1
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
2
|
Cunha E, Silva M, Chaves I, Demirci H, Lagoa DR, Lima D, Rocha M, Rocha I, Dias O. The first multi-tissue genome-scale metabolic model of a woody plant highlights suberin biosynthesis pathways in Quercus suber. PLoS Comput Biol 2023; 19:e1011499. [PMID: 37729340 PMCID: PMC10545120 DOI: 10.1371/journal.pcbi.1011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
Over the last decade, genome-scale metabolic models have been increasingly used to study plant metabolic behaviour at the tissue and multi-tissue level under different environmental conditions. Quercus suber, also known as the cork oak tree, is one of the most important forest communities of the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the Q. suber (iEC7871). The metabolic model comprises 7871 genes, 6231 reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into the model to obtain tissue-specific models for the leaf, inner bark, and phellogen, with specific biomass compositions. The tissue-specific models were merged into a diel multi-tissue metabolic model to predict interactions among the three tissues at the light and dark phases. The metabolic models were also used to analyse the pathways associated with the synthesis of suberin monomers, namely the acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids production. The models developed in this work provide a systematic overview of the metabolism of Q. suber, including its secondary metabolism pathways and cork formation.
Collapse
Affiliation(s)
- Emanuel Cunha
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Miguel Silva
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Inês Chaves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Huseyin Demirci
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
- SnT/University of Luxembourg, Luxembourg
| | | | - Diogo Lima
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga, Guimarães, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, Oeiras, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
- LABBELS–Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Pires RC, Ferro A, Capote T, Usié A, Correia B, Pinto G, Menéndez E, Marum L. Laser Microdissection of Woody and Suberized Plant Tissues for RNA-Seq Analysis. Mol Biotechnol 2023; 65:419-432. [PMID: 35976558 DOI: 10.1007/s12033-022-00542-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/05/2022] [Indexed: 10/15/2022]
Abstract
An accurate profile of gene expression at a cellular level can contribute to a better understanding of biological processes and complexities involved in regulatory mechanism of woody plants. Laser microdissection is one technique that allows isolation of specific, target cells or tissue from a heterogeneous cell population. This technique entails microscopic visualization of the selected tissue and use a laser beam to separate the desired cells from surrounding tissue. Initial identification of these cells is made based on morphology and/or histological staining. Some works have been made in several tissues and plant models. However, there are few studies of laser microdissection application in woody species, particularly, lignified and suberized cells. Moreover, the presence of high level of suberin in cell walls can be a big challenge for the application of this approach. In our study it was developed a technique for tissue isolation, using laser microdissection of four different plant cell types (phellogen, lenticels, cortex and xylem) from woody tissues of cork oak (Quercus suber), followed by RNA extraction and RNA-Seq. We tested several methodologies regarding laser microdissection, cryostat equipments, fixation treatments, duration of single-cells collection and number of isolated cells by laser microdissection and RNA extraction procedures. A simple and efficient protocol for tissue isolation by laser microdissection and RNA purification was obtained, with a final method validation of RNA-Seq analysis. The optimized methodology combining RNA-Seq for expression analysis will contribute to elucidate the molecular pathways associated with different development processes of the xylem and phellem in oaks, including the lenticular channels formation.
Collapse
Affiliation(s)
- Rita Costa Pires
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Ana Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.,Center for Genomics and Systems Biology, New York University Abu Dhabi, NYUAD Campus, 129188, Abu Dhabi, United Arab Emirates
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Bárbara Correia
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.,B-hive Innovations Ltd., Boole Technology Centre, Beevor Street, Lincoln, LN6 7DJ, UK
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Esther Menéndez
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research (IIFA), University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal.,Department of Microbiology and Genetics/CIALE, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Liliana Marum
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal. .,MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
4
|
Teixeira RT. Cork Development: What Lies Within. PLANTS (BASEL, SWITZERLAND) 2022; 11:2671. [PMID: 36297695 PMCID: PMC9611905 DOI: 10.3390/plants11202671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The cork layer present in all dicotyledonous plant species with radial growth is the result of the phellogen activity, a secondary meristem that produces phellem (cork) to the outside and phelloderm inwards. These three different tissues form the periderm, an efficient protective tissue working as a barrier against external factors such as environmental aggressions and pathogen attacks. The protective function offered by cork cells is mainly due to the abundance of suberin in their cell walls. Chemically, suberin is a complex aliphatic network of long chain fatty acids and alcohols with glycerol together with aromatic units. In most woody species growing in temperate climates, the first periderm is replaced by a new functional periderm upon a few years after being formed. One exception to this bark development can be found in cork oak (Quercus suber) which display a single periderm that grows continuously. Quercus suber stands by its thick cork layer development with continuous seasonal growth. Cork raw material has been exploited by man for centuries, especially in Portugal and Spain. Nowadays, its applications have widened vastly, from the most known product, stoppers, to purses or insulating materials used in so many industries, such as construction and car production. Research on how cork develops, and the effect environmental factors on cork oak trees is extremely important to maintain production of good-quality cork, and, by maintaining cork oak stands wealthy, we are preserving a very important ecosystem both by its biodiversity and its vital social and economic role in areas already showing a population declination.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
5
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
6
|
Kumar P, Ginzberg I. Potato Periderm Development and Tuber Skin Quality. PLANTS 2022; 11:plants11162099. [PMID: 36015402 PMCID: PMC9415511 DOI: 10.3390/plants11162099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
The periderm is a corky tissue that replaces the epidermis when the latter is damaged, and is critical for preventing pathogen invasion and water loss. The periderm is formed through the meristematic activity of phellogen cells (cork cambium). The potato skin (phellem cells) composes the outer layers of the tuber periderm and is a model for studying cork development. Early in tuber development and following tuber expansion, the phellogen becomes active and produces the skin. New skin layers are continuously added by division of the phellogen cells until tuber maturation. Some physiological disorders of the potato tuber are related to abnormal development of the skin, including skinning injuries and russeting of smooth-skinned potatoes. Thus, characterizing the potato periderm contributes to modeling cork development in plants and helps to resolve critical agricultural problems. Here, we summarize the data available on potato periderm formation, highlighting tissue characteristics rather than the suberization processes.
Collapse
|
7
|
Leal AR, Sapeta H, Beeckman T, Barros PM, Oliveira MM. Spatiotemporal development of suberized barriers in cork oak taproots. TREE PHYSIOLOGY 2022; 42:1269-1285. [PMID: 34970982 DOI: 10.1093/treephys/tpab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The longevity and high activity of the cork cambium (or phellogen) from Quercus suber L. (cork oak) are the cornerstones for the sustainable exploitation of a unique raw material. Cork oak is a symbolic model to study cork development and cell wall suberization, yet most genetic and molecular studies on these topics have targeted other model plants. In this study, we explored the potential of taproots as a model system to study phellem development and suberization in cork oak, thereby avoiding the time constraints imposed when studying whole plants. In roots, suberin deposition is found in mature endodermis cells during primary development and in phellem cells during secondary development. By investigating the spatiotemporal characteristics of both endodermis and phellem suberization in young seedling taproots, we demonstrated that secondary growth and phellogen activity are initiated very early in cork oak taproots (approx. 8 days after sowing). We further compared the transcriptomic profile of root segments undergoing primary (PD) and secondary development (SD) and identified multiple candidate genes with predicted roles in cell wall modifications, mainly lignification and suberization, in addition to several regulatory genes, particularly transcription factor- and hormone-related genes. Our results indicate that the molecular regulation of suberization and secondary development in cork oak roots is relatively conserved with other species. The provided morphological characterization creates new opportunities to allow a faster assessment of phellogen activity (as compared with studies using stem tissues) and to tackle fundamental questions regarding its regulation.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent B-9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Technologiepark 71, Ghent B-9052, Belgium
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS Unit, Av. da República, Oeiras 2780-157, Portugal
| |
Collapse
|
8
|
Serra O, Mähönen AP, Hetherington AJ, Ragni L. The Making of Plant Armor: The Periderm. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:405-432. [PMID: 34985930 DOI: 10.1146/annurev-arplant-102720-031405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research.
Collapse
Affiliation(s)
- Olga Serra
- University of Girona, Department of Biology, Girona, Spain;
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland;
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Laura Ragni
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
| |
Collapse
|
9
|
Leal AR, Barros PM, Parizot B, Sapeta H, Vangheluwe N, Andersen TG, Beeckman T, Oliveira MM. Translational profile of developing phellem cells in Arabidopsis thaliana roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:899-915. [PMID: 35106861 DOI: 10.1111/tpj.15691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The phellem is a specialized boundary tissue providing the first line of defense against abiotic and biotic stresses in organs undergoing secondary growth. Phellem cells undergo several differentiation steps, which include cell wall suberization, cell expansion, and programmed cell death. Yet, the molecular players acting particularly in phellem cell differentiation remain poorly described, particularly in the widely used model plant Arabidopsis thaliana. Using specific marker lines we followed the onset and progression of phellem differentiation in A. thaliana roots and further targeted the translatome of newly developed phellem cells using translating ribosome affinity purification followed by mRNA sequencing (TRAP-SEQ). We showed that phellem suberization is initiated early after phellogen (cork cambium) division. The specific translational landscape was organized in three main domains related to energy production, synthesis and transport of cell wall components, and response to stimulus. Novel players in phellem differentiation related to suberin monomer transport and assembly as well as novel transcription regulators were identified. This strategy provided an unprecedented resolution of the translatome of developing phellem cells, giving a detailed and specific view on the molecular mechanisms acting on cell differentiation in periderm tissues of the model plant Arabidopsis.
Collapse
Affiliation(s)
- Ana Rita Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Pedro Miguel Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), GPlantS, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
10
|
Boher P, Soler M, Fernández-Piñán S, Torrent X, Müller SY, Kelly KA, Serra O, Figueras M. Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC PLANT BIOLOGY 2021; 21:409. [PMID: 34493224 PMCID: PMC8424952 DOI: 10.1186/s12870-021-03141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The periderm is a protective barrier crucial for land plant survival, but little is known about genetic factors involved in its development and regulation. Using a transcriptomic approach in the cork oak (Q. suber) periderm, we previously identified an RS2-INTERACTING KH PROTEIN (RIK) homologue of unknown function containing a K homology (KH)-domain RNA-binding protein, as a regulatory candidate gene in the periderm. RESULTS To gain insight into the function of RIK in the periderm, potato (S. tuberosum) tuber periderm was used as a model: the full-length coding sequence of RIK, hereafter referred to as StRIK, was isolated, the transcript profile analyzed and gene silencing in potato performed to analyze the silencing effects on periderm anatomy and transcriptome. The StRIK transcript accumulated in all vegetative tissues studied, including periderm and other suberized tissues such as root and also in wounded tissues. Downregulation of StRIK in potato by RNA interference (StRIK-RNAi) did not show any obvious effects on tuber periderm anatomy but, unlike Wild type, transgenic plants flowered. Global transcript profiling of the StRIK-RNAi periderm did show altered expression of genes associated with RNA metabolism, stress and signaling, mirroring the biological processes found enriched within the in silico co-expression network of the Arabidopsis orthologue. CONCLUSIONS The ubiquitous expression of StRIK transcript, the flower associated phenotype and the differential expression of StRIK-RNAi periderm point out to a general regulatory role of StRIK in diverse plant developmental processes. The transcriptome analysis suggests that StRIK might play roles in RNA maturation and stress response in the periderm.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Xènia Torrent
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Krystyna A. Kelly
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA UK
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071 Girona, Catalonia Spain
| |
Collapse
|
11
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
12
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
13
|
Arias-Baldrich C, Silva MC, Bergeretti F, Chaves I, Miguel C, Saibo NJM, Sobral D, Faria D, Barros PM. CorkOakDB-The Cork Oak Genome Database Portal. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6056470. [PMID: 33382885 PMCID: PMC7774466 DOI: 10.1093/database/baaa114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022]
Abstract
Quercus suber (cork oak) is an evergreen tree native to the Mediterranean basin, which plays a key role in the ecology and economy of this area. Over the last decades, this species has gone through an observable decline, mostly due to environmental factors. Deciphering the mechanisms of cork oak's response to the environment and getting a deep insight into its biology are crucial to counteract biotic and abiotic stresses compromising the stability of a unique ecosystem. In the light of these setbacks, the publication of the genome in 2018 was a major step towards understanding the genetic make-up of this species. In an effort to integrate this information in a comprehensive, accessible and intuitive format, we have developed The Cork Oak Genome Database Portal (CorkOakDB). The CorkOakDB is supported by the BioData.pt e-infrastructure, the Portuguese ELIXIR node for biological data. The portal gives public access to search and explore the curated genomic and transcriptomic data on this species. Moreover, CorkOakDB provides a user-friendly interface and functional tools to help the research community take advantage of the increased accessibility to genomic information. A study case is provided to highlight the functionalities of the portal. CorkOakDB guarantees the update, curation and data collection, aiming to collect data besides the genetic/genomic information, in order to become the main repository in cork oak research. Database URL: http://corkoakdb.org/.
Collapse
Affiliation(s)
- Cirenia Arias-Baldrich
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras 2780-156, Lisboa, Portugal.,Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Marta Contreiras Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Lisboa, Portugal
| | - Filippo Bergeretti
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Lisboa, Portugal
| | - Inês Chaves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Lisboa, Portugal.,Instituto de Biologia Experimental Tecnológica (iBET), Av. da República, 2780-157 Oeiras, Lisboa, Portugal
| | - Célia Miguel
- Instituto de Biologia Experimental Tecnológica (iBET), Av. da República, 2780-157 Oeiras, Lisboa, Portugal.,Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Lisboa, Portugal
| | - Daniel Sobral
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras 2780-156, Lisboa, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2825-149, Setúbal, Portugal
| | - Daniel Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras 2780-156, Lisboa, Portugal.,INESC-ID- Instituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento, Rua Alves Redol, Lisboa 1000-029, Portugal
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Lisboa, Portugal
| |
Collapse
|
14
|
Figueiredo R, Portilla Llerena JP, Kiyota E, Ferreira SS, Cardeli BR, de Souza SCR, Dos Santos Brito M, Sodek L, Cesarino I, Mazzafera P. The sugarcane ShMYB78 transcription factor activates suberin biosynthesis in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2020; 104:411-427. [PMID: 32813231 DOI: 10.1007/s11103-020-01048-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE A sugarcane MYB present in the culm induces suberin biosynthesis and is involved both with fatty acid and phenolics metabolism. Few transcription factors have been described as regulators of cell wall polymers deposition in C4 grasses. Particularly, regulation of suberin biosynthesis in this group of plants remains poorly understood. Here, we showed that the sugarcane MYB transcription factor ShMYB78 is an activator of suberin biosynthesis and deposition. ShMYB78 was identified upon screening genes whose expression was upregulated in sugarcane internodes undergoing suberization during culm development or triggered by wounding. Agrobacterium-mediated transient expression of ShMYB78 in Nicotiana benthamiana leaves induced the ectopic deposition of suberin and its aliphatic and aromatic monomers. Further, the expression of suberin-related genes was induced by ShMYB78 heterologous expression in Nicotiana benthamiana leaves. ShMYB78 was shown to be a nuclear protein based on its presence in sugarcane internode nuclear protein extracts, and protoplast transactivation assays demonstrated that ShMYB78 activates the promoters of the sugarcane suberin biosynthetic genes β-ketoacyl-CoA synthase (ShKCS20) and caffeic acid-O-methyltransferase (ShCOMT). Our results suggest that ShMYB78 may be involved in the transcriptional regulation of suberin deposition, from fatty acid metabolism to phenylpropanoid biosynthesis, in sugarcane internodes.
Collapse
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil.
- Department of Biology, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| | - Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Eduardo Kiyota
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sávio Siqueira Ferreira
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Bárbara Rocha Cardeli
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Sarah Caroline Ribeiro de Souza
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Botany, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Michael Dos Santos Brito
- Institute of Science and Technology, Federal University of São Paulo, Campus São José dos Campos, São José dos Campos, 12231-280, Brazil
| | - Ladaslav Sodek
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
| | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, 13083-862, Brazil
- Department of Crop Science, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| |
Collapse
|
15
|
Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Sci Rep 2020; 10:8011. [PMID: 32415159 PMCID: PMC7229149 DOI: 10.1038/s41598-020-64913-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
Cork is a water-impermeable, suberin-based material harboring lignin, (hemi)cellulose, and extractable small molecules (primarily triterpenoids). Extractables strongly influence the properties of suberin-based materials. Though these previous findings suggest a key role for triterpenoids in cork material quality, directly testing this idea is hindered in part because it is not known which genes control cork triterpenoid biosynthesis. Here, we used gas chromatography and mass spectrometry to determine that the majority (>85%) of non-polar extractables from cork were pentacyclic triterpenoids, primarily betulinic acid, friedelin, and hydroxy-friedelin. In other plants, triterpenoids are generated by oxidosqualene cyclases (OSCs). Accordingly, we mined Quercus suber EST libraries for OSC fragments to use in a RACE PCR-based approach and cloned three full-length OSC transcripts from cork (QsOSC1-3). Heterologous expression in Saccharomyces cerevisiae revealed that QsOSC1-3 respectively encoded enzymes with lupeol synthase, mixed α- and β-amyrin synthase, and mixed β-amyrin and friedelin synthase activities. These activities together account for the backbone structures of the major cork triterpenoids. Finally, we analyzed the sequences of QsOSC1-3 and other plant OSCs to identify residues associated with specific OSC activities, then combined this with analyses of Q. suber transcriptomic and genomic data to evaluate potential redundancies in cork triterpenoid biosynthesis.
Collapse
|
16
|
Lopes ST, Sobral D, Costa B, Perdiguero P, Chaves I, Costa A, Miguel CM. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. TREE PHYSIOLOGY 2020; 40:129-141. [PMID: 31860724 DOI: 10.1093/treephys/tpz118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 05/23/2023]
Abstract
Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.
Collapse
Affiliation(s)
- Susana T Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Sobral
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Bruno Costa
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Perdiguero
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Augusta Costa
- Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês 2780-157 Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
17
|
Campilho A, Nieminen K, Ragni L. The development of the periderm: the final frontier between a plant and its environment. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:10-14. [PMID: 31593816 DOI: 10.1016/j.pbi.2019.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
The periderm acts as the first line of defence for a plant, protecting wood and phloem from abiotic and biotic stresses. During secondary growth, through the increase in girth of plant organs, the periderm replaces the epidermis as the outermost tissue. The phellogen, a bifacial post-embryonic meristem, forms the phelloderm inwards (toward the vasculature) and the suberized phellem outwards (toward the environment). These three tissues are collectively referred to as the periderm. Here, we summarize recent findings on the molecular mechanisms of periderm development by describing periderm formation in connection to the fate of the surrounding tissues, by discussing common regulatory hubs between the vascular cambium and the phellogen, and by highlighting transcription factors (TFs) controlling phellem differentiation.
Collapse
Affiliation(s)
- Ana Campilho
- CIBIO-Research Center in Biodiversity and Genetic Resources, Department of Biology of the Faculty of Sciences, University of Porto, Portugal
| | - Kaisa Nieminen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Pinheiro C, Wienkoop S, de Almeida JF, Brunetti C, Zarrouk O, Planchon S, Gori A, Tattini M, Ricardo CP, Renaut J, Teixeira RT. Phellem Cell-Wall Components Are Discriminants of Cork Quality in Quercus suber. FRONTIERS IN PLANT SCIENCE 2019; 10:944. [PMID: 31417580 PMCID: PMC6682605 DOI: 10.3389/fpls.2019.00944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/08/2019] [Indexed: 05/30/2023]
Abstract
Cork is a renewable, non-wood high valued forest product, with relevant ecological and economic impact in the Mediterranean-type ecosystems. Currently, cork is ranked according to its commercial quality. The most valuable planks are chosen for cork stoppers production. Cork planks with adequate thickness and porosity are classified as stoppable quality cork (SQC). The chemical composition of cork is known, but the regulation of metabolic pathways responsible of cork production and composition, hence of cork quality, is largely unknown. Here, we tested the hypothesis that post-genomic events may be responsible for the development of SQC and N-SQC (non-stoppable quality cork). Here, we show that combined proteomics and targeted metabolomics (namely soluble and cell wall bound phenolics) analyzed on recently formed phellem allows discriminate cork planks of different quality. Phellem cells of SQC and N-SQC displayed different reducing capacity, with consequential impact on both enzymatic pathways (e.g., glycolysis) and other cellular functions, including cell wall assembly and suberization. Glycolysis and respiration related proteins were abundant in both cork quality groups, whereas the level of several proteins associated to mitochondrial metabolism was higher in N-SQC. The soluble and cell wall-bound phenolics in recently formed phellem clearly discriminated SQC from N-SCQ. In our study, SQC was characterized by a high incorporation of aromatic components of the phenylpropanoid pathway in the cell wall, together with a lower content of hydrolysable tannins. Here, we propose that the level of hydrolysable tannins may represent a valuable diagnostic tool for screening recently formed phellem, and used as a proxy for the quality grade of cork plank produced by each tree.
Collapse
Affiliation(s)
- Carla Pinheiro
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - João Feio de Almeida
- UCIBIO – REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecilia Brunetti
- National Research Council of Italy, Trees and Timber Institute, Florence, Italy
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Olfa Zarrouk
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Antonella Gori
- Department of Agri-Food Production and Environmental Sciences, University of Florence, Florence, Italy
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, National Research Council of Italy, Florence, Italy
| | - Cândido Pinto Ricardo
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | | |
Collapse
|
19
|
Vulavala VKR, Fogelman E, Faigenboim A, Shoseyov O, Ginzberg I. The transcriptome of potato tuber phellogen reveals cellular functions of cork cambium and genes involved in periderm formation and maturation. Sci Rep 2019; 9:10216. [PMID: 31308437 PMCID: PMC6629697 DOI: 10.1038/s41598-019-46681-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The periderm is a protective corky tissue that is formed through the cambial activity of phellogen cells, when the outer epidermis is damaged. Timely periderm formation is critical to prevent pathogen invasion and water loss. The outer layers of the potato periderm, the tuber skin, serves as a model to study cork development. Early in tuber development the phellogen becomes active and produces the skin. During tuber maturation it becomes inactive and the skin adheres to the tuber flesh. The characterization of potato phellogen may contribute to the management of costly agricultural problems related to incomplete skin-set and the resulting skinning injuries, and provide us with new knowledge regarding cork development in planta. A transcriptome of potato tuber phellogen isolated by laser capture microdissection indicated similarity to vascular cambium and the cork from trees. Highly expressed genes and transcription factors indicated that phellogen activation involves cytokinesis and gene reprograming for the establishment of a dedifferentiation state; whereas inactivation is characterized by activity of genes that direct organ identity in meristem and cell-wall modifications. The expression of selected genes was analyzed using qPCR in native and wound periderm at distinct developmental stages. This allowed the identification of genes involved in periderm formation and maturation.
Collapse
Affiliation(s)
- Vijaya K R Vulavala
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Edna Fogelman
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel
| | - Oded Shoseyov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Idit Ginzberg
- Institute of Plant Sciences, Agricultural Research Organization, the Volcani Center, 68 HaMaccabim Road, P. O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
20
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
21
|
Boher P, Soler M, Sánchez A, Hoede C, Noirot C, Paiva JAP, Serra O, Figueras M. A comparative transcriptomic approach to understanding the formation of cork. PLANT MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29143299 DOI: 10.1007/s11103-017-0682-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 05/09/2023]
Abstract
The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Marçal Soler
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Anna Sánchez
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Claire Hoede
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Céline Noirot
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jorge Almiro Pinto Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Institute of Plant Genetics, Department of Integrative Plant Biology, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznan, Poland
| | - Olga Serra
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain.
| |
Collapse
|
22
|
Inácio V, Martins MT, Graça J, Morais-Cecílio L. Cork Oak Young and Traumatic Periderms Show PCD Typical Chromatin Patterns but Different Chromatin-Modifying Genes Expression. FRONTIERS IN PLANT SCIENCE 2018; 9:1194. [PMID: 30210513 PMCID: PMC6120546 DOI: 10.3389/fpls.2018.01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/25/2018] [Indexed: 05/20/2023]
Abstract
Plants are subjected to adverse conditions being outer protective tissues fundamental to their survival. Tree stems are enveloped by a periderm made of cork cells, resulting from the activity of the meristem phellogen. DNA methylation and histone modifications have important roles in the regulation of plant cell differentiation. However, studies on its involvement in cork differentiation are scarce despite periderm importance. Cork oak periderm development was used as a model to study the formation and differentiation of secondary protective tissues, and their behavior after traumatic wounding (traumatic periderm). Nuclei structural changes, dynamics of DNA methylation, and posttranslational histone modifications were assessed in young and traumatic periderms, after cork harvesting. Lenticular phellogen producing atypical non-suberized cells that disaggregate and form pores was also studied, due to high impact for cork industrial uses. Immunolocalization of active and repressive marks, transcription analysis of the corresponding genes, and correlations between gene expression and cork porosity were investigated. During young periderm development, a reduction in nuclei area along with high levels of DNA methylation occurred throughout epidermis disruption. As cork cells became more differentiated, whole nuclei progressive chromatin condensation with accumulation in the nuclear periphery and increasing DNA methylation was observed. Lenticular cells nuclei were highly fragmented with faint 5-mC labeling. Phellogen nuclei were less methylated than in cork cells, and in lenticular phellogen were even lower. No significant differences were detected in H3K4me3 and H3K18ac signals between cork cells layers, although an increase in H3K4me3 signals was found from the phellogen to cork cells. Distinct gene expression patterns in young and traumatic periderms suggest that cork differentiation might be under specific silencing regulatory pathways. Significant correlations were found between QsMET1, QsMET2, and QsSUVH4 gene expression and cork porosity. This work evidences that DNA methylation and histone modifications play a role in cork differentiation and epidermis induced tension-stress. It also provides the first insights into chromatin dynamics during cork and lenticular cells differentiation pointing to a distinct type of remodeling associated with cell death.
Collapse
Affiliation(s)
- Vera Inácio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
- *Correspondence: Vera Inácio,
| | - Madalena T. Martins
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - José Graça
- Forest Research Center (CEF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|