1
|
Haupt J, Glowacka K. Chilling- and dark-regulated photoprotection in Miscanthus, an economically important C 4 grass. Commun Biol 2024; 7:1660. [PMID: 39702439 DOI: 10.1038/s42003-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C4 crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C4 grasses. High chilling tolerant accessions accumulate substantial amounts of zeaxanthin during chilling nights in both field and growth chamber settings. Chilling-induced zeaxanthin accumulation in the dark enhances rate of NPQ induction by 66% in the following morning. Based on our data, the emerging ways for the unique regulation of NPQ include post-translational regulation of violaxanthin de-epoxidase (VDE), VDE cofactor accessibility, and absence of transcriptional upregulation of zeaxanthin conversion back to violaxanthin. In the future, more studies will be required to obtain further evidence for these ways contributions to the chilling-dark regulation of NPQ. Engineering dark accumulation of zeaxanthin will help improve crop chilling tolerance and promote sustainable production by allowing early spring planting to maximize the use of early-season soil moisture. Driving the engineered trait by chilling inducible promoter would ensure the minimization of a trade-off between photoprotection and photosynthesis efficiency.
Collapse
Affiliation(s)
- Jared Haupt
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Katarzyna Glowacka
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznań, Poland.
| |
Collapse
|
2
|
Dhami N, Drake JE, Tjoelker MG, Tissue DT, Cazzonelli CI. An extreme heatwave enhanced the xanthophyll de-epoxidation state in leaves of Eucalyptus trees grown in the field. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:211-218. [PMID: 32153324 PMCID: PMC7036375 DOI: 10.1007/s12298-019-00729-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Heatwaves are becoming more frequent with climate warming and can impact tree growth and reproduction. Eucalyptus parramattensis can cope with an extreme heatwave in the field via transpiratory cooling and enhanced leaf thermal tolerance that protected foliar tissues from photo-inhibition and photo-oxidation during natural midday irradiance. Here, we explored whether changes in foliar carotenoids and/or the xanthophyll cycle state can facilitate leaf acclimation to long-term warming and/or an extreme heatwave event. We found that leaves had similar carotenoid levels when grown for one year under ambient and experimental long-term warming (+ 3 °C) conditions in whole tree chambers. Exposure to a 4-day heatwave (> 43 °C) significantly altered the xanthophyll de-epoxidation state of carotenoids revealing one mechanism by which trees could minimise foliar photo-oxidative damage. The levels of zeaxanthin were significantly higher in both young and old leaves during the heatwave, revealing that violaxanthin de-epoxidation and perhaps de novo zeaxanthin synthesis contributed to enhancement of the xanthophyll cycle state. In a future climate of long-term warming and increased heatwave events, leaves of E. parramattensis will be able to utilise biochemical strategies to alter the xanthophyll cycle state and cope with extreme temperatures under natural solar irradiation.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Present Address: School of Health and Allied Sciences, Pokhara University, Pokhara 30, Gandaki, Nepal
| | - John E. Drake
- Present Address: Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Mark G. Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - Christopher I. Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
3
|
Yamakawa H, van Stokkum IHM, Heber U, Itoh S. Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. PHOTOSYNTHESIS RESEARCH 2018; 135:285-298. [PMID: 29151177 DOI: 10.1007/s11120-017-0465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Some mosses stay green and survive long even under desiccation. Dissipation mechanisms of excess excitation energy were studied in two drought-tolerant moss species adapted to contrasting niches: shade-adapted Rhytidiadelphus squarrosus and sun-adapted Rhytidium rugosum in the same family. (1) Under wet conditions, a light-induced nonphotochemical quenching (NPQ) mechanism decreased the yield of photosystem II (PSII) fluorescence in both species. The NPQ extent saturated at a lower illumination intensity in R. squarrosus, suggesting a larger PSII antenna size. (2) Desiccation reduced the fluorescence intensities giving significantly lower F 0 levels and shortened the overall fluorescence lifetimes in both R. squarrosus and R. rugosum, at room temperature. (3) At 77 K, desiccation strongly reduced the PSII fluorescence intensity. This reduction was smaller in R. squarrosus than in R. rugosum. (4) Global and target analysis indicated two different mechanisms of energy dissipation in PSII under desiccation: the energy dissipation to a desiccation-formed strong fluorescence quencher in the PSII core in sun-adapted R. rugosum (type-A quenching) and (5) the moderate energy dissipation in the light-harvesting complex/PSII in shade-adapted R. squarrosus (type-B quenching). The two mechanisms are consistent with the different ecological niches of the two mosses.
Collapse
Affiliation(s)
- Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furocyo, Chikusa, Nagoya, 464-8602, Japan
| | - Ivo H M van Stokkum
- Faculty of Science, Institute for Lasers, Life and Biophotonics, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ulrich Heber
- Julius von Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocyo, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
4
|
García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell A. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. PHOTOSYNTHESIS RESEARCH 2012; 113:89-103. [PMID: 22772904 DOI: 10.1007/s11120-012-9760-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.
Collapse
Affiliation(s)
- José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080, Bilbao, Spain.
| | | | | | | | | |
Collapse
|
5
|
Yamakawa H, Fukushima Y, Itoh S, Heber U. Three different mechanisms of energy dissipation of a desiccation-tolerant moss serve one common purpose: to protect reaction centres against photo-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3765-75. [PMID: 22438303 PMCID: PMC3388843 DOI: 10.1093/jxb/ers062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three different types of non-photochemical de-excitation of absorbed light energy protect photosystem II of the sun- and desiccation-tolerant moss Rhytidium rugosum against photo-oxidation. The first mechanism, which is light-induced in hydrated thalli, is sensitive to inhibition by dithiothreitol. It is controlled by the protonation of a thylakoid protein. Other mechanisms are activated by desiccation. One of them permits exciton migration towards a far-red band in the antenna pigments where fast thermal deactivation takes place. This mechanism appears to be similar to a mechanism detected before in desiccated lichens. A third mechanism is based on the reversible photo-accumulation of a radical that acts as a quencher of excitation energy in reaction centres of photosystem II. On the basis of absorption changes around 800 nm, the quencher is suggested to be an oxidized chlorophyll. The data show that desiccated moss is better protected against photo-oxidative damage than hydrated moss. Slow drying of moss thalli in the light increases photo-protection more than slow drying in darkness.
Collapse
Affiliation(s)
- Hisanori Yamakawa
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464–8602, Japan
| | - Yoshimasa Fukushima
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464–8602, Japan
| | - Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464–8602, Japan
- To whom correspondence should be addressed. E-mail: ,
| | - Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany
- To whom correspondence should be addressed. E-mail: ,
| |
Collapse
|
6
|
Heber U. From horse thief to professor: confessions of a plant physiologist. PHOTOSYNTHESIS RESEARCH 2012; 112:1-12. [PMID: 22399437 DOI: 10.1007/s11120-012-9725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Can 50 years of research, performed between ignorance and the wish to know, and executed between hope, despair, satisfaction and pain, be compressed into an abstract? What has been done in more than 50 years may be expressed in four words: it was worth it. If I had another life, I would do it again. In the beginning of my career, life was an enigma. It still is. Molecular details of the workings of life had been largely unknown when I began. Now, at the end, I still wish to know details: how is light, master of life, manipulated to either support life, when photosynthesis is possible, or to protect it when light endangers it. What is the molecular and the physical nature of the biological mechanisms which control both, energy conservation and energy dissipation, in photosynthesis?
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute, University of Würzburg, 97082 Würzburg, Germany.
| |
Collapse
|
7
|
Loyola J, Verdugo I, González E, Casaretto JA, Ruiz-Lara S. Plastidic isoprenoid biosynthesis in tomato: physiological and molecular analysis in genotypes resistant and sensitive to drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:149-56. [PMID: 21974688 DOI: 10.1111/j.1438-8677.2011.00465.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their tolerance to abiotic challenge. Expression analysis of the genes encoding enzymes of these pathways (DXS, IPI, GGPPS, PSY1, NCED and HPT1) in plants at different RWC values shows significant differences for only GGPPS and HPT1, with higher expression in the tolerant S. chilense. Chlorophyll, carotenoids, α-tocopherol and ABA content was also determined in both species under different drought conditions. In agreement with HPT1 transcriptional activity, higher α-tocopherol content was observed in S. chilense than in S. lycopersicum, which correlates with a lower degree of lipoperoxidation in the former species. These results suggest that, in addition to lower stomatal conductance, α-tocopherol biosynthesis is part of the adaptation mechanisms of S. chilense to adverse environmental conditions.
Collapse
Affiliation(s)
- J Loyola
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | |
Collapse
|
8
|
Fernández-Marín B, Becerril JM, García-Plazaola JI. Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. PLANTA 2010; 231:1335-42. [PMID: 20229251 DOI: 10.1007/s00425-010-1129-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 02/16/2010] [Indexed: 05/07/2023]
Abstract
Desiccation-tolerance ability in photosynthetic organisms is largely based on a battery of photoprotective mechanisms. Xanthophyll cycle operation induced by desiccation in the absence of light has been previously proven in the desiccation-tolerant fern Ceterach officinarum. To understand the physiological function of xanthophyll cycle induction in darkness and its implication in the desiccation tolerance in more detail, we studied its triggering factors and its photochemical effects in the lichen Lobaria pulmonaria. We found that both the drying rate and the degree of desiccation play a crucial role in the violaxanthin de-epoxidase activation. De-epoxidation of violaxanthin to zeaxanthin (Z) occurs when the tissue has lost most of its water and only after slow dehydration, suggesting that a minimum period of time is required for the enzyme activity induction. Fluorescence analysis showed that Z, synthesised during tissue dehydration in the absence of light, prevents photoinhibition when rewatered tissues are illuminated. This is probably due to Z implication in both non-photochemical quenching and/or antioxidative responses.
Collapse
Affiliation(s)
- B Fernández-Marín
- Departamento de Biología Vegetal y Ecología, Universidad del País Vasco, Aptdo 644, 48080 Bilbao, Spain.
| | | | | |
Collapse
|
9
|
Heber U, Bilger W, Türk R, Lange OL. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. THE NEW PHYTOLOGIST 2010; 185:459-70. [PMID: 19863730 DOI: 10.1111/j.1469-8137.2009.03064.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
*The photobionts of lichens have previously been shown to reversibly inactivate their photosystem II (PSII) upon desiccation, presumably as a photoprotective mechanism. The mechanism and the consequences of this process have been investigated in the green algal lichen Lobaria pulmonaria. *Lichen thalli were collected from a shaded and a sun-exposed site. The activation of PSII was followed by chlorophyll fluorescence measurements. *Inactivation of PSII, as indicated by the total loss of variable fluorescence, was accompanied by a strong decrease of basal fluorescence (F(0)). Sun-grown thalli, as well as thalli exposed to low irradiance during drying, showed a larger reduction of F(0) than shade-grown thalli or thalli desiccated in the dark. Desiccation increased phototolerance, which was positively correlated to enhanced quenching of F(0). Quenching of F(0) could be reversed by heating, and could be inhibited by glutaraldehyde but not by the uncoupler nigericin. *Activation of energy dissipation, apparent as F(0) quenching, is proposed to be based on an alteration in the conformation of a pigment protein complex. This permits thermal energy dissipation and gives considerable flexibility to photoprotection. Zeaxanthin formation apparently did not contribute to the enhancement of photoprotection by desiccation in the light. Light-induced absorbance changes indicated the involvement of chlorophyll and carotenoid cation radicals.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
10
|
Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A. Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: alternative and classical protective mechanisms. PLANTA 2009; 231:195-208. [PMID: 19774392 DOI: 10.1007/s00425-009-1019-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/19/2009] [Indexed: 05/27/2023]
Abstract
The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (F'(o)) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q (E)), whereas after fast dehydration it was photoinhibition (q (I)). Although q (E) seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.
Collapse
Affiliation(s)
- Francisco Gasulla
- Dpto. de Botánica, Fac. de Biología, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, 46100, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Hájek T, Tuittila ES, Ilomets M, Laiho R. Light responses of mire mosses - a key to survival after water-level drawdown? OIKOS 2009. [DOI: 10.1111/j.1600-0706.2008.16528.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Pocock T, Sane PV, Falk S, Hüner NPA. Excitation pressure regulates the activation energy for recombination events in the photosystem II reaction centres of Chlamydomonas reinhardtii. Biochem Cell Biol 2008; 85:721-9. [PMID: 18059530 DOI: 10.1139/o07-144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using in vivo thermoluminescence, we examined the effects of growth irradiance and growth temperature on charge recombination events in photosystem II reaction centres of the model green alga Chlamydomonas reinhardtii. We report that growth at increasing irradiance at either 29 or 15 degrees C resulted in comparable downward shifts in the temperature peak maxima (T(M)) for S2QB- charge pair recombination events, with minimal changes in S2QA- recombination events. This indicates that such growth conditions decrease the activation energy required for S2QB- charge pair recombination events with no concomitant change in the activation energy for S2QA- recombination events. This resulted in a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events, which was reversible when shifting cells from low to high irradiance and back to low irradiance at 29 degrees C. We interpret these results to indicate that the redox potential of QB was modulated independently of QA, which consequently narrowed the redox potential gap between QA and QB in photosystem II reaction centres. Since a decrease in the DeltaT(M) between S2QA- and S2QB- recombination events correlated with growth at increasing excitation pressure, we conclude that acclimation to growth under high excitation pressure narrows the redox potential gap between QA and QB in photosystem II reaction centres, enhancing the probability for reaction center quenching in C. reinhardtii. We discuss the molecular basis for the modulation of the redox state of QB, and suggest that the potential for reaction center quenching complements antenna quenching via the xanthophyll cycle in the photoprotection of C. reinhardtii from excess light.
Collapse
Affiliation(s)
- Tessa Pocock
- Department of Natural and Environmental Science, Mid Sweden University, Sundsvall, Sweden.
| | | | | | | |
Collapse
|
13
|
Lüttge U, Meirelles ST, de Mattos EA. Strong quenching of chlorophyll fluorescence in the desiccated state in three poikilohydric and homoiochlorophyllous moss species indicates photo-oxidative protection on highly light-exposed rocks of a tropical inselberg. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:172-81. [PMID: 17566605 DOI: 10.1016/j.jplph.2007.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/20/2007] [Indexed: 05/07/2023]
Abstract
The three poikilohydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F', to almost zero. Upon rewatering, the kinetics of the recovery of F' in air dry cushions to higher values is very fast in the first 5 min, but more than 80 min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P. vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F' in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta(13)C, delta(15)N) indicate that liquid films of water limiting diffusion of CO(2) are important in determining carbon acquisition and suggest that limitation of CO(2) fixation by water films must be more pronounced over time in P. vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions.
Collapse
Affiliation(s)
- Ulrich Lüttge
- Institut für Botanik, Technical University of Darmstadt, Schnittspahnstrasse 3 - 5, 64287, Germany.
| | | | | |
Collapse
|
14
|
Gray DW, Lewis LA, Cardon ZG. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. PLANT, CELL & ENVIRONMENT 2007; 30:1240-55. [PMID: 17727415 DOI: 10.1111/j.1365-3040.2007.01704.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.
Collapse
Affiliation(s)
- Dennis W Gray
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA.
| | | | | |
Collapse
|
15
|
Zulfugarov IS, Ham OK, Mishra SR, Kim JY, Nath K, Koo HY, Kim HS, Moon YH, An G, Lee CH. Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:773-80. [PMID: 17459330 DOI: 10.1016/j.bbabio.2007.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 11/22/2022]
Abstract
The effects of photosystem II antenna size on reaction center-type energy-dependent quenching (qE) were examined in rice plants grown under two different light intensities using both wild type and qE-less (OsPsbS knockout) mutant plants. Reaction center-type qE was detected by measuring non-photochemical quenching at 50 micromol photons m(-2) s(-1) white light intensity. We observed that in low light-grown rice plants, reaction center-type qE was higher than in high light-grown plants, and the amount of reaction center-type qE did not depend on zeaxanthin accumulation. This was confirmed in Arabidopsis npq1-2 mutant plants that lack zeaxanthin due to a mutation in the violaxanthin de-epoxidase enzyme. Although the electron transport rate measured at a light intensity of 50 micromol photons m(-2) s(-1) was the same in high light- and low light-grown wild type and mutant plants lacking PsbS protein, the generation of energy-dependent quenching was completely impaired only in mutant plants. Analyses of the pigment content, Lhcb proteins and D1 protein of PSII showed that the antenna size was larger in low light-grown plants, and this correlated with the amount of reaction center-type qE. Our results mark the first time that the reaction center-type qE has been shown to depend on photosystem II antenna size and, although it depends on the existence of PsbS protein, the extent of reaction center-type qE does not correlate with the transcript levels of PsbS protein. The presence of reaction center-type energy-dependent quenching, in addition to antenna-type quenching, in higher plants for dissipation of excess light energy demonstrates the complexity and flexibility of the photosynthetic apparatus of higher plants to respond to different environmental conditions.
Collapse
Affiliation(s)
- Ismayil S Zulfugarov
- Department of Molecular Biology, Pusan National University, Jangjeon-dong, Keumjung-ku, Busan 609-735, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heber U, Azarkovich M, Shuvalov V. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2745-59. [PMID: 17609533 DOI: 10.1093/jxb/erm139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mechanisms of protection against photo-oxidation in selected desiccation-tolerant lichens and mosses have been investigated by measuring loss of light absorption during desiccation and chlorophyll fluorescence as indicators of photoprotection. Apparent absorption (1-T) spectra measured in the reflectance mode revealed stronger absorption of photosynthetic pigments in hydrated than in desiccated organisms, but differences were pronounced only in a cyanolichen, less so in some chlorolichens, and even less in mosses. Since the amplitude of chlorophyll fluorescence is a product of (1-T) light absorption by chlorophyll and quantum yield of fluorescence, and since fluorescence is inversely related to thermal energy dissipation, when chemical fluorescence quenching is negligible, fluorescence measurements were used to measure changes in energy dissipation. Preincubation of the hydrated organisms and desiccation in darkness excluded the contribution of mechanisms of energy dissipation to photoprotection which are dependent on the presence of zeaxanthin or on the light-dependent formation of a quencher of fluorescence within the reaction centre of photosystem II. Fast drying in darkness or in very low light was less effective in decreasing chlorophyll fluorescence than slow drying. Heating the desiccated organisms increased fluorescence by inactivating the mechanism responsible for fluorescence quenching. Glutaraldehyde inhibited fluorescence quenching during desiccation. Prolonged exposure of a desiccated moss or a desiccated lichen to very strong light caused more photo-induced damage after fast drying than after slow drying. The photo-oxidative nature of damage was emphasized by the observation that irreversible loss of fluorescence was larger in air than in a nitrogen atmosphere. It is concluded from these observations that desiccation-induced conformational changes of a chlorophyll protein complex result in the fast radiationless dissipation of absorbed light energy. This mechanism of photoprotection is more effective in preventing photo-oxidative damage than other mechanisms of energy dissipation which require light for activation such as zeaxanthin-dependent energy dissipation or quencher formation within the reaction centre of photosystem II.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| | | | | |
Collapse
|
17
|
Kalituho L, Grasses T, Graf M, Rech J, Jahns P. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification. PLANTA 2006; 223:532-41. [PMID: 16136330 DOI: 10.1007/s00425-005-0093-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana plants grown from ethyl methane sulfonate-treated seeds were screened for so-called que mutants, which are affected in non-photochemical energy quenching. Based on video imaging of chlorophyll fluorescence an energy dissipation mutant, que1, was identified, isolated and characterized. Similar to the npq mutants, the que1 mutant showed a drastically reduced capacity for pH-dependent energy dissipation, qE, but without affecting the Delta pH-dependent conformational changes at 535 nm (DeltaA (535)), which have been supposed to be obligatorily correlated with qE and to reflect pH-regulated binding of zeaxanthin to the PsbS protein. Western blot and DNA sequence analysis revealed that neither a reduced expression of the PsbS protein nor a mutation in the PsbS gene was responsible for the missing qE in que1. Measurements of 9-aminoacridine fluorescence quenching showed that the acidification of the thylakoid lumen was also not affected in the mutant. Furthermore, que1 was able to convert violaxanthin to zeaxanthin. However, unusual characteristics of zeaxanthin formation in the mutant pointed at an altered availability of violaxanthin for de-epoxidation. This was further accompanied by a decrease of the photochemical quenching of chlorophyll fluorescence (qP), an increase of the portion of oxidized P700 and a reduction of the electron transport rate. These characteristics indicate changes in the organization of the thylakoid membrane that affect linear electron transport (but not lumen acidification) and the formation of energy dissipation in photosystem II. Preliminary genetic analysis revealed that the phenotype of que1 is related to two different mutations, mapped to the lower arms of chromosomes 1 and 4.
Collapse
Affiliation(s)
- Ljudmila Kalituho
- Institute of Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Dusseldorf, Germany
| | | | | | | | | |
Collapse
|
18
|
Kopecky J, Azarkovich M, Pfündel EE, Shuvalov VA, Heber U. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:156-167. [PMID: 15822011 DOI: 10.1055/s-2005-837471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Modulated chlorophyll fluorescence was used to compare dissipation of light energy as heat in photosystem II of homoiohydric and poikilohydric photosynthetic organisms which were either hydrated or dehydrated. In hydrated chlorolichens with an alga as the photobiont, fluorescence quenching revealed a dominant mechanism of energy dissipation which was based on a protonation reaction when zeaxanthin was present. CO2 was effective as a weak protonating agent and actinic light was not necessary. In a hydrated cyanobacterial lichen, protonation by CO2 was ineffective to initiate energy dissipation. This was also true for leaves of higher plants. Thus, regulation of zeaxanthin-dependent energy dissipation by protonation was different in leaves and in chlorolichens. A mechanism of energy dissipation different from that based on zeaxanthin became apparent on dehydration of both lichens and leaves. Quenching of maximum or Fm fluorescence increased strongly during dehydration. In lichens, this was also true for so-called basal or Fo fluorescence. In contrast to zeaxanthin-dependent quenching, dehydration-induced quenching could not be inhibited by dithiothreitol. Both zeaxanthin-dependent and dehydration-induced quenching cooperated in chlorolichens to increase thermal dissipation of light energy if desiccation occurred in the light. In cyanolichens, which do not possess a zeaxanthin cycle, only desiccation-induced thermal energy dissipation was active in the dry state. Fluorescence emission spectra of chlorolichens revealed stronger desiccation-induced suppression of 685-nm fluorescence than of 720-nm fluorescence. In agreement with earlier reports of , fluorescence excitation data showed that desiccation reduced flow of excitation energy from chlorophyll b of the light harvesting complex II to emitting centres more than flow from chlorophyll a of core pigments. The data are discussed in relation to regulation and localization of thermal energy dissipation mechanisms. It is concluded that desiccation-induced fluorescence quenching of lichens results from the reversible conversion of energy-conserving to energy-dissipating photosystem II core complexes.
Collapse
Affiliation(s)
- J Kopecky
- Institute of Microbiology, Academy of Sciences, Department of Autotrophic Microorganisms, Opatovicky mlyn, 379 81 Trebon, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Wehner A, Storf S, Jahns P, Schmid VHR. De-epoxidation of violaxanthin in light-harvesting complex I proteins. J Biol Chem 2004; 279:26823-9. [PMID: 15070896 DOI: 10.1074/jbc.m402399200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.
Collapse
Affiliation(s)
- Antje Wehner
- Institut für Biochemie der Pflanzen, Heinrich Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
20
|
D'Haese D, Vandermeiren K, Caubergs RJ, Guisez Y, De Temmerman L, Horemans N. Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. J Theor Biol 2004; 227:175-86. [PMID: 14990382 DOI: 10.1016/j.jtbi.2003.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 08/08/2003] [Accepted: 10/17/2003] [Indexed: 10/26/2022]
Abstract
Nonlinear regression analysis (NLR) is applied to quantify the dynamic response of non-photochemical fluorescence quenching (NPQ) of Trifolium repens cv. Regal upon dark to light transition. Commonly, only steady-state levels of NPQ are evaluated, ignoring transient kinetics. Experimental NPQ kinetics are fitted best with a sum of two functions: a sigmoidal Hill function plus a transient logarithmic normal function. It is shown that not only steady-state level of NPQ, but also the speed at which steady state is reached, increased with light intensity. The question is raised which biological processes cause the induction of the components of NPQ kinetics. The NPQ kinetics are found to resemble the kinetics of antheraxanthin and zeaxanthin formation during a dark to light transition. Furthermore, both molecules are known to induce NPQ. The hypothesis is put forward that a transient phase of NPQ (0-2 min after transition) is dependent upon concentrations of antheraxanthin, whereas the saturating phase corresponds with the production of zeaxanthin. A mathematical model, based on the presented hypothesis, predicts the effect of increasing light intensity on concentrations of antheraxanthin and zeaxanthin which correspond with experimental results. Implications of the hypothesis are discussed as well as the role of NLR in evaluating chlorophyll a fluorescence kinetics.
Collapse
Affiliation(s)
- David D'Haese
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Behera RK, Choudhury NK. High irradiance-induced changes in carotenoid composition and increase in non-photochemical quenching of Chl a fluorescence in primary wheat leaves. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1141-1146. [PMID: 14610882 DOI: 10.1078/0176-1617-01069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of acclimation to high irradiance stress (HIS, 250 Wm-2) in wheat leaves grown under three different irradiances was investigated by HPLC analyses of pigments, chlorophyll a fluorescence parameters and photochemical activities of chloroplasts. Significant loss of beta-carotene was observed compared to the xanthophylls in all three types of seedlings exposed to HIS. However, the effect of HIS on neoxanthin and lutein contents was not significant. The loss of partial electron transport (Asc-DCPIP to MV, PSI activity) was less than the whole chain (H2O to MV) and PS II activity (H2O to DCPIP) suggesting that PS I is less susceptible to HIS compared to PS II. The percent of reductions in Fv/Fm and phi PS II were less in plants grown under high irradiance (HI-1, 30 Wm-2 and HI-2, 45 Wm-2) compared to those grown under moderate irradiance (MI, 15 Wm-2). On the other hand, the percent of NPQ increased more in the leaves of HI plants compared to the leaves of MI when exposed to HIS which suggests a more efficient non-radiative dissipation of excess excitation energy in HI plants compared to MI. These observations suggest that plants grown under relatively high irradiance are better adapted to HIS condition.
Collapse
Affiliation(s)
- Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar-768019, Sambalpur, Orissa, India
| | | |
Collapse
|
22
|
Streb P, Aubert S, Gout E, Bligny R. Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:405-18. [PMID: 12493869 DOI: 10.1093/jxb/erg048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two high mountain plants Soldanella alpina (L.) and Ranunculus glacialis (L.) were transferred from their natural environment to two different growth conditions (22 degrees C and 6 degrees C) at low elevation in order to investigate the possibility of de-acclimation to light and cold and the importance of antioxidants and metabolite levels. The results were compared with the lowland crop plant Pisum sativum (L.) as a control. Leaves of R. glacialis grown for 3 weeks at 22 degrees C were more sensitive to light-stress (defined as damage to photosynthesis, reduction of catalase activity (EC 1.11.1.6) and bleaching of chlorophyll) than leaves collected in high mountains or grown at 6 degrees C. Light-stress tolerance of S. alpina leaves was not markedly changed. Therefore, acclimation is reversible in R. glacialis leaves, but constitutive or long-lasting in S. alpina leaves. The different growth conditions induced significant changes in non-photochemical fluorescence quenching (qN) and the contents of antioxidants and xanthophyll cycle pigments. These changes did not correlate with light-stress tolerance, questioning their role for light- and cold-acclimation of both alpine species. However, ascorbate contents remained very high in leaves of S. alpina under all growth conditions (12-19% of total soluble carbon). In cold-acclimated leaves of R. glacialis, malate represented one of the most abundant compounds of total soluble carbon (22%). Malate contents declined significantly in de-acclimated leaves, suggesting a possible involvement of malate, or malate metabolism, in light-stress tolerance. Leaves of the lowland plant P. sativum were more sensitive to light-stress than the alpine species, and contained only low amounts of malate and ascorbate.
Collapse
Affiliation(s)
- P Streb
- Unité Mixte de Recherche 5019 (Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Joseph Fourier), Département de Biologie Moléculaire et Structurale, Grenoble, France.
| | | | | | | |
Collapse
|
23
|
Li XP, Gilmore AM, Niyogi KK. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 2002; 277:33590-7. [PMID: 12110676 DOI: 10.1074/jbc.m204797200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic light harvesting in plants is regulated by a pH- and xanthophyll-dependent nonphotochemical quenching process (qE) that dissipates excess absorbed light energy and requires the psbS gene product. An Arabidopsis thaliana mutant, npq4-1, lacks qE because of a deletion of the psbS gene, yet it exhibits a semidominant phenotype. Here it is shown that the semidominance is due to a psbS gene dosage effect. Diploid Arabidopsis plants containing two psbS gene copies (wild-type), one psbS gene (npq4-1/NPQ4 heterozygote), and no psbS gene (npq4-1/npq4-1 homozygote) were compared. Heterozygous plants had 56% of the wild-type psbS mRNA level, 58% of the wild-type PsbS protein level, and 60% of the wild-type level of qE. Global analysis of the chlorophyll a fluorescence lifetime distributions revealed three components in wild-type and heterozygous plants, but only a single long lifetime component in npq4-1. The short lifetime distribution associated with qE was inhibited by more than 40% in heterozygous plants compared with the wild type. Thus, the extent of qE measured as either the fractional intensities of the PSII chlorophyll a fluorescence lifetime distributions or steady state intensities was stoichiometrically related to the amount of PsbS protein.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|