1
|
Bachvarova M, Stremski Y, Ganchev D, Statkova-Abeghe S, Angelov P, Ivanov I. An Efficient Method for the Synthesis and In Silico Study of Novel Oxy-Camalexins. Molecules 2025; 30:2049. [PMID: 40363854 PMCID: PMC12073450 DOI: 10.3390/molecules30092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Methoxycamalexins are close structural derivatives of the indolic phytoalexin Camalexin, which is a well-known drug lead with an antiproliferative and antioxidant profile. 6-methoxycamalexin, 7-methoxycamalexin, and 6,7-dimethoxycamalexin are natural bioactive products, and there is significant interest in the development of efficient methods for the synthesis of structurally related analogues. Herein, we describe an efficient and high-yielding method for the synthesis of variously substituted hydroxy-, bezyloxy, and methoxycamalexins. A set of methoxy-, hydroxy-, and benzyloxy-indoles were successfully amidoalkylated with N-acyliminium reagents derived in situ from the reaction of thiazole or methylthiazoles with Troc chloride. Eleven novel N-acylated analogues were synthesized, with yields ranging from 77% to 98%. Subsequent oxidative reactions with o-chloranil or DDQ led to 10 novel oxy-camalexins in 62-98% yield. This two-step approach allowed the synthesis of two 4,6-dimethoxy camalexins, which are difficult to obtain using published methods. The structure of the obtained products was unequivocally determined by 1H-, 13C{1H}-, HSQC-NMR, FTIR, and HRMS spectral analyses. An in silico assay was carried out on the obtained products to assess their general toxicity and physicochemical properties, including their compliance with Lipinski's rule of five. The results indicate that all compounds have good potential to be developed as drugs or agrochemicals.
Collapse
Affiliation(s)
- Maria Bachvarova
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (S.S.-A.); (P.A.); (I.I.)
| | - Yordan Stremski
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (S.S.-A.); (P.A.); (I.I.)
| | - Donyo Ganchev
- Department of General Chemistry, Agricultural University of Plovdiv, 12 Mendeleev Blvd, 4000 Plovdiv, Bulgaria;
| | - Stela Statkova-Abeghe
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (S.S.-A.); (P.A.); (I.I.)
| | - Plamen Angelov
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (S.S.-A.); (P.A.); (I.I.)
| | - Iliyan Ivanov
- Department of Organic Chemistry, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (M.B.); (S.S.-A.); (P.A.); (I.I.)
| |
Collapse
|
2
|
Mukherjee A, Han L, Mukhopadhyay S, Kopriva S, Swarup S. Sulfur traits in the plant microbiome: implications for sustainable agriculture. Trends Microbiol 2025:S0966-842X(25)00033-2. [PMID: 40074579 DOI: 10.1016/j.tim.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Owing to its biochemical flexibility, sulfur (S) is uniquely poised to fulfill versatile roles in plant-microbe interactions - impacting their metabolism with significant consequences for plant health and the global S cycle. We present evidence that the diversity of S-metabolic genes in plant-associated microbiomes (phytobiomes) is underappreciated, and plant niches are hotspots of bacterial S-metabolism with implications for S emissions. Building upon emerging findings, we posit that coordination of S-metabolism between plants and phytobiomes is a common mechanism for plant-microbe homeostasis and agriculturally beneficial microbial services. Finally, we summarize strategies to harness S-metabolic traits of plants and phytobiomes to sustainably enhance agricultural productivity under the stresses associated with climate change.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Li Han
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sourav Mukhopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
3
|
He Y, Wang H, Ma W, Gao C, Tian R, Su X, Feng H, Huang L. Biocontrol potential of the active substance isolated from the endophytic fungus Aa-Lcht against apple Valsa canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106250. [PMID: 40015846 DOI: 10.1016/j.pestbp.2024.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Apple Valsa canker (AVC), primarily caused by the pathogenic fungus Valsa mali, is a devastating disease of apple. The development and application of high efficiency and low toxicity fungicides are of great significance for disease control. Natural active substances serve as a vital foundation for the development of novel green fungicides. In previous studies, the endophytic fungus Aa-Lcht was confirmed to contain specific inhibitory effect against V. mali. This study confirmed that Aa-Lcht fermentation broth (FB)'s suppression of V. mali growth and conidial germination, exhibiting AVC prevention. Through extraction, isolation, and purification, one active substance with high inhibitory effect on V. mali was obtained and identified as altenusin. Its concentration value for 50 % of maximal effect (EC50 values) against V. mali mycelium growth was 3.118 μg/mL. Before V. mali infection, the lesion length of apple twigs and lesion area of fruits pretreated with altenusin decreased by 47.27 % and 80.52 %, respectively. Further research revealed that the hyphae of V. mali treated with altenusin exhibited irregular thickening of cell walls, severe vacuolation within the cells, and protoplasmic exudation. Meanwhile, transcriptome analysis indicated that altenusin primarily inhibited V. mali by interfering with the normal hyphal cell metabolism, substance degradation, peptidase activity, and proteolysis functions. Additionally, altenusin could also significantly up-regulate the expression of immunity resistance-related genes MdCYP81F2, MdPR2, MdPR4, and MdPR5 in apple. Summarizing the above, the altenusin provides valuable insights for the development of novel green fungicides for controlling AVC disease, contributing to the safe and healthy development of apple production.
Collapse
Affiliation(s)
- Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weimin Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaozhou Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Thawabteh AM, Ghanem AW, AbuMadi S, Thaher D, Jaghama W, Karaman R, Scrano L, Bufo SA. Antibacterial Activity and Antifungal Activity of Monomeric Alkaloids. Toxins (Basel) 2024; 16:489. [PMID: 39591244 PMCID: PMC11598475 DOI: 10.3390/toxins16110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Scientists are becoming alarmed by the rise in drug-resistant bacterial and fungal strains, which makes it more costly, time-consuming, and difficult to create new antimicrobials from unique chemical entities. Chemicals with pharmacological qualities, such as antibacterial and antifungal elements, can be found in plants. Alkaloids are a class of chemical compounds found in nature that mostly consist of basic nitrogen atoms. Biomedical science relies heavily on alkaloid compounds. Based on 241 papers published in peer-reviewed scientific publications within the last ten years (2014-2024), we examined 248 natural or synthesized monomeric alkaloids that have antifungal and antibacterial activity against Gram-positive and Gram-negative microorganisms. Based on their chemical structure, the chosen alkaloids were divided into four groups: polyamine alkaloids, alkaloids with nitrogen in the side chain, alkaloids with nitrogen heterocycles, and pseudoalkaloids. With MIC values of less than 1 µg/mL, compounds 91, 124, 125, 136-138, 163, 164, 191, 193, 195, 205 and 206 shown strong antibacterial activity. However, with MIC values of below 1 µg/mL, compounds 124, 125, 163, 164, 207, and 224 demonstrated strong antifungal activity. Given the rise in antibiotic resistance, these alkaloids are highly significant in regard to their potential to create novel antimicrobial drugs.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Department of Chemistry, Birzeit University, Birzeit P.O. Box 14, Palestine;
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Aseel Wasel Ghanem
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Sara AbuMadi
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Dania Thaher
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Weam Jaghama
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Birzeit P.O. Box 14, Palestine; (A.W.G.); (S.A.); (D.T.); (W.J.)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| |
Collapse
|
5
|
Qiao Y, Peng J, Wu B, Wang M, He G, Peng Q, Gao Y, Liu Y, Yang S, Dai X. Transcriptome and metabolome analyses provide crucial insights into the adaptation of chieh-qua to Fusarium oxysporum infection. FRONTIERS IN PLANT SCIENCE 2024; 15:1344155. [PMID: 39574453 PMCID: PMC11578706 DOI: 10.3389/fpls.2024.1344155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 09/11/2024] [Indexed: 11/24/2024]
Abstract
Introduction Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) is a wax gourd variety that is generally susceptible to infection and damage by Fusarium oxysporum during its cultivation. Therefore, analyzing the adaption mechanism of chieh-qua to F. Oxysporum infection is of great significance for cultivating resistant varieties. Methods Through comparative transcriptome analysis, comparative metabolome analysis, integrated analysis of transcriptome and metabolome and between F. Oxysporum infected samples and control samples of susceptible lines. Results This study found that proteins such as NPR1, TGA and PR1 in plant hormone signal transduction pathway were up-regulated after infection, which may activate a series of plant secondary metabolic synthesis pathways. In addition, the expression of 27 genes in the flavonoid biosynthetic process in resistant lines after infection was significantly higher than that in susceptible lines, indicating that these genes may be involved in fungal resistance. This study also found that alternative splicing of genes may play an important role in responding to F. Oxysporum infection. For example, plant protein kinase genes such as EDR1, SRK2E and KIPK1 were not differentially expressed after F. Oxysporum infection, but the transcripts they produced differ at the transcription level. Finally, through comparative metabolome analysis, this study identified potentially functional substances such as oxalic acid that increased in content after F. Oxysporum infection. Through integrated analysis of transcriptome and metabolome, some differential expressed genes significantly related to differential metabolites were also identified. Discussion This study provides a basis for understanding and utilizing chieh-qua's infection mechanism of F. Oxysporum through analysis of the transcriptome and metabolome.
Collapse
Affiliation(s)
- Yanchun Qiao
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Jiazhu Peng
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Bei Wu
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Min Wang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoping He
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| | - Qingwu Peng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yin Gao
- South China Agricultural University, College of Horticulture, Guangzhou, China
| | - Yuping Liu
- Vegetable Research Institute, Guangzhou Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiuchun Dai
- Vegetable Science Department, Guangzhou Academy of Agricultural and Rural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Mohd Zahid NII, Syed Othman SMI, Mustaffa AF, Ismail I, Che-Othman MH. Fine-tuning plant valuable secondary metabolite biosynthesis via small RNA manipulation: strategies and potential. PLANTA 2024; 260:89. [PMID: 39254898 DOI: 10.1007/s00425-024-04521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.
Collapse
Affiliation(s)
- Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Hu R, Teng X, Li Y. Unleashing plant synthetic capacity: navigating regulatory mechanisms for enhanced bioproduction and secondary metabolite discovery. Curr Opin Biotechnol 2024; 88:103148. [PMID: 38843577 PMCID: PMC11531776 DOI: 10.1016/j.copbio.2024.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 08/11/2024]
Abstract
Plant natural products (PNPs) hold significant pharmaceutical importance. The sessile nature of plants has led to the evolution of chemical defense mechanisms over millions of years to combat environmental challenges, making it a crucial and essential defense weapon. Despite their importance, the abundance of these bioactive molecules in plants is typically low, and conventional methods are time-consuming for enhancing production. Moreover, there is a pressing need for novel drug leads, exemplified by the shortage of antibiotics and anticancer drugs. Understanding how plants respond to stress and regulate metabolism to produce these molecules presents an opportunity to explore new avenues for discovering compounds that are typically under the detection limit or not naturally produced. Additionally, this knowledge can contribute to the advancement of plant engineering, enabling the development of new chassis for the biomanufacturing of these valuable molecules. In this perspective, we explore the intricate regulation of PNP biosynthesis in plants, and discuss the biotechnology strategies that have been and can be utilized for the discovery and production enhancement of PNPs in plants.
Collapse
Affiliation(s)
- Rongbin Hu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Xiaoxuan Teng
- Program of Chemical Engineering, Department of Nanongineering, University of California, San Diego, CA 92093, USA
| | - Yanran Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
9
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
10
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
11
|
Martinez M, Diaz I. Plant Cyanogenic-Derived Metabolites and Herbivore Counter-Defences. PLANTS (BASEL, SWITZERLAND) 2024; 13:1239. [PMID: 38732453 PMCID: PMC11085660 DOI: 10.3390/plants13091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The release of cyanide from cyanogenic precursors is the central core of the plant defences based on the cyanogenesis process. Although cyanide is formed as a coproduct of some metabolic routes, its production is mostly due to the degradation of cyanohydrins originating from cyanogenic glycosides in cyanogenic plants and the 4-OH-ICN route in Brassicaceae. Cyanohydrins are then hydrolysed in a reversible reaction generating cyanide, being both, cyanohydrins and cyanide, toxic compounds with potential defensive properties against pests and pathogens. Based on the production of cyanogenic-derived molecules in response to the damage caused by herbivore infestation, in this review, we compile the actual knowledge of plant cyanogenic events in the plant-pest context. Besides the defensive potential, the mode of action, and the targets of the cyanogenic compounds to combat phytophagous insects and acari, special attention has been paid to arthropod responses and the strategies to overcome the impact of cyanogenesis. Physiological and behavioural adaptations, as well as cyanide detoxification by β-cyanoalanine synthases, rhodaneses, and cyanases are common ways of phytophagous arthropods defences against the cyanide produced by plants. Much experimental work is needed to further understand the complexities and specificities of the defence-counter-defence system to be applied in breeding programs.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
Zigová M, Miškufová V, Budovská M, Michalková R, Mojžiš J. Exploring the Antiproliferative and Modulatory Effects of 1-Methoxyisobrassinin on Ovarian Cancer Cells: Insights into Cell Cycle Regulation, Apoptosis, Autophagy, and Its Interactions with NAC. Molecules 2024; 29:1773. [PMID: 38675591 PMCID: PMC11052400 DOI: 10.3390/molecules29081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer, a highly lethal malignancy among reproductive organ cancers, poses a significant challenge with its high mortality rate, particularly in advanced-stage cases resistant to platinum-based chemotherapy. This study explores the potential therapeutic efficacy of 1-methoxyisobrassinin (MB-591), a derivative of indole phytoalexins found in Cruciferae family plants, on both cisplatin-sensitive (A2780) and cisplatin-resistant ovarian cancer cells (A2780 cis). The findings reveal that MB-591 exhibits an antiproliferative effect on both cell lines, with significantly increased potency against cisplatin-sensitive cells. The substance induces alterations in the distribution of the cell cycle, particularly in the S and G2/M phases, accompanied by changes in key regulatory proteins. Moreover, MB-591 triggers apoptosis in both cell lines, involving caspase-9 cleavage, PARP cleavage induction, and DNA damage, accompanied by the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Notably, the substance selectively induces autophagy in cisplatin-resistant cells, suggesting potential targeted therapeutic applications. The study further explores the interplay between MB-591 and antioxidant N-acetylcysteine (NAC), in modulating cellular processes. NAC demonstrates a protective effect against MB-591-induced cytotoxicity, affecting cell cycle distribution and apoptosis-related proteins. Additionally, NAC exhibits inhibitory effects on autophagy initiation in cisplatin-resistant cells, suggesting its potential role in overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Viktória Miškufová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Marianna Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| |
Collapse
|
13
|
Van Gerrewey T, Chung HS. MAPK Cascades in Plant Microbiota Structure and Functioning. J Microbiol 2024; 62:231-248. [PMID: 38587594 DOI: 10.1007/s12275-024-00114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 04/09/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that coordinate diverse biological processes such as plant innate immunity and development. Recently, MAPK cascades have emerged as pivotal regulators of the plant holobiont, influencing the assembly of normal plant microbiota, essential for maintaining optimal plant growth and health. In this review, we provide an overview of current knowledge on MAPK cascades, from upstream perception of microbial stimuli to downstream host responses. Synthesizing recent findings, we explore the intricate connections between MAPK signaling and the assembly and functioning of plant microbiota. Additionally, the role of MAPK activation in orchestrating dynamic changes in root exudation to shape microbiota composition is discussed. Finally, our review concludes by emphasizing the necessity for more sophisticated techniques to accurately decipher the role of MAPK signaling in establishing the plant holobiont relationship.
Collapse
Affiliation(s)
- Thijs Van Gerrewey
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, 21985, Republic of Korea.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
14
|
Nicolle C, Gayrard D, Noël A, Hortala M, Amiel A, Grat S, Le Ru A, Marti G, Pernodet JL, Lautru S, Dumas B, Rey T. Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization. THE ISME JOURNAL 2024; 18:wrae112. [PMID: 38896026 PMCID: PMC11463028 DOI: 10.1093/ismejo/wrae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.
Collapse
Affiliation(s)
- Clément Nicolle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Alba Noël
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marion Hortala
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Sabine Grat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélie Le Ru
- Plateforme d’Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane 31320, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| |
Collapse
|
15
|
Koprivova A, Schwier M, Volz V, Kopriva S. Shoot-root interaction in control of camalexin exudation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2667-2679. [PMID: 36651631 DOI: 10.1093/jxb/erad031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 06/06/2023]
Abstract
Plants exude secondary metabolites from the roots to shape the composition and function of their microbiome. Many of these compounds are known for their anti-microbial activities and play a role in plant immunity, such as the indole-derived phytoalexin camalexin. Here we studied the dynamics of camalexin synthesis and exudation upon interaction of Arabidopsis thaliana with the plant growth promoting bacteria Pseudomonas sp. CH267 or the bacterial pathogen Burkholderia glumae PG1. We show that while camalexin accumulation and exudation is more rapidly but transiently induced upon interaction with the growth promoting bacteria, the pathogen induces higher and more stable camalexin levels. By combination of experiments with cut shoots and roots, and grafting of wild-type plants with mutants in camalexin synthesis, we showed that while camalexin can be produced and released by both organs, in intact plants exuded camalexin originates in the shoots. We also reveal that the root specific CYP71A27 protein specifically affects the outcome of the interaction with the plant growth promoting bacteria and that its transcript levels are controlled by a shoot derived signal. In conclusion, camalexin synthesis seems to be controlled on a whole plant level and is coordinated between the shoots and the roots.
Collapse
Affiliation(s)
- Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Melina Schwier
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Vanessa Volz
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
16
|
Boter M, Diaz I. Cyanogenesis, a Plant Defence Strategy against Herbivores. Int J Mol Sci 2023; 24:ijms24086982. [PMID: 37108149 PMCID: PMC10138981 DOI: 10.3390/ijms24086982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Plants and phytophagous arthropods have coevolved in a long battle for survival. Plants respond to phytophagous feeders by producing a battery of antiherbivore chemical defences, while herbivores try to adapt to their hosts by attenuating the toxic effect of the defence compounds. Cyanogenic glucosides are a widespread group of defence chemicals that come from cyanogenic plants. Among the non-cyanogenic ones, the Brassicaceae family has evolved an alternative cyanogenic pathway to produce cyanohydrin as a way to expand defences. When a plant tissue is disrupted by an herbivore attack, cyanogenic substrates are brought into contact with degrading enzymes that cause the release of toxic hydrogen cyanide and derived carbonyl compounds. In this review, we focus our attention on the plant metabolic pathways linked to cyanogenesis to generate cyanide. It also highlights the role of cyanogenesis as a key defence mechanism of plants to fight against herbivore arthropods, and we discuss the potential of cyanogenesis-derived molecules as alternative strategies for pest control.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
17
|
Cao Z, Zuo W, Wang L, Chen J, Qu Z, Jin F, Dai L. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat Commun 2023; 14:1477. [PMID: 36932092 PMCID: PMC10023729 DOI: 10.1038/s41467-023-37188-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Spatial analysis of microbiomes at single cell resolution with high multiplexity and accuracy has remained challenging. Here we present spatial profiling of a microbiome using sequential error-robust fluorescence in situ hybridization (SEER-FISH), a highly multiplexed and accurate imaging method that allows mapping of microbial communities at micron-scale. We show that multiplexity of RNA profiling in microbiomes can be increased significantly by sequential rounds of probe hybridization and dissociation. Combined with error-correction strategies, we demonstrate that SEER-FISH enables accurate taxonomic identification in complex microbial communities. Using microbial communities composed of diverse bacterial taxa isolated from plant rhizospheres, we apply SEER-FISH to quantify the abundance of each taxon and map microbial biogeography on roots. At micron-scale, we identify clustering of microbial cells from multiple species on the rhizoplane. Under treatment of plant metabolites, we find spatial re-organization of microbial colonization along the root and alterations in spatial association among microbial taxa. Taken together, SEER-FISH provides a useful method for profiling the spatial ecology of complex microbial communities in situ.
Collapse
Affiliation(s)
- Zhaohui Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Zuo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junyu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zepeng Qu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fan Jin
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
19
|
Lin J, Monsalvo I, Ly M, Jahan MA, Wi D, Martirosyan I, Kovinich N. RNA-Seq Dissects Incomplete Activation of Phytoalexin Biosynthesis by the Soybean Transcription Factors GmMYB29A2 and GmNAC42-1. PLANTS (BASEL, SWITZERLAND) 2023; 12:545. [PMID: 36771629 PMCID: PMC9921300 DOI: 10.3390/plants12030545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Glyceollins, isoflavonoid-derived antimicrobial metabolites, are the major phytoalexins in soybean (Glycine max). They play essential roles in providing resistance to the soil-borne pathogen Phytophthora sojae and have unconventional anticancer and neuroprotective activities that render them desirable for pharmaceutical development. Our previous studies revealed that the transcription factors GmMYB29A2 and GmNAC42-1 have essential roles in activating glyceollin biosynthesis, yet each cannot activate the transcription of all biosynthesis genes in the absence of a pathogen elicitor treatment. Here, we report that co-overexpressing both transcription factors is also insufficient to activate glyceollin biosynthesis. To understand this insufficiency, we compared the transcriptome profiles of hairy roots overexpressing each transcription factor with glyceollin-synthesizing roots treated with wall glucan elicitor (WGE) from P. sojae. GmMYB29A2 upregulated most of the WGE-regulated genes that encode enzymatic steps spanning from primary metabolism to the last step of glyceollin biosynthesis. By contrast, GmNAC42-1 upregulated glyceollin biosynthesis genes only when overexpressed in the presence of WGE treatment. This is consistent with our recent discovery that, in the absence of WGE, GmNAC42-1 is bound by GmJAZ1 proteins that inhibit its transactivation activity. WGE, and not GmMYB29A2 or GmNAC42-1, upregulated the heat shock family gene GmHSF6-1, the homolog of Arabidopsis HSFB2a that directly activated the transcription of several glyceollin biosynthesis genes. Our results provide important insights into what biosynthesis genes will need to be upregulated to activate the entire glyceollin biosynthetic pathway.
Collapse
Affiliation(s)
- Jie Lin
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Ivan Monsalvo
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Melissa Ly
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Md Asraful Jahan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Dasol Wi
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Izabella Martirosyan
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Nik Kovinich
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|