1
|
Bei Y, Si X, Ma W, Qi P, Ye Y. The Role of NFAT5 in Immune Response and Antioxidant Defense in the Thick-Shelled Mussel ( Mytilus coruscus). Animals (Basel) 2025; 15:726. [PMID: 40076009 PMCID: PMC11898675 DOI: 10.3390/ani15050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Nuclear Factor of Activated T Cells 5 (NFAT5) is a transcription factor that plays a pivotal role in immune regulation. While its functions have been extensively studied in mammalian immune systems, its role in marine invertebrates, particularly in bivalves, remains largely unexplored. This study provides the first characterization of the NFAT5 gene in the thick-shelled mussel (Mytilus coruscus), investigating its evolutionary characteristics and immunological functions. Using direct RNA sequencing, McNFAT5 was comprehensively analyzed, revealing its critical involvement in the innate immune response of M. coruscus to Vibrio alginolyticus challenge. Differential expression patterns of McNFAT5 were observed across various tissues with the highest expression detected in hemolymphs. The knockdown of McNFAT5 using small interfering RNA (siRNA) led to a significant reduction in the activities of superoxide dismutase (SOD), Na+/K+-ATPase, and antioxidant enzymes compared to levels observed post-infection. These findings highlight the central role of McNFAT5 in modulating antioxidant defense mechanisms. In conclusion, McNFAT5 is a key regulatory factor in the innate immune system of M. coruscus, providing valuable insights into the immune adaptive mechanisms and evolutionary mechanisms of bivalve immunity. This study contributes to a deeper understanding of the immune regulatory networks in marine invertebrates.
Collapse
Affiliation(s)
- Yijiang Bei
- Zhejiang Fisheries Technical Extension Center, Hangzhou No. 181, Jingchang Road, Wuchang Street, Yuhang District, Hangzhou 310012, China; (Y.B.); (W.M.)
| | - Xirui Si
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Wenjun Ma
- Zhejiang Fisheries Technical Extension Center, Hangzhou No. 181, Jingchang Road, Wuchang Street, Yuhang District, Hangzhou 310012, China; (Y.B.); (W.M.)
| | - Pengzhi Qi
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| |
Collapse
|
2
|
Chen W, Son YE, Cho HJ, Choi D, Park HS, Yu JH. Phylogenomics analysis of velvet regulators in the fungal kingdom. Microbiol Spectr 2024; 12:e0371723. [PMID: 38179919 PMCID: PMC10845976 DOI: 10.1128/spectrum.03717-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common β-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.
Collapse
Affiliation(s)
- Wanping Chen
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - He-Jin Cho
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Dasol Choi
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Biancalana M, Natan E, Lenardo MJ, Fersht AR. NF-κB Rel subunit exchange on a physiological timescale. Protein Sci 2021; 30:1818-1832. [PMID: 34089216 PMCID: PMC8376415 DOI: 10.1002/pro.4134] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
The Rel proteins of the NF-κB complex comprise one of the most investigated transcription factor families, forming a variety of hetero- or homodimers. Nevertheless, very little is known about the fundamental kinetics of NF-κB complex assembly, or the inter-conversion potential of dimerised Rel subunits. Here, we examined an unexplored aspect of NF-κB dynamics, focusing on the dissociation and reassociation of the canonical p50 and p65 Rel subunits and their ability to form new hetero- or homodimers. We employed a soluble expression system to enable the facile production of NF-κB Rel subunits, and verified these proteins display canonical NF-κB nucleic acid binding properties. Using a combination of biophysical techniques, we demonstrated that, at physiological temperatures, homodimeric Rel complexes routinely exchange subunits with a half-life of less than 10 min. In contrast, we found a dramatic preference for the formation of the p50/p65 heterodimer, which demonstrated a kinetic stability of at least an order of magnitude greater than either homodimer. These results suggest that specific DNA targets of either the p50 or p65 homodimers can only be targeted when these subunits are expressed exclusively, or with the intervention of additional post-translational modifications. Together, this work implies a new model of how cells can modulate NF-κB activity by fine-tuning the relative proportions of the p50 and p65 proteins, as well as their time of expression. This work thus provides a new quantitative interpretation of Rel dimer distribution in the cell, particularly for those who are developing mathematical models of NF-κB activity.
Collapse
Affiliation(s)
- Matthew Biancalana
- Medical Research Council Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | | | - Michael J. Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
4
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Duan X, Lv M, Liu A, Pang Y, Li Q, Su P, Gou M. Identification and evolution of transcription factors RHR gene family (NFAT and RBPJ) involving lamprey (Lethenteron reissneri) innate immunity. Mol Immunol 2021; 138:38-47. [PMID: 34332184 DOI: 10.1016/j.molimm.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Nuclear factor of activated T cells (NFAT) and recombination signal binding protein (RBP) belong to the family of Rel homology region (RHR) transcription factors which regulate the expression of genes involved in different aspects of the immune response. To gain insights into the evolution and characterisation of RHR genes in lampreys, a jawless vertebrate, four RHR genes, including nuclear factor of activated T cells (NFAT) and recombination signal binding protein for immunoglobulin kappa J region (RBPJ), have been identified and cloned from the lamprey (Lethenteron reissneri) database. Evolutionary relationships of NFAT and RBPJ genes among different species were determined through molecular phylogenetic analysis. Motif, genetic structure, and tertiary structure analyses showed that NFATs and RBPJ are conserved and contain RHD and IPT domains. Moreover, synteny analysis showed that the neighbourhood genes of Lr-NFATs and Lr-RBPJ have undergone significant changes compared to jawed vertebrates. Real-time quantitative results demonstrated that the RHR gene family plays a significant role in immune defence. This study provides a new understanding of the origin and evolution of the RHR gene family in different species.
Collapse
Affiliation(s)
- Xuyuan Duan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Menggang Lv
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Aijia Liu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Abstract
The diversified NF-κB transcription factor family has been extensively characterized in organisms ranging from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, and jellyfish), Porifera (sponges), and single-celled protists, including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble those of mammalian NF-κB p100 proteins, and their posttranslational activation appears to have aspects of both canonical and noncanonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
8
|
Chang RL, Nithiyanantham S, Huang CY, Pai PY, Chang TT, Hu LC, Chen RJ, VijayaPadma V, Kuo WW, Huang CY. Synergistic cardiac pathological hypertrophy induced by high-salt diet in IGF-IIRα cardiac-specific transgenic rats. PLoS One 2019; 14:e0216285. [PMID: 31211784 PMCID: PMC6581245 DOI: 10.1371/journal.pone.0216285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Stress-induced cardiac hypertrophy leads to heart failure. Our previous studies demonstrate that insulin-like growth factor-II receptor (IGF-IIR) signaling is pivotal to hypertrophy regulation. In this study, we show a novel IGF-IIR alternative spliced transcript, IGF-IIRα (150 kDa) play a key role in high-salt induced hypertrophy mechanisms. Cardiac overexpression of IGF-IIRα and high-salt diet influenced cardiac dysfunction by increasing pathophysiological changes with up-regulation of hypertrophy markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). We found that, cardiac hypertrophy under high-salt conditions were amplified in the presence of IGF-IIRα overexpression. Importantly, high-salt induced angiotensin II type I receptor (AT1R) up regulation mediated IGF-IIR expressions via upstream mitogen activated protein kinase (MAPK)/silent mating type information regulation 2 homolog 1 (SIRT1)/heat shock factor 1 (HSF1) pathway. Further, G-coupled receptors (Gαq) activated calcineurin/nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3)/protein kinase C (PKC) signaling was significantly up regulated under high-salt conditions. All these effects were observed to be dramatically over-regulated in IGF-IIRα transgenic rats fed with a high-salt diet. Altogether, from the findings, we demonstrate that IGF-IIRα plays a crucial role during high-salt conditions leading to synergistic cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lai-Chin Hu
- Department of Internal Medicine, Division of Cardiology, Armed Forces Taichung General Hospital, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V. VijayaPadma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
9
|
p47 licenses activation of the immune deficiency pathway in the tick Ixodes scapularis. Proc Natl Acad Sci U S A 2018; 116:205-210. [PMID: 30559180 DOI: 10.1073/pnas.1808905116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The E3 ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) acts as a molecular rheostat for the immune deficiency (IMD) pathway of the tick Ixodes scapularis How XIAP activates the IMD pathway in response to microbial infection remains ill defined. Here, we identified the XIAP enzymatic substrate p47 as a positive regulator of the I. scapularis IMD network. XIAP polyubiquitylates p47 in a lysine 63-dependent manner and interacts with the p47 ubiquitin-like (UBX) module. p47 also binds to Kenny (IKKγ/NEMO), the regulatory subunit of the inhibitor of nuclear factor (NF)- κB kinase complex. Replacement of the amino acid lysine to arginine within the p47 linker region completely abrogated molecular interactions with Kenny. Furthermore, mitigation of p47 transcription levels through RNA interference in I. scapularis limited Kenny accumulation, reduced phosphorylation of IKKβ (IRD5), and impaired cleavage of the NF-κB molecule Relish. Accordingly, disruption of p47 expression increased microbial colonization by the Lyme disease spirochete Borrelia burgdorferi and the rickettsial agent Anaplasma phagocytophilum Collectively, we highlight the importance of ticks for the elucidation of paradigms in arthropod immunology. Manipulating immune signaling cascades within I. scapularis may lead to innovative approaches to reducing the burden of tick-borne diseases.
Collapse
|
10
|
Vieira CS, Moreira OC, Batista KKS, Ratcliffe NA, Castro DP, Azambuja P. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Trypanosoma cruzi Infection in Rhodnius prolixus Midgut. Front Physiol 2018; 9:1189. [PMID: 30233391 PMCID: PMC6128222 DOI: 10.3389/fphys.2018.01189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Rhodnius prolixus is an insect vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Nuclear factor-κB (NF-κB) transcription factors (TF) are conserved components of the innate immune system in several multicellular organisms including insects. The drug IMD-0354 [N-(3,5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide] is a selective inhibitor of IκB kinases. It blocks IκBα phosphorylation thus preventing nuclear translocation of the NF-κb TF. In humans, NF-κB is involved in several biological processes such as inflammation, cell proliferation and immunity. In insects, the activation of the immune system upon microbial challenge can be controlled by signaling pathways such as the immune deficiency (IMD) and Toll, to combat infection. These activated pathways signal to downstream NF-κB TF to stimulate specific immune genes, triggering the synthesis of several molecules such as the antimicrobial peptides. In Drosophila melanogaster, the activation and regulation of NF-κB TF have been elucidated, while in triatomines these mechanisms are not fully understood Therefore, the present study investigated the effects of oral administration of the drug IMD-0354 on the R. prolixus immune response to challenge with bacteria and T. cruzi, as well as the impact on the gut bacterial microbiota. R. prolixus were fed with rabbit blood containing IMD-0354 and Escherichia coli, Staphylococcus aureus, or T. cruzi. The effects of IMD-0354 on insect mortality and antimicrobial activity in insect midgut samples, as well as the relative expression of R. prolixus immune genes were recorded. The bacterial microbiota was analyzed, and viable parasites were counted in insect midgut samples. The IMD-0354 treatment modulated antibacterial activity and the gene expression patterns of defensin A, defensin B, defensin C, and prolixicin, and the genes involved in the IMD and Toll pathways. Additionally, there was an increase of bacterial microbiota in treated insects. Insects treated with IMD-0354 and concomitantly infected with bacteria or T. cruzi through the blood meal had increased mortality, while the T. cruzi population in R. prolixus midgut was reduced. The inhibitory effect of IMD-0354 indicates the importance of NF-κB TF in the innate immune responses involved in the control of bacteria and parasite infections in the R. prolixus midgut.
Collapse
Affiliation(s)
- Cecilia S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Otacílio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Kate K S Batista
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Norman A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, Brazil.,College of Science, Swansea University, Wales, United Kingdom
| | - Daniele P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Richter DJ, Fozouni P, Eisen MB, King N. Gene family innovation, conservation and loss on the animal stem lineage. eLife 2018; 7:34226. [PMID: 29848444 PMCID: PMC6040629 DOI: 10.7554/elife.34226] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals. All animals, from sea sponges and reef-building corals to elephants and humans, share a single common ancestor that lived over half a billion years ago. This single-celled predecessor evolved the ability to develop into a creature made up of many cells with specialized jobs. Reconstructing the steps in this evolutionary process has been difficult because the earliest animals were soft-bodied and microscopic and did not leave behind fossils that scientists can study. Though their bodies have since disintegrated, many of the instructions for building the first animals live on in genes that were passed on to life forms that still exist. Scientists are trying to retrace those genes back to the first animal by comparing the genomes of living animals with their closest relatives, the choanoflagellates. Choanoflagellates are single-celled, colony-forming organisms that live in waters around the world. Comparisons with choanoflagellates may help scientists identify which genes were necessary to help animals evolve and diversify into so many different species. So far, 1,000 animal and two choanoflagellate genomes have been sequenced. But the gene repertoires of most species of choanoflagellates have yet to be analyzed. Now, Richter et al. have cataloged the genes of 19 more species of choanoflagellates. This added information allowed them to recreate the likely gene set of the first animal and to identify genetic changes that occurred during animal evolution. The analyses showed that modern animals lost about a quarter of the genes present in their last common ancestor with choanoflagellates and gained an equal number of new genes. Richter et al. identified several dozen core animal genes that were gained and subsequently preserved throughout animal evolution. Many of these are necessary so that an embryo can develop properly, but the precise roles of some core genes remain a mystery. Most other genes that emerged in the first animals have been lost in at least one living animal. The study of Richter et al. also showed that some very important genes in animals, including genes essential for early development and genes that help the immune system detect pathogens, predate animals. These key genes trace back to animals’ last common ancestor with choanoflagellates and may have evolved new roles in animals.
Collapse
Affiliation(s)
- Daniel J Richter
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Parinaz Fozouni
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States.,Gladstone Institutes, San Francisco, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
12
|
Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J, Awtry J, Banic S, Chacko C, Chezian A, Dowers D, Estrada F, Hsieh YH, Kang J, Li W, Malchiodi Z, Malinowski J, Matuszak S, McTigue T, Mueller D, Nguyen B, Nguyen M, Nguyen P, Nguyen S, Njoku N, Patel K, Pellegrini W, Pliakas T, Qadir D, Ryan E, Schiffer A, Thiel A, Yunes SA, Spilios KE, Pinzón C JH, Mydlarz LD, Gilmore TD. A conserved Toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:128-136. [PMID: 29080785 DOI: 10.1016/j.dci.2017.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Herein, we characterize the Toll-like receptor (TLR)-to-NF-κB innate immune pathway of Orbicella faveolata (Of), which is an ecologically important, disease-susceptible, reef-building coral. As compared to human TLRs, the intracellular TIR domain of Of-TLR is most similar to TLR4, and it can interact in vitro with the human TLR4 adapter MYD88. Treatment of O. faveolata tissue with lipopolysaccharide, a ligand for mammalian TLR4, resulted in gene expression changes consistent with NF-κB pathway mobilization. Biochemical and cell-based assays revealed that Of-NF-κB resembles the mammalian non-canonical NF-κB protein p100 in that C-terminal truncation results in translocation of Of-NF-κB to the nucleus and increases its DNA-binding and transcriptional activation activities. Moreover, human IκB kinase (IKK) and Of-IKK can both phosphorylate conserved residues in Of-NF-κB in vitro and induce C-terminal processing of Of-NF-κB in vivo. These results are the first characterization of TLR-to-NF-κB signaling proteins in an endangered coral, and suggest that these corals have conserved innate immune pathways.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Lauren E Fuess
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | - Julianne Welsh
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jake Awtry
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sarah Banic
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Cecilia Chacko
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Aarthia Chezian
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Donovan Dowers
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Felicia Estrada
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Yu-Hsuan Hsieh
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Jiawen Kang
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Wanwen Li
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Zoe Malchiodi
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - John Malinowski
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sean Matuszak
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Thomas McTigue
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - David Mueller
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Brian Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Michelle Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Phuong Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sinead Nguyen
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Ndidi Njoku
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Khusbu Patel
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - William Pellegrini
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Tessa Pliakas
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Deena Qadir
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Emma Ryan
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Alex Schiffer
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Amber Thiel
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Sarah A Yunes
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Kathryn E Spilios
- Molecular Biology Laboratory (BB522), Program in Biochemistry & Molecular Biology, Boston University, Boston, MA 02215, USA
| | - Jorge H Pinzón C
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Vieira CS, Moreira OC, Batista KKS, Ratcliffe NA, Castro DP, Azambuja P. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Trypanosoma cruzi Infection in Rhodnius prolixus Midgut. Front Physiol 2018. [PMID: 30233391 DOI: 10.3389/fphys.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Rhodnius prolixus is an insect vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Nuclear factor-κB (NF-κB) transcription factors (TF) are conserved components of the innate immune system in several multicellular organisms including insects. The drug IMD-0354 [N-(3,5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide] is a selective inhibitor of IκB kinases. It blocks IκBα phosphorylation thus preventing nuclear translocation of the NF-κb TF. In humans, NF-κB is involved in several biological processes such as inflammation, cell proliferation and immunity. In insects, the activation of the immune system upon microbial challenge can be controlled by signaling pathways such as the immune deficiency (IMD) and Toll, to combat infection. These activated pathways signal to downstream NF-κB TF to stimulate specific immune genes, triggering the synthesis of several molecules such as the antimicrobial peptides. In Drosophila melanogaster, the activation and regulation of NF-κB TF have been elucidated, while in triatomines these mechanisms are not fully understood Therefore, the present study investigated the effects of oral administration of the drug IMD-0354 on the R. prolixus immune response to challenge with bacteria and T. cruzi, as well as the impact on the gut bacterial microbiota. R. prolixus were fed with rabbit blood containing IMD-0354 and Escherichia coli, Staphylococcus aureus, or T. cruzi. The effects of IMD-0354 on insect mortality and antimicrobial activity in insect midgut samples, as well as the relative expression of R. prolixus immune genes were recorded. The bacterial microbiota was analyzed, and viable parasites were counted in insect midgut samples. The IMD-0354 treatment modulated antibacterial activity and the gene expression patterns of defensin A, defensin B, defensin C, and prolixicin, and the genes involved in the IMD and Toll pathways. Additionally, there was an increase of bacterial microbiota in treated insects. Insects treated with IMD-0354 and concomitantly infected with bacteria or T. cruzi through the blood meal had increased mortality, while the T. cruzi population in R. prolixus midgut was reduced. The inhibitory effect of IMD-0354 indicates the importance of NF-κB TF in the innate immune responses involved in the control of bacteria and parasite infections in the R. prolixus midgut.
Collapse
Affiliation(s)
- Cecilia S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Otacílio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Kate K S Batista
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Norman A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, Brazil
- College of Science, Swansea University, Wales, United Kingdom
| | - Daniele P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Shanmugam MK, Arfuso F, Kumar AP, Wang L, Goh BC, Ahn KS, Bishayee A, Sethi G. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn. Pharmacol Res 2017; 129:357-364. [PMID: 29162539 DOI: 10.1016/j.phrs.2017.11.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ), isolated almost fifty years ago, is the main bioactive constituent of black seed essential oil extracted from the seed of Nigella sativa. TQ has been shown to have promising effects against a variety of inflammatory diseases and cancer. Cancer development is a multistep process where normal cells acquire qualities that enable the cells to proliferate continuously and migrate to distant sites in the human body. Drugs that interfere with this process are considered potential anti-cancer therapeutics, which may ultimately result in their clinical usage. TQ is once such compound which has been reported to modulate several major signaling pathways and key oncogenic molecules that play a prominent role in cancer initiation, progression, invasion, metastasis, and angiogenesis. Various studies have reported that TQ can enhance the anti-cancer potential when co-administered with several chemotherapeutic agents while reducing their toxic side effects. In addition, TQ has been shown to inhibit the growth of breast, prostate, pancreatic, colon, lung, and hematological malignancies in different mouse models of cancer. This review focuses on TQ's chemical and pharmacological properties, its diverse molecular targets and also provides clear evidence on its promising potential under preclinical and clinical settings.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6009, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6009, Australia; National University Cancer Institute, National University Health System, 117600, Singapore; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117600, Singapore; Department of Haematology-Oncology, National University Health System, 119228, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, South Korea, South Korea
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6009, Australia.
| |
Collapse
|
15
|
Su P, Liu X, Pang Y, Liu C, Li R, Zhang Q, Liang H, Wang H, Li Q. The archaic roles of the lamprey NF-κB (lj-NF-κB) in innate immune responses. Mol Immunol 2017; 92:21-27. [PMID: 29031044 DOI: 10.1016/j.molimm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
Abstract
The nuclear factor-kappa B (NF-κB) is a pleiotropic transcription factor regulating the expression of genes involved in various biological processes including the immune response and inflammation. Lamprey is regarded as a key species to provide meaningful clues for understanding the evolution of immune system; nevertheless, no information about lamprey NF-κB is reported. Thus, we have characterized a NF-κB homolog in lamprey (lj-NF-κB) for the deeper understanding of the role it played in lamprey immune system. The sequence and 3D structure analyses demonstrate that lj-NF-κB contained a Rel homology domain (RHD) and seven ankyrin repeats domains (ANKs), which would exhibit functional similarities to NF-κB superfamily proteins. This hypothesis was further proved by experiments. We found that the RHD of lj-NF-κB could interact with a mammalian κB response element, translocate to the nucleus to modulate gene (IL-6, IL-1β and TNF-α) expression, and the nuclear localization signals (NLS) was essential for the nuclear translocation. Furthermore, the ANKs of lj-NF-κB are the inhibition signal for the RHD of lj-NF-κB. The present results allow us to surmise that the lj-NF-κB should play a key role in immune response of lamprey, and the function of NF-κB has been maintained during evolution.
Collapse
Affiliation(s)
- Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Chang Liu
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Ranran Li
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Qiong Zhang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Hongfang Liang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116082, China; Lamprey Research Center, Liaoning Normal University, Dalian 116082, China.
| |
Collapse
|
16
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|
17
|
Merchant M, Morkotinis V, Hale A, White M, Moran C. Crocodylian nuclear factor kappa B. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:28-34. [PMID: 28760718 DOI: 10.1016/j.cbpb.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023]
Abstract
We deduced the amino acid (aa) sequence of the nuclear factor kappa B (NFκB) protein from genomic data for the American alligator (Alligator mississippiensis), the estuarine crocodile (Crocodylus porosus), and the Indian gharial (Gavialis gangeticus). A 105kDa protein, NFκB1 exhibits complex post-translational processing, multiple mechanisms of activation, and acts as precursor for a p50, a Rel homology transcription factor which influences the expression of key genes for developmental processes, apoptosis, and immune function. The aa sequences of the crocodylian proteins share very high identity with each other (97.2±0.7%), birds (81.0±1.1%, n=6), mammals (75.3±1.6%, n=4), reptiles (80.3±5.1%, n=2), and less identity with fish (55.5±5.5%, n=4) and one amphibian (66.1±0.8%). The crocodylian protein has a well-conserved Rel homology domain, a nuclear localization signal, and a glycine-rich region which facilitates proteasome-mediated generation of p50. The Rel homology domain contains sequences responsible for dimerization, DNA-binding, and nuclear translocation. In addition, seven ankyrin repeats were located, which putatively allow for inhibition of transcriptional regulation by mediating interaction with Inhibitor kappa B. Other features include a death domain, and conserved serine residues, near the C-terminal end, which act as potential phosphorylation sites for activation of the proteolytic generation of p50. Western blot analysis showed both the 105kDa precursor and the 50kDa mature NFκB were expressed in the alligator liver. Nuclear factor κB exhibited diffuse cytoplasmic distribution in alligator hepatocytes, and almost no cytoplasmic localization in infected animals. In addition, nuclear NFκB exhibited specific binding to the consensus NFκB promoter element.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Chemistry, McNeese State University, Lake Charles, LA, USA.
| | | | - Amber Hale
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Mary White
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Chris Moran
- School of Veterinary Science, University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
van der Burg CA, Prentis PJ, Surm JM, Pavasovic A. Insights into the innate immunome of actiniarians using a comparative genomic approach. BMC Genomics 2016; 17:850. [PMID: 27806695 PMCID: PMC5094078 DOI: 10.1186/s12864-016-3204-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Background Innate immune genes tend to be highly conserved in metazoans, even in early divergent lineages such as Cnidaria (jellyfish, corals, hydroids and sea anemones) and Porifera (sponges). However, constant and diverse selection pressures on the immune system have driven the expansion and diversification of different immune gene families in a lineage-specific manner. To investigate how the innate immune system has evolved in a subset of sea anemone species (Order: Actiniaria), we performed a comprehensive and comparative study using 10 newly sequenced transcriptomes, as well as three publically available transcriptomes, to identify the origins, expansions and contractions of candidate and novel immune gene families. Results We characterised five conserved genes and gene families, as well as multiple novel innate immune genes, including the newly recognised putative pattern recognition receptor CniFL. Single copies of TLR, MyD88 and NF-κB were found in most species, and several copies of IL-1R-like, NLR and CniFL were found in almost all species. Multiple novel immune genes were identified with domain architectures including the Toll/interleukin-1 receptor (TIR) homology domain, which is well documented as functioning in protein-protein interactions and signal transduction in immune pathways. We hypothesise that these genes may interact as novel proteins in immune pathways of cnidarian species. Novelty in the actiniarian immunome is not restricted to only TIR-domain-containing proteins, as we identify a subset of NLRs which have undergone neofunctionalisation and contain 3–5 N-terminal transmembrane domains, which have so far only been identified in two anthozoan species. Conclusions This research has significance in understanding the evolution and origin of the core eumetazoan gene set, including how novel innate immune genes evolve. For example, the evolution of transmembrane domain containing NLRs indicates that these NLRs may be membrane-bound, while all other metazoan and plant NLRs are exclusively cytosolic receptors. This is one example of how species without an adaptive immune system may evolve innovative solutions to detect pathogens or interact with native microbiota. Overall, these results provide an insight into the evolution of the innate immune system, and show that early divergent lineages, such as actiniarians, have a diverse repertoire of conserved and novel innate immune genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3204-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chloé A van der Burg
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.
| | - Peter J Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| | - Joachim M Surm
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, Qld, 4000, Australia
| |
Collapse
|
19
|
Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB—A molecular docking and dynamics approach. Comput Biol Chem 2016; 62:29-35. [DOI: 10.1016/j.compbiolchem.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/25/2022]
|
20
|
Huang XD, Wei GJ, He MX. Cloning and gene expression of signal transducers and activators of transcription (STAT) homologue provide new insights into the immune response and nucleus graft of the pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2015; 47:847-854. [PMID: 26492994 DOI: 10.1016/j.fsi.2015.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
The signal transducers and activators of the transcription (STAT) family play an important role in regulatory and cellular functions by regulating the expression of a variety of genes, including cytokines and growth factors. In the present study, a Pinctada fucata STAT protein, termed PfSTAT, was described. The deduced amino acid sequence of PfSTAT contains the conserved STAT_bind domain and the SH2 domain, and the additional Bin/Amphiphysin/Rvs (BAR) domain, but does not have STAT_alpha and STAT_int domains. Multiple sequence alignments revealed that PfSTAT showed relatively low identity with vertebrate and other invertebrate STATs, and phylogenetic analysis indicated that the evolution of STAT may have been more complex and ancient. Gene expression analysis revealed that PfSTAT is involved in the immune response to polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus insertion operation. This study contributes to a better understanding of PfSTAT in protecting the pearl oyster from disease or injury caused by grafting.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
21
|
Huang XD, Wei GJ, Zhang H, He MX. Nuclear factor of activated T cells (NFAT) in pearl oyster Pinctada fucata: molecular cloning and functional characterization. FISH & SHELLFISH IMMUNOLOGY 2015; 42:108-113. [PMID: 25449375 DOI: 10.1016/j.fsi.2014.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Nuclear factor of activated T cells (NFAT) plays an important role in nonimmune cells and also in T cells and many other cells of the immune system, by regulating the expression of a variety of genes involved in the immune response, organ development, developmental apoptosis and angiogenesis. In the present study, the NFAT homology gene, PfNFAT, from the pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfNFAT encodes a putative protein of 1226 amino acids, and contains a highly conserved Rel homology region (RHR) with DNA-binding specificity, and a regulatory domain (NFAT homology region, NHR) containing a potent transactivation domain (TAD). The PfNFAT gene consists of 12 exons and 11 introns, and its promoter contains potential binding sites for transcription factors such as NF-κB (Nuclear factor κB), STATx (signal transducer and activator of transcription), AP-1 (activator protein-1) and Sox-5/9 (SRY type HMG box-5/9), MyoD (Myogenic Differentiation Antigen) and IRF (Interferon regulatory factor). Comparison and phylogenetic analysis revealed that PfNFAT shows high identity with other invertebrate NFAT, and clusters with the NFAT5 subgroup. Furthermore, gene expression analysis revealed that PfNFAT is involved in the immune response to lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (poly I:C) stimulation and in the nucleus inserting operation. The study of PfNFAT may increase understanding of molluscan innate immunity.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Guo-jian Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-Xian He
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
22
|
Finnerty JR, Gilmore TD. Methods for analyzing the evolutionary relationship of NF-κB proteins using free, web-driven bioinformatics and phylogenetic tools. Methods Mol Biol 2015; 1280:631-46. [PMID: 25736776 DOI: 10.1007/978-1-4939-2422-6_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phylogenetic analysis enables one to reconstruct the functional evolution of proteins. Current understanding of NF-κB signaling derives primarily from studies of a relatively small number of laboratory models-mainly vertebrates and insects-that represent a tiny fraction of animal evolution. As such, NF-κB has been the subject of limited phylogenetic analysis. The recent discovery of NF-κB proteins in "basal" marine animals (e.g., sponges, sea anemones, corals) and NF-κB-like proteins in non-metazoan lineages extends the origin of NF-κB signaling by several hundred million years and provides the opportunity to investigate the early evolution of this pathway using phylogenetic approaches. Here, we describe a combination of bioinformatic and phylogenetic analyses based on menu-driven, open-source computer programs that are readily accessible to molecular biologists without formal training in phylogenetic methods. These phylogenetically based comparisons of NF-κB proteins are powerful in that they reveal deep conservation and repeated instances of parallel evolution in the sequence and structure of NF-κB in distant animal groups, which suggest that important functional constraints limit the evolution of this protein.
Collapse
Affiliation(s)
- John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA,
| | | |
Collapse
|
23
|
Tarrant AM, Gilmore TD, Reitzel AM, Levy O, Technau U, Martindale MQ. Current directions and future perspectives from the third Nematostella research conference. ZOOLOGY 2014; 118:135-40. [PMID: 25450665 DOI: 10.1016/j.zool.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, N. vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene-environment interactions.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Woodward Hall 245, Charlotte, NC 28223, USA
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32136, USA
| |
Collapse
|
24
|
Rauta PR, Samanta M, Dash HR, Nayak B, Das S. Toll-like receptors (TLRs) in aquatic animals: Signaling pathways, expressions and immune responses. Immunol Lett 2014; 158:14-24. [DOI: 10.1016/j.imlet.2013.11.013] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
|
25
|
Jones MR, Liu C, Wilson AK. Molecular dynamics studies of the protein-protein interactions in inhibitor of κB kinase-β. J Chem Inf Model 2014; 54:562-72. [PMID: 24437505 DOI: 10.1021/ci400720n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of the inhibitor of κB kinase subunit β (IKKβ) oligomer initiates a cascade that results in the translocation of transcription factors involved in mediating immune responses. Dimerization of IKKβ is required for its activation. Coarse-grained and atomistic molecular dynamics simulations were used to investigate the conformation-activity and structure-activity relationships within the oligomer assembly of IKKβ that are impacted upon activation, mutation, and binding of ATP. Intermolecular interactions, free energies, and conformational changes were compared among several conformations, including a monomer, two different dimers, and the tetramer. Modifications to the activation segment induce conformational changes that disrupt dimerization and suggest that the multimeric assembly mediates a global stability for the enzyme that influences the activity of IKKβ.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas , Denton, Texas 76203-5017, United States
| | | | | |
Collapse
|
26
|
Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics 2014; 15:71. [PMID: 24467778 PMCID: PMC3909931 DOI: 10.1186/1471-2164-15-71] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022] Open
Abstract
Background The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. Description We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215–364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. Conclusions The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In addition, these data from E. lineata will aid in the interpretation of evolutionary novelties in gene sequence or structure that have been reported for the model cnidarian N. vectensis (e.g., the split NF-κB locus). Finally, we include custom computational tools to facilitate the annotation of a transcriptome based on high-throughput sequencing data obtained from a “non-model system.”
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John R Finnerty
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Song X, Hu J, Jin P, Chen L, Ma F. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity. Genomics 2013; 102:355-62. [DOI: 10.1016/j.ygeno.2013.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
|
28
|
Ryzhakov G, Teixeira A, Saliba D, Blazek K, Muta T, Ragoussis J, Udalova IA. Cross-species analysis reveals evolving and conserved features of the nuclear factor κB (NF-κB) proteins. J Biol Chem 2013; 288:11546-54. [PMID: 23508954 PMCID: PMC3630861 DOI: 10.1074/jbc.m113.451153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NF-κB is a key regulator of immune gene expression in metazoans. It is currently unclear what changes occurred in NF-κB during animal evolution and what features remained conserved. To address this question, we compared the biochemical and functional properties of NF-κB proteins derived from human and the starlet sea anemone (Nematostella vectensis) in 1) a high-throughput assay of in vitro preferences for DNA sequences, 2) ChIP analysis of in vivo recruitment to the promoters of target genes, 3) a LUMIER-assisted examination of interactions with cofactors, and 4) a transactivation assay. We observed a remarkable evolutionary conservation of the DNA binding preferences of the animal NF-κB orthologs. We also show that NF-κB dimerization properties, nuclear localization signals, and binding to cytosolic IκBs are conserved. Surprisingly, the Bcl3-type nuclear IκB proteins functionally pair up only with NF-κB derived from their own species. The basis of the differential NF-κB recognition by IκB subfamilies is discussed.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, London W6 8LH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
29
|
Evolutionary, structural and functional interplay of the IκB family members. PLoS One 2013; 8:e54178. [PMID: 23372681 PMCID: PMC3553144 DOI: 10.1371/journal.pone.0054178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 12/17/2022] Open
Abstract
A primary level of control for nuclear factor kappa B (NF-κB) is effected through its interactions with the inhibitor protein, inhibitor of kappa B (IκB). Several lines of evidence confirm the existence of multiple forms of IκB that appear to regulate NF-κB by distinct mechanisms. Therefore, we performed a comprehensive bioinformatics analysis to understand the evolutionary history and intrinsic functional diversity of IκB family members. Phylogenetic relationships were constructed to trace the evolution of the IκB family genes. Our phylogenetic analysis revealed 10 IκB subfamily members that clustered into 5 major clades. Since the ankyrin (ANK) domain appears to be more ancient than the Rel homology domain (RHD), our phylogenetic analysis suggests that some undefined ancestral set of ANK repeats acquired an RHD before any duplication and was later duplicated and then diverged into the different IκB subfamilies. Functional analysis identified several functionally divergent sites in the ANK repeat domains (ARDs) and revealed that this region has undergone strong purifying selection, suggesting its functional importance in IκB genes. Structural analysis showed that the major variations in the number of ANK repeats and high conformational changes in the finger loop ARD region contribute to the differing binding partner specificities, thereby leading to distinct IκB functions. In summary, our study has provided useful information about the phylogeny and structural and functional divergence of the IκB family. Additionally, we identified a number of amino acid sites that contribute to the predicted functional divergence of these proteins.
Collapse
|
30
|
Wolenski FS, Bradham CA, Finnerty JR, Gilmore TD. NF-κB is required for cnidocyte development in the sea anemone Nematostella vectensis. Dev Biol 2012; 373:205-15. [PMID: 23063796 DOI: 10.1016/j.ydbio.2012.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/12/2012] [Accepted: 10/04/2012] [Indexed: 01/29/2023]
Abstract
The sea anemone Nematostella vectensis (Nv) is a leading model organism for the phylum Cnidaria, which includes anemones, corals, jellyfishes and hydras. A defining trait across this phylum is the cnidocyte, an ectodermal cell type with a variety of functions including defense, prey capture and environmental sensing. Herein, we show that the Nv-NF-κB transcription factor and its inhibitor Nv-IκB are expressed in a subset of cnidocytes in the body column of juvenile and adult anemones. The size and distribution of the Nv-NF-κB-positive cnidocytes suggest that they are in a subtype known as basitrichous haplonema cnidocytes. Nv-NF-κB is primarily cytoplasmic in cnidocytes in juvenile and adult animals, but is nuclear when first detected in the 30-h post-fertilization embryo. Morpholino-mediated knockdown of Nv-NF-κB expression results in greatly reduced cnidocyte formation in the 5 day-old animal. Taken together, these results indicate that NF-κB plays a key role in the development of the phylum-specific cnidocyte cell type in Nematostella, likely by nuclear Nv-NF-κB-dependent activation of genes required for cnidocyte development.
Collapse
Affiliation(s)
- Francis S Wolenski
- Boston University, Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
31
|
Huang XD, Liu WG, Guan YY, Shi Y, Wang Q, Zhao M, Wu SZ, He MX. Molecular cloning and characterization of class I NF-κB transcription factor from pearl oyster (Pinctada fucata). FISH & SHELLFISH IMMUNOLOGY 2012; 33:659-666. [PMID: 22796487 DOI: 10.1016/j.fsi.2012.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/20/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
NF-κB transcription factors play central roles in many important physiological and pathological processes including innate immune responses. Here we report the cloning of an NF-κB transcription factor, PfRelish from pearl oyster Pinctada fucata, one of the most important bivalve mollusks for seawater pearl production. PfRelish full-length cDNA is 3916 bp with an open reading frame of 3558 bp encoding a putative protein of 1186 amino acids. The deduced PfRelish contains a N-terminal RHD, a nucleus localization signal, an IκB-like domain with six ankyrin repeats and a death domain at the C-terminus, which is similar to class I NF-κB transcription factors. Comparison and phylogenetic analysis revealed that class I NF-κBs in mollusks including PfRelish might have most distant relationship to the arthropod Relish. Further expression analysis showed that PfRelish was apparently upregulated after Vibrio alginolyticus injection, which suggested that PfRelish was involved in the immune response to V. alginolyticus.
Collapse
Affiliation(s)
- Xian-De Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Palmer CV, Traylor-Knowles N. Towards an integrated network of coral immune mechanisms. Proc Biol Sci 2012; 279:4106-14. [PMID: 22896649 DOI: 10.1098/rspb.2012.1477] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.
Collapse
Affiliation(s)
- C V Palmer
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | |
Collapse
|
33
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
34
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
35
|
George LE, Lokhandwala MF, Asghar M. Novel role of NF-κB-p65 in antioxidant homeostasis in human kidney-2 cells. Am J Physiol Renal Physiol 2012; 302:F1440-6. [PMID: 22397926 PMCID: PMC3378177 DOI: 10.1152/ajprenal.00006.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/01/2012] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor-κB (NF-κB) plays a role in inflammation. However, we recently reported an association between NF-κB and antioxidant enzymes in renal proximal tubules of exercise-trained rats, suggesting its role in antioxidant homeostasis (George L, Lokhandwala MF, Asghar M. Am J Physiol Renal Physiol 297: F1174-F1180, 2009). A direct role of NF-κB in antioxidant homeostasis in renal cells has not been elucidated and warrants investigation. Therefore, we examined whether NF-κB has a direct role in antioxidant homeostasis and redox balance in human kidney-2 cells overexpressing NF-κB-p65 and compared them with the cells overexpressing Nrf-2, a well-known transcription factor involved in antioxidant homeostasis. The ability of NF-κB-p65 to increase antioxidant enzymes, to reduce reactive oxygen species (ROS), and to rescue ROS-induced renal dopamine D1 receptor dysfunction, was studied. The transcription activity of NF-κB-p65 and Nrf-2, measured as luciferase reporter activity, increased in cells overexpressing these nuclear factors. The levels of mRNA and activity of glutathione peroxidase as well as the protein levels of superoxide dismutase-1 and glutamylcystein transferase were increased in cells overexpressing NF-κB-p65 and Nrf-2. Furthermore, the levels of ROS decreased and D1 receptor agonist SKF38393-mediated [(35)S]GTPγS binding (index of D1 receptor function) increased in the presence of hydrogen peroxide in cells overexpressing NF-κB-p65 and Nrf-2. These results suggest a direct role of NF-κB-p65 in antioxidant homeostasis, contributing to redox balance in renal cells.
Collapse
Affiliation(s)
- Liza E George
- Heart and Kidney Institute, College of Pharmacy, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
36
|
Wolenski FS, Chandani S, Stefanik DJ, Jiang N, Chu E, Finnerty JR, Gilmore TD. Two polymorphic residues account for the differences in DNA binding and transcriptional activation by NF-κB proteins encoded by naturally occurring alleles in Nematostella vectensis. J Mol Evol 2011; 73:325-36. [PMID: 22198650 DOI: 10.1007/s00239-011-9479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/08/2011] [Indexed: 12/17/2022]
Abstract
The NF-κB family of transcription factors is activated in response to many environmental and biological stresses, and plays a key role in innate immunity across a broad evolutionary expanse of animals. A simple NF-κB pathway is present in the sea anemone Nematostella vectensis, an important model organism in the phylum Cnidaria. Nematostella has previously been shown to have two naturally occurring NF-κB alleles (Nv-NF-κB-C and Nv-NF-κB-S) that encode proteins with different DNA-binding and transactivation abilities. We show here that polymorphic residues 67 (Cys vs. Ser) and 269 (Ala vs. Glu) play complementary roles in determining the DNA-binding activity of the NF-κB proteins encoded by these two alleles and that residue 67 is primarily responsible for the difference in their transactivation ability. Phylogenetic analysis indicates that Nv-NF-κB-S is the derived allele, consistent with its restricted geographic distribution. These results define polymorphic residues that are important for the DNA-binding and transactivating activities of two naturally occurring variants of Nv-NF-κB. The implications for the appearance of the two Nv-NF-κB alleles in natural populations of sea anemones are discussed.
Collapse
|
37
|
Reitzel AM, Ryan JF, Tarrant AM. Establishing a model organism: A report from the first annual Nematostella meeting. Bioessays 2011; 34:158-61. [DOI: 10.1002/bies.201100145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Zhang SM, Coultas KA. Identification and characterization of five transcription factors that are associated with evolutionarily conserved immune signaling pathways in the schistosome-transmitting snail Biomphalaria glabrata. Mol Immunol 2011; 48:1868-81. [PMID: 21696828 PMCID: PMC3163751 DOI: 10.1016/j.molimm.2011.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
Abstract
Innate immunity consists of humoral and cellular components that play a vital role in regulation of defense responses to various pathogens in vertebrates and invertebrates. Recent studies have shown that Rel/DIF (dorsal-related immunity factor), Relish, STAT (signal transducer and activator of transcription) and CREB (cAMP response element-binding protein) transcription factor associated pathways are evolutionarily conserved across the animal kingdom. Although the primary role and general structure of the pathways in immunity have been revealed in many invertebrates, particularly arthropods, almost nothing is known about these pathways in the freshwater snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, which is a causative agent of human schistosomiasis. Given the central role of transcription factors (TF) in controlling expression of effector genes, understanding the role of a given TF is essential to obtaining insight into the general function of the corresponding signaling pathway. To better understand the immunity of B. glabrata, we investigated five homologues of TFs that have been shown to be associated with multiple prominent immune signaling pathways based on the considerable data reported from a wide phylogenetic range of animals. In this study we identified and characterized cDNAs of five TFs from B. glabrata, designated BgRelish, BgRel, BgSTAT1, BgSTAT2 and BgCREB, for the first time. Among the five TFs, Relish is first reported in Lophotrochozoa, one of three superphyla in Metazoa. Our identification of class I (BgRelish) and II (BgRel) NF-κB in B. glabrata suggests the two pathways, Toll-like receptor (TLR) and immune deficiency (IMD)-like pathways, are present in the superphylum Lophotrochozoa. Preliminarily expression studies indicate these TF-associated pathways may be involved in the snail's anti-schistosome response. This study not only advances our understanding of the snail's defenses, but also provides new perspectives about the evolution of animal immunity.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
39
|
Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ, Bagnat M, Jobin C, Rawls JF. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology 2011; 141:197-207. [PMID: 21439961 PMCID: PMC3164861 DOI: 10.1053/j.gastro.2011.03.042] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) transcription factor pathway is activated in response to diverse microbial stimuli to regulate expression of genes involved in immune responses and tissue homeostasis. However, the temporal and spatial activation of NF-κB in response to microbial signals have not been determined in whole living organisms, and the molecular and cellular details of these responses are not well understood. We used in vivo imaging and molecular approaches to analyze NF-κB activation in response to the commensal microbiota in transparent gnotobiotic zebrafish. METHODS We used DNA microarrays, in situ hybridization, and quantitative reverse transcription polymerase chain reaction analyses to study the effects of the commensal microbiota on gene expression in gnotobiotic zebrafish. Zebrafish PAC2 and ZFL cells were used to study the NF-κB signaling pathway in response to bacterial stimuli. We generated transgenic zebrafish that express enhanced green fluorescent protein under transcriptional control of NF-κB, and used them to study patterns of NF-κB activation during development and microbial colonization. RESULTS Bacterial stimulation induced canonical activation of the NF-κB pathway in zebrafish cells. Colonization of germ-free transgenic zebrafish with a commensal microbiota activated NF-κB and led to up-regulation of its target genes in intestinal and extraintestinal tissues of the digestive tract. Colonization with the bacterium Pseudomonas aeruginosa was sufficient to activate NF-κB, and this activation required a functional flagellar apparatus. CONCLUSIONS In zebrafish, transcriptional activity of NF-κB is spatially and temporally regulated by specific microbial factors. The observed patterns of NF-κB-dependent responses to microbial colonization indicate that cells in the gastrointestinal tract respond robustly to the microbial environment.
Collapse
Affiliation(s)
- Michelle Kanther
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC
| | - Xiaolun Sun
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Marcus Mühlbauer
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lantz C. Mackey
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Edward J. Flynn
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical School, Durham, NC
| | - Christian Jobin
- Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - John F. Rawls
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
40
|
Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, Si H, Sinha S, Van Waes C, Chen Z. ΔNp63 versatilely regulates a Broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res 2011; 71:3688-700. [PMID: 21576089 PMCID: PMC3443863 DOI: 10.1158/0008-5472.can-10-3445] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) and many other epithelial malignancies exhibit increased proliferation, invasion, and inflammation, concomitant with aberrant nuclear activation of TP53 and NF-κB family members ΔNp63, cRel, and RelA. However, the mechanisms of cross-talk by which these transcription factors coordinate gene expression and the malignant phenotype remain elusive. In this study, we showed that ΔNp63 regulates a cohort of genes involved in cell growth, survival, adhesion, and inflammation, which substantially overlaps with the NF-κB transcriptome. ΔNp63 with cRel and/or RelA are recruited to form novel binding complexes on p63 or NF-κB/Rel sites of multitarget gene promoters. Overexpressed ΔNp63- or TNF-α-induced NF-κB and inflammatory cytokine interleukin-8 (IL-8) reporter activation depended on RelA/cRel regulatory binding sites. Depletion of RelA or ΔNp63 by small interfering RNA (siRNA) significantly inhibited NF-κB-specific, or TNF-α-induced IL-8 reporter activation. ΔNp63 siRNA significantly inhibited proliferation, survival, and migration by HNSCC cells in vitro. Consistent with these data, an increase in nuclear ΔNp63, accompanied by increased proliferation (Ki-67) and adhesion (β4 integrin) markers, and induced inflammatory cell infiltration was observed throughout HNSCC specimens, when compared with the basilar pattern of protein expression and minimal inflammation seen in nonmalignant mucosa. Furthermore, overexpression of ΔNp63α in squamous epithelial cells in transgenic mice leads to increased suprabasilar cRel, Ki-67, and cytokine expression, together with epidermal hyperplasia and diffuse inflammation, similar to HNSCC. Our study reveals ΔNp63 as a master transcription factor that, in coordination with NF-κB/Rels, orchestrates a broad gene program promoting epidermal hyperplasia, inflammation, and the malignant phenotype of HNSCC.
Collapse
Affiliation(s)
- Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Hai Lu
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Bin Yan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Rose-Anne Romano
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Yansong Bian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Jay Friedman
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Praveen Duggal
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
- Clinical Research Training Program supported jointly by NIH and Pfizer Inc
| | - Ryan Chuang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Reza Ehsanian
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
- Howard Hughes Medical Institute-NIH Research Scholars Program
- Graduate Partnership Program of NIH and Oxford University, UK
| | - Han Si
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
41
|
Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 2010; 31:1076-87. [PMID: 21189285 DOI: 10.1128/mcb.00927-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sea anemone Nematostella vectensis is the leading developmental and genomic model for the phylum Cnidaria, which includes anemones, hydras, jellyfish, and corals. In insects and vertebrates, the NF-κB pathway is required for cellular and organismal responses to various stresses, including pathogens and chemicals, as well as for several developmental processes. Herein, we have characterized proteins that comprise the core NF-κB pathway in Nematostella, including homologs of NF-κB, IκB, Bcl-3, and IκB kinase (IKK). We show that N. vectensis NF-κB (Nv-NF-κB) can bind to κB sites and activate transcription of reporter genes containing multimeric κB sites or the Nv-IκB promoter. Both Nv-IκB and Nv-Bcl-3 interact with Nv-NF-κB and block its ability to activate reporter gene expression. Nv-IKK is most similar to human IKKε/TBK kinases and, in vitro, can phosphorylate Ser47 of Nv-IκB. Nv-NF-κB is expressed in a subset of ectodermal cells in juvenile and adult Nematostella anemones. A bioinformatic analysis suggests that homologs of many mammalian NF-κB target genes are targets for Nv-NF-κB, including genes involved in apoptosis and responses to organic compounds and endogenous stimuli. These results indicate that NF-κB pathway proteins in Nematostella are similar to their vertebrate homologs, and these results also provide a framework for understanding the evolutionary origins of NF-κB signaling.
Collapse
|
42
|
Lange C, Hemmrich G, Klostermeier UC, López-Quintero JA, Miller DJ, Rahn T, Weiss Y, Bosch TCG, Rosenstiel P. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol Biol Evol 2010; 28:1687-702. [PMID: 21183612 DOI: 10.1093/molbev/msq349] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Distinguishing self from nonself and the onset of defense effector mechanisms upon recognition of pathogens are essential for the survival of all life forms in the animal kingdom. The family of nucleotide -binding and oligomeriszation domain-like receptors (NLRs) was first identified in vertebrates and comprises a group of pivotal sensor protein of the innate immune system for microbial cell wall components or danger signals. Here, we provide first evidence that early diverging metazoans have large and complex NLR repertoires. The cnidarian NACHT/NB-ARC genes include novel combinations of domains, and the number of one specific type (NB-ARC and tetratricopeptide repeat containing) in Hydra is particularly large. We characterize the transcript structure and expression patterns of a selected HyNLR, HyNLR type 1 and describe putative interaction partners. In a heterologous expression system, we show induced proximity recruitment of an effector caspase (HyDD-Caspase) to the HyNLR type 1 protein upon oligomerization indicating a potential role of caspase activation downstream of NLR activation in Hydra. These results add substantially to our understanding of the ancestral innate immune repertoire as well as providing the first insights into putative cytoplasmic defense mechanisms at the base of animal evolution.
Collapse
Affiliation(s)
- Christina Lange
- Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL. Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 2010; 28:437-47. [PMID: 20829344 DOI: 10.1093/molbev/msq246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The origin and evolution of multidomain proteins are driven by diverse processes including fusion/fission, domain shuffling, and alternative splicing. The 20 aminoacyl-tRNA synthetases (AARS) constitute an ancient conserved family of multidomain proteins. The glutamyl-prolyl tRNA synthetase (EPRS) of bilaterian animals is unique among AARSs, containing two functional enzymes catalyzing ligation of glutamate and proline to their cognate transfer RNAs (tRNAs). The ERS and PRS catalytic domains in multiple bilaterian taxa are linked by variable number of helix-turn-helix domains referred to as WHEP-TRS domains. In addition to its canonical aminoacylation activities, human EPRS exhibits a noncanonical function as an inflammation-responsive regulator of translation. Recently, we have shown that the WHEP domains direct this auxiliary function of human EPRS by interacting with an mRNA stem-loop element (interferon-gamma-activated inhibitor of translation [GAIT] element). Here, we show that EPRS is present in the cnidarian Nematostella vectensis, which pushes the origin of the fused protein back to the cnidarian-bilaterian ancestor, 50-75 My before the origin of the Bilateria. Remarkably, the Nematostella EPRS mRNA is alternatively spliced to yield three isoforms with variable number and sequence of WHEP domains and with distinct RNA-binding activities. Whereas one isoform containing a single WHEP domain binds tRNA, a second binds both tRNA and GAIT element RNA. However, the third isoform contains two WHEP domains and like the human ortholog binds specifically to GAIT element RNA. These results suggest that alternative splicing of WHEP domains in the EPRS gene of the cnidarian-bilaterian ancestor gave rise to a novel molecular function of EPRS conserved during metazoan evolution.
Collapse
Affiliation(s)
- Partho Sarothi Ray
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, USA
| | | | | | | | | | | |
Collapse
|
44
|
Luqman S, Pezzuto JM. NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res 2010; 24:949-63. [PMID: 20577970 DOI: 10.1002/ptr.3171] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transcription factor nuclear factor kappa B (NFkappaB) is found in nearly all animal cell types. It is involved in cellular responses to stimuli such as stress, cytokines, free radicals, ultraviolet irradiation, oxidized LDL and microbial antigens, and has been shown to regulate the expression of a number of genes including bcl-2, bcl-xl, cIAP, suvivin, TRAF, COX-2, MMP-9, iNOS and cell cycle-regulatory components. Many carcinogens, inflammatory agents and tumor promoters have been shown to activate NFkappaB, and resulting tumors demonstrate misregulated NFkappaB. Incorrect regulation of NFkappaB has been linked to inflammatory and autoimmune diseases, septic shock, viral infection and improper immune development. Aberrant regulation of NFkappaB is involved in cancer development and progression as well as in drug resistance. Inhibitors of NFkappaB mediate effects potentially leading to antitumor responses or greater sensitivity to the action of antitumor agents. Tools have been developed for the rapid assessment of NFkappaB activity, so in concert with a better understanding of NFkappaB activation mechanisms, many agents capable of suppressing NFkappaB activation have been identified. The present article focuses on the functions of NFkappaB, its role in human cancer and the therapeutic potential and benefit of targeting NFkappaB by natural products in cancer chemoprevention.
Collapse
Affiliation(s)
- Suaib Luqman
- College of Pharmacy, University of Hawaii, Hilo 96720, USA
| | | |
Collapse
|
45
|
Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR. The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 2010; 10:101. [PMID: 20398424 PMCID: PMC2873413 DOI: 10.1186/1471-2148-10-101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 04/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression. Results To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (Nematostella vectensis, Vallicula multiformis, Trichoplax adhaerens, and Amphimedon queenslandica), a choanoflagellate (Monosiga brevicollis) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain. Conclusions In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
Collapse
|
46
|
Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol 2009; 22:39-47. [PMID: 20022762 DOI: 10.1016/j.smim.2009.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/18/2009] [Indexed: 12/20/2022]
Abstract
Detailed understanding of animal immunity derives almost entirely from investigations of vertebrates, with a smaller, but significant, contribution from studies in fruit flies. This limited phylogenetic scope has artificially polarized the larger view of animal immunity toward the complex adaptive immune systems of vertebrates on the one hand and systems driven by relatively small, stable families of innate receptors of insects on the other. In the past few years analyses of a series of invertebrate deuterostome genome sequences, including those from echinoderms and cephalochordates, sharply modify this view. These findings have far-reaching implications for characterizing the potential range of animal immunity and for inferring the evolutionary pathway that led to vertebrate immune systems.
Collapse
Affiliation(s)
- Cynthia Messier-Solek
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm. S126B, Toronto, ON M4N 3M5, Canada.
| | | | | |
Collapse
|
47
|
Degnan BM, Vervoort M, Larroux C, Richards GS. Early evolution of metazoan transcription factors. Curr Opin Genet Dev 2009; 19:591-9. [PMID: 19880309 DOI: 10.1016/j.gde.2009.09.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/16/2009] [Accepted: 09/27/2009] [Indexed: 11/29/2022]
Abstract
Analyses of recently sequenced sponge, cnidarian, placozoan, and choanoflagellate genomes have revealed that most transcription factor (TF) classes and families expressed during bilaterian development originated at the dawn of the animal kingdom, before the divergence of contemporary animal lineages. The ancestral metazoan genome included members of the bHLH, Mef2, Fox, Sox, T-box, ETS, nuclear receptor, Rel/NF-kappaB, bZIP, and Smad families, and a diversity of homeobox-containing classes, including ANTP, Prd-like, Pax, POU, LIM-HD, Six, and TALE. As many of these TF classes and families appear to be metazoan specific and not present in choanoflagellates, fungi and more distant eukaryotes, their genesis and expansion may have contributed to the evolution of animal multicellularity.
Collapse
Affiliation(s)
- Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
48
|
Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 2009; 1:a000232. [PMID: 20457557 DOI: 10.1101/cshperspect.a000232] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.
Collapse
Affiliation(s)
- Charles Hetru
- Centre National de la Recherche Scientifique, Institute of Molecular and Cellular Biology, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
49
|
Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD, Finnerty JR. Two alleles of NF-kappaB in the sea anemone Nematostella vectensis are widely dispersed in nature and encode proteins with distinct activities. PLoS One 2009; 4:e7311. [PMID: 19806194 PMCID: PMC2751831 DOI: 10.1371/journal.pone.0007311] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/06/2009] [Indexed: 12/22/2022] Open
Abstract
Background NF-κB is an evolutionarily conserved transcription factor that controls the expression of genes involved in many key organismal processes, including innate immunity, development, and stress responses. NF-κB proteins contain a highly conserved DNA-binding/dimerization domain called the Rel homology domain. Methods/Principal Findings We characterized two NF-κB alleles in the sea anemone Nematostella vectensis that differ at nineteen single-nucleotide polymorphisms (SNPs). Ten of these SNPs result in amino acid substitutions, including six within the Rel homology domain. Both alleles are found in natural populations of Nematostella. The relative abundance of the two NF-κB alleles differs between populations, and departures from Hardy-Weinberg equilibrium within populations indicate that the locus may be under selection. The proteins encoded by the two Nv-NF-κB alleles have different molecular properties, in part due to a Cys/Ser polymorphism at residue 67, which resides within the DNA recognition loop. In nearly all previously characterized NF-κB proteins, the analogous residue is fixed for Cys, and conversion of human RHD proteins from Cys to Ser at this site has been shown to increase DNA-binding ability and increase resistance to inhibition by thiol-reactive compounds. However, the naturally-occurring Nematostella variant with Cys at position 67 binds DNA with a higher affinity than the Ser variant. On the other hand, the Ser variant activates transcription in reporter gene assays more effectively, and it is more resistant to inhibition by a thiol-reactive compound. Reciprocal Cys<->Ser mutations at residue 67 of the native Nv-NF-κB proteins affect DNA binding as in human NF-κB proteins, e.g., a Cys->Ser mutation increases DNA binding of the native Cys variant. Conclusions/Significance These results are the first demonstration of a naturally occurring and functionally significant polymorphism in NF-κB in any species. The functional differences between these alleles and their uneven distribution in the wild suggest that different genotypes could be favored in different environments, perhaps environments that vary in their levels of peroxides or thiol-reactive compounds.
Collapse
Affiliation(s)
- James C. Sullivan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Francis S. Wolenski
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Adam M. Reitzel
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Courtney E. French
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Nikki Traylor-Knowles
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Thomas D. Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - John R. Finnerty
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Plantivaux A, Szegezdi E, Samali A, Egan L. Is There a Role for Nuclear Factor κB in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance? Ann N Y Acad Sci 2009; 1171:38-49. [DOI: 10.1111/j.1749-6632.2009.04725.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|