study. MfTIL1 expression was greatly induced by 4-96 h of cold treatment, while transcript levels of the orthologs in Medicago truncatula, a model legume plant with lower cold tolerance than falcata, were reduced or not altered within 48-96 h. MfTIL1 expression was not responsive to dehydration and salinity. Compared to the wild type, transgenic tobacco plants overexpressing MfTIL1 had lower temperature (LT50) that resulted in 50 % lethal and elevated survival rate in response to freezing, elevated F v/F m and decreased ion leakage after treatments with chilling, high light and methyl viologen (MV). H2O2 and O2 (-) were less accumulated in transgenic plants than in the wild type after treatments with chilling, high light and MV, while antioxidant enzyme activities showed no difference between the two types of plants prior to or following treatments. Higher transcript levels of NtDREB3 and NtDREB4 genes were observed in transgenic plants than in the wild type under non-stressed conditions, but higher transcript levels of NtDREB1, NtDREB2, NtDREB4 and NtCOR15a genes under chilling conditions. It is suggested that MfTIL1 plays an important role in plant tolerance to cold and oxidative stress through promoted scavenging of reactive oxygen species and up-regulating expression of multiple cold responsive genes.
Collapse
Affiliation(s)
- Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Grassland Science Engineering Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | |
Collapse
|
37
|
Sambe MAN, He X, Tu Q, Guo Z. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants. PHYSIOLOGIA PLANTARUM 2015; 153:355-64. [PMID: 25131886 DOI: 10.1111/ppl.12249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/30/2014] [Accepted: 04/26/2014] [Indexed: 05/15/2023]
Abstract
A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Mame Abdou Nahr Sambe
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | |
Collapse
|
38
|
Zhao M, Liu W, Xia X, Wang T, Zhang WH. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. PHYSIOLOGIA PLANTARUM 2014; 152:115-29. [PMID: 24494928 DOI: 10.1111/ppl.12161] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 05/07/2023]
Abstract
To evaluate the role of ethylene in cold acclimation and cold stress, freezing tolerance and characteristics associated with cold acclimation were investigated using legume model plant Medicago truncatula Gaertn Jemalong A17. There was a rapid suppression of ethylene production during cold acclimation in A17 plants. Ethylene level was negatively correlated with freezing tolerance as inhibition of ethylene biosynthesis by inhibitors of ethylene biosynthesis enhanced freezing tolerance, while exogenous application of ethylene reduced cold acclimation-induced freezing tolerance. The involvement of ethylene signaling in modulation of freezing tolerance and cold acclimation was further studied using ethylene-insensitive mutant sickle skl. Although skl mutant was more tolerant to freezing than its wild-type counterpart A17 plants, cold acclimation enhanced freezing tolerance in 17 plants, but not in skl mutant. Expression of several ethylene response genes including EIN3, EIN3/EIL and ERFs was suppressed in skl mutant compared to A17 plants under non-cold-acclimated conditions. Cold acclimation downregulated expression of EIN3, EIN3/EIL and ERFs in A17 plants, while expression patterns of these genes were relatively constant in skl mutant during cold acclimation. Cold acclimation-induced increases in transcription of MtCBFs and MtCAS15 were suppressed in skl mutant compared with A17 plants. These results suggest that MtSKL1 is required for perception of the change of ethylene level in M. truncatula plants for the full development of the cold acclimation response by suppressing expression of MtEIN3 and MtEIN3/EIL1, which in turn downregulates expression of MtERFs, leading to the enhanced tolerance of M. truncatula to freezing by upregulating MtCBFs and MtCAS15.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | | | | | | | | |
Collapse
|
39
|
Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:601-12. [PMID: 24517136 DOI: 10.1111/pbi.12166] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/01/2013] [Accepted: 12/22/2013] [Indexed: 05/18/2023]
Abstract
S-adenosylmethionine synthetase (SAMS) is the key enzyme catalysing the formation of S-adenosylmethionine (SAM), a precursor of polyamines and ethylene. To investigate the potential role of SAMS in cold tolerance, we isolated MfSAMS1 from the cold-tolerant germplasm Medicago sativa subsp. falcata and analysed the association of SAM-derived polyamines with cold tolerance. The expression of MfSAMS1 in leaves was greatly induced by cold, abscisic acid (ABA), H2O2 and nitric oxide (NO). Our data revealed that ABA, H2O2 and NO interactions mediated the cold-induced MfSAMS1 expression and cold acclimation in falcata. SAM, putrescine, spermidine and spermine levels, ethylene production and polyamine oxidation were sequentially altered in response to cold, indicating that SAMS-derived SAM is preferentially used in polyamine synthesis and homeostasis during cold acclimation. Antioxidant enzyme activities were also induced in response to cold and showed correlation with polyamine oxidation. Overexpression of MfSAMS1 in tobacco resulted in elevated SAM levels, but polyamine levels and ethylene production in the transgenic plants were not significantly changed. Compared to the wild type, transgenic plants had increased levels of apoplastic H2O2, higher transcript levels of genes involved in polyamine synthesis and oxidation, and higher activities of polyamine oxidation and antioxidant enzymes. The results showed that overexpression of MfSAMS1 promoted polyamine synthesis and oxidation, which in turn improved H2 O2 -induced antioxidant protection, as a result enhanced tolerance to freezing and chilling stress in transgenic plants. This is the first report demonstrating that SAMS plays an important role in plant tolerance to cold via up-regulating polyamine oxidation.
Collapse
Affiliation(s)
- Zhenfei Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
Tayeh N, Bahrman N, Sellier H, Bluteau A, Blassiau C, Fourment J, Bellec A, Debellé F, Lejeune-Hénaut I, Delbreil B. A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6. BMC Genomics 2013; 14:814. [PMID: 24261852 PMCID: PMC4046650 DOI: 10.1186/1471-2164-14-814] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/04/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Freezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped to M. truncatula chromosome 6 (Mt-FTQTL6) using the LR3 population derived from a cross between the freezing-tolerant accession F83005-5 and the freezing-sensitive accession DZA045-5. RESULTS The confidence interval of Mt-FTQTL6 was narrowed down to the region comprised between markers MTIC153 and NT6054 using recombinant F7 and F8 lines. A bacterial-artificial chromosome (BAC) clone contig map was constructed in an attempt to close the residual assembly gap existing therein. Twenty positional candidate genes including twelve C-repeat binding factor (CBF)/dehydration-responsive element binding factor 1 (DREB1) genes were identified from BAC-derived sequences and whole-genome shotgun sequences (WGS). CBF/DREB1 genes are organized in a tandem array within an approximately 296-Kb region. Eleven CBF/DREB1 genes were isolated and sequenced from F83005-5 and DZA045-5 which revealed high polymorphism among these accessions. Unique features characterizing CBF/DREB1 genes from M. truncatula, such as alternative splicing and large tandem duplication, are elucidated for the first time. CONCLUSIONS Overall, twenty genes were identified as potential candidates to explain Mt-FTQTL6 effect. Their future functional characterization will uncover the gene(s) involved in freezing tolerance difference observed between F83005-5 and DZA045-5. Knowledge transfer for breeding improvement of crop legumes is expected. Furthermore, CBF/DREB1 related data will certainly have a large impact on research studies targeting this group of transcriptional activators in M. truncatula and other legume species.
Collapse
Affiliation(s)
- Nadim Tayeh
- />Université Lille 1, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Bâtiment SN2, F-59655 Villeneuve d’Ascq Cedex, France
| | - Nasser Bahrman
- />Université Lille 1, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Bâtiment SN2, F-59655 Villeneuve d’Ascq Cedex, France
- />INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Estrées-Mons, BP 50136, F-80203 Péronne Cedex, France
| | - Hélène Sellier
- />INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Estrées-Mons, BP 50136, F-80203 Péronne Cedex, France
| | - Aurélie Bluteau
- />Université Lille 1, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Bâtiment SN2, F-59655 Villeneuve d’Ascq Cedex, France
- />INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Estrées-Mons, BP 50136, F-80203 Péronne Cedex, France
| | - Christelle Blassiau
- />Université Lille 1, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Bâtiment SN2, F-59655 Villeneuve d’Ascq Cedex, France
| | - Joëlle Fourment
- />INRA, Centre National de Ressources Génomiques Végétales (CNRGV), BP 52627, F-31326 Castanet-Tolosan Cedex, France
| | - Arnaud Bellec
- />INRA, Centre National de Ressources Génomiques Végétales (CNRGV), BP 52627, F-31326 Castanet-Tolosan Cedex, France
| | - Frédéric Debellé
- />INRA/CNRS, UMR 441/2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), BP 52627, F-31326 Castanet-Tolosan Cedex, France
| | - Isabelle Lejeune-Hénaut
- />INRA, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Estrées-Mons, BP 50136, F-80203 Péronne Cedex, France
| | - Bruno Delbreil
- />Université Lille 1, UMR 1281 Stress Abiotiques et Différenciation des Végétaux cultivés (SADV), Bâtiment SN2, F-59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
41
|
Tan J, Zhuo C, Guo Z. Nitric oxide mediates cold- and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. PHYSIOLOGIA PLANTARUM 2013; 149:310-20. [PMID: 23387330 DOI: 10.1111/ppl.12032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 05/10/2023]
Abstract
Hybrid proline-rich proteins (HyPRPs) are cell wall-localized proteins, and are frequently responsive to environmental stresses. The coding sequence of a HyPRP cDNA was isolated from Medicago falcata, a forage crop that shows cold and drought tolerance. The predicted MfHyPRP contains a proline-rich domain at N-terminus after the signal peptide and a conserved eight-cysteine motif at the C-terminus. Higher level of MfHyPRP transcript was observed in leaves than in stems and roots under control conditions, while more MfHyPRP transcript was induced in leaves and stems than in roots after cold treatment. Levels of MfHyPRP transcript and MfHyPRP protein in leaves were induced by cold, dehydration, abscisic acid (ABA), hydrogen peroxide (H2 O2) and nitric oxide (NO), but not responsive to salt stress. The cold- or dehydration-induced expression of MfHyPRP was blocked by scavenger of NO, but not affected by inhibitor of ABA biosynthesis or scavenger of H2 O2. The results indicated that NO, but not ABA and H2 O2, was essential in the cold- and dehydration-induced expression of MfHyPRP. Overexpression of MfHyPRP in tobacco led to increased tolerance to freezing, chilling and osmotic stress as well as methyl viologen-induced oxidative stress. The increased cold and osmotic stress tolerance was proposed to be associated with improved protection against oxidative damages. It is suggested that NO mediates cold- and dehydration-induced expression of MfHyPRP that confers tolerance to abiotic stress.
Collapse
Affiliation(s)
- Jiali Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | | | | |
Collapse
|
42
|
Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. PHYSIOLOGIA PLANTARUM 2013; 149:67-78. [PMID: 23253102 DOI: 10.1111/ppl.12019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 05/03/2023]
Abstract
Galactinol synthase (GolS, EC 2.4.1.123) catalyzes formation of galactinol and the subsequent synthesis of raffinose family oligosaccharides. The relationship of GolS to drought and salt tolerance has been well documented, however, little information is available about the role of GolS gene in cold tolerance. A coding sequence of MfGolS1 cDNA was cloned from Medicago sativa spp falcata (i.e. M. falcata), a species that exhibits greater cold tolerance than alfalfa (M. sativa). MfGolS1 transcript was not detected in untreated vegetative tissues using RNA blot hybridization; however, it was greatly induced in leaves, but not in stem and petiole, after cold treatment. Higher levels of MfGolS1 transcript were induced and maintained in M. falcata than in M. sativa during cold acclimation. Accordingly, more sugars including sucrose, galactinol, raffinose and stachyose were accumulated in M. falcata than in M. sativa. The data indicated that MfGolS1 transcript and its resultant sugar accumulation were associated with the differential cold tolerance between M. falcata and M. sativa. MfGolS1 transcript was weakly induced by dehydration and salt stresses, but not responsive to abscisic acid. MfGolS1 could be induced by myo-inositol, which is proposed to participate in cold-induced MfGolS1 expression. Overexpression of MfGolS1 in tobacco resulted in elevated tolerance to freezing and chilling in transgenic plants as a result of enhanced levels of galactinol, raffinose and stachyose. Tolerance to drought and salt stresses was also increased in the transgenic tobacco plants. It is suggested that MfGolS1 plays an important role in plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Chunliu Zhuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | | | |
Collapse
|
43
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Xu J, Li Y, Sun J, Du L, Zhang Y, Yu Q, Liu X. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:292-303. [PMID: 22963252 DOI: 10.1111/j.1438-8677.2012.00639.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Abrupt temperature reduction in winter wheat at either autumn seedling stage prior to vernalisation or early spring crown stage can cause severe crop damage and reduce production. Many studies have reported the physiological and molecular mechanisms underlying cold acclimation in winter wheat by comparing it with spring wheat. However, processes associated with abrupt temperature reduction in autumn seedling stage prior to vernalisation in winter wheat are less understood. In this study, physiological and molecular responses of winter wheat seedlings to abrupt low temperature (LT) stress were characterised in the relatively LT-tolerant winter wheat cultivar Shixin 828 by comparing it with the relatively LT-sensitive cultivar Shiluan 02-1 using a combination of physiological, proteomics and biochemical approaches. Shixin 828 was tolerant to abrupt LT stress, while Shiluan 02-1 exhibited high levels of reactive oxygen species (ROS) and leaf cell death. Significant increases in relative abundance of antioxidant-related proteins were found in Shixin 828 leaves, which correlate with observed higher antioxidant enzyme activity in Shixin 828 compared to Shiluan 02-1. Proteomics analysis also indicated that carbohydrate metabolism-related proteins were more abundant in Shiluan 02-1, correlating with observed accumulation of soluble sugars in Shiluan 02-1 leaves. Amino acid analysis revealed a strong response to LT stress in wheat leaves. A negative effect of exogenous sucrose on LT tolerance was also found. This study indicates that high ROS scavenging capacity and high abundance of photosynthesis-related proteins might play a role in winter wheat response to abrupt LT stress. In contrast, excess accumulation of soluble sugars might be disadvantageous for LT tolerance in the wheat cultivar Shiluan 02-1.
Collapse
Affiliation(s)
- J Xu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Huaizhong RD 286, Shijiazhuang, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
dos Santos R, Vergauwen R, Pacolet P, Lescrinier E, Van den Ende W. Manninotriose is a major carbohydrate in red deadnettle (Lamium purpureum, Lamiaceae). ANNALS OF BOTANY 2013; 111:385-93. [PMID: 23264235 PMCID: PMC3579443 DOI: 10.1093/aob/mcs288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 11/15/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS There is a great need to search for natural compounds with superior prebiotic, antioxidant and immunostimulatory properties for use in (food) applications. Raffinose family oligosaccharides (RFOs) show such properties. Moreover, they contribute to stress tolerance in plants, acting as putative membrane stabilizers, antioxidants and signalling agents. METHODS A large-scale soluble carbohydrate screening was performed within the plant kingdom. An unknown compound accumulated to a high extent in early-spring red deadnettle (Lamium purpureum) but not in other RFO plants. The compound was purified and its structure was unravelled with NMR. Organs and organ parts of red deadnettle were carefully dissected and analysed for soluble sugars. Phloem sap content was analysed by a common EDTA-based method. KEY RESULTS Early-spring red deadnettle stems and roots accumulate high concentrations of the reducing trisaccharide manninotriose (Galα1,6Galα1,6Glc), a derivative of the non-reducing RFO stachyose (Galα1,6Galα1,6Glcα1,2βFru). Detailed soluble carbohydrate analyses on dissected stem and leaf sections, together with phloem sap analyses, strongly suggest that stachyose is the main transport compound, but extensive hydrolysis of stachyose to manninotriose seems to occur along the transport path. Based on the specificities of the observed carbohydrate dynamics, the putative physiological roles of manninotriose in red deadnettle are discussed. CONCLUSIONS It is demonstrated for the first time that manninotriose is a novel and important player in the RFO metabolism of red dead deadnettle. It is proposed that manninotriose represents a temporary storage carbohydrate in early-spring deadnettle, at the same time perhaps functioning as a membrane protector and/or as an antioxidant in the vicinity of membranes, as recently suggested for other RFOs and fructans. This novel finding urges further research on this peculiar carbohydrate on a broader array of RFO accumulators.
Collapse
Affiliation(s)
- Raquel dos Santos
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Pieter Pacolet
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Eveline Lescrinier
- Laboratory for Medicinal Chemistry, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
46
|
Dubé MP, Castonguay Y, Cloutier J, Michaud J, Bertrand A. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013. [PMID: 23188214 DOI: 10.1007/s00122-012-2020-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.
Collapse
Affiliation(s)
- Marie-Pier Dubé
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, G1V 2J3, Canada
| | | | | | | | | |
Collapse
|
47
|
Aranjuelo I, Tcherkez G, Molero G, Gilard F, Avice JC, Nogués S. Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:885-97. [PMID: 23440170 PMCID: PMC3580806 DOI: 10.1093/jxb/ers367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although the mechanisms of nodule N(2) fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N(2)-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N(2) fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.
Collapse
Affiliation(s)
- Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, Mutilva Baja, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Tan J, Wang C, Xiang B, Han R, Guo Z. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses. PLANT, CELL & ENVIRONMENT 2013; 36:288-99. [PMID: 22774933 DOI: 10.1111/j.1365-3040.2012.02573.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.
Collapse
Affiliation(s)
- Jiali Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
49
|
Wang TZ, Xia XZ, Zhao MG, Tian QY, Zhang WH. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:227-235. [PMID: 23298681 DOI: 10.1016/j.plaphy.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
To understand the role of small GTPases in response to abiotic stress, we isolated a gene encoding a small GTPase, designated MfARL1, from a subtracted cDNA library in Medicago falcata, a native legume species in semi-arid grassland in northern China. The function of MfARL1 in response to salt stress was studied by expressing MfARL1 in Arabidopsis. Wild-type (WT) and transgenic plants constitutively expressing MfARL1 showed comparable phenotype when grown under control conditions. Germination of seeds expressing MfARL1 was less suppressed by salt stress than that of WT seeds. Transgenic seedlings had higher survival rate than WT seedlings under salt stress, suggesting that expression of MfARL1 confers tolerance to salt stress. The physiological and molecular mechanisms underlying these phenomena were elucidated. Salt stress led to a significant decrease in chlorophyll contents in WT plants, but not in transgenic plants. Transgenic plants accumulated less amounts of H(2)O(2) and malondialdehyde than their WT counterparts under salt stress, which can be accounted for by the higher catalase activities, lower activities of superoxide dismutase, and peroxidase in transgenic plants than in WT plants. Transgenic plants displayed lower Na(+)/K(+) ratio due to less accumulation of Na(+) than wild-type under salt stress conditions. The lower Na(+)/K(+) ratio may result from less accumulation of Na(+) due to reduced expression of AtHKT1 that encodes Na(+) transporter in transgenic plants under salt stress. These findings demonstrate that MfARL1 encodes a novel stress-responsive small GTPase that is involved in tolerance to salt stress.
Collapse
Affiliation(s)
- Tian-Zuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, PR China.
| | | | | | | | | |
Collapse
|
50
|
Castonguay Y, Dubé MP, Cloutier J, Bertrand A, Michaud R, Laberge S. Molecular physiology and breeding at the crossroads of cold hardiness improvement. PHYSIOLOGIA PLANTARUM 2013; 147:64-74. [PMID: 22452626 DOI: 10.1111/j.1399-3054.2012.01624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Alfalfa (Medicago sativa L.) is a major forage legume grown extensively worldwide with important agronomic and environmental attributes. Insufficient cold hardiness is a major impediment to its reliable production in northern climates. Improvement of freezing tolerance using conventional breeding approaches is slowed by the quantitative nature of inheritance and strong interactions with the environment. The development of gene-based markers would facilitate the identification of genotypes with superior stress tolerance. Successive cycles of recurrent selection were applied using an indoor screening method to develop populations with significantly higher tolerance to freezing (TF). Bulk segregant analysis of heterogeneous TF populations identified DNA variations that are progressively enriched in frequency in response to selection. Polymorphisms resulting from intragenic variations within a dehydrin gene were identified and could potentially lead to the development of robust selection tools. Our results illustrate the benefits of feedback interactions between germplasm development programs and molecular physiology for a deeper understanding of the molecular and genetic bases of cold hardiness.
Collapse
Affiliation(s)
- Yves Castonguay
- Soils and Crops Research Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Sainte-Foy, Québec G1V 2J3, Canada.
| | | | | | | | | | | |
Collapse
|