1
|
Xie H, Jiang WQ, Ding Y, Li AP, Pang Z, Liang J, Zhang SY, He Y, Jing CX, Zhang ZJ, Liu YQ, Liu T. Cryptolepine Derivatives Are Insecticide Leads by Targeting Insect Chitinolytic Enzymes and Bilin-Binding Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40372154 DOI: 10.1021/acs.jafc.4c09863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Multitarget inhibitors (MIs) against insect chitinolytic enzymes are potential pesticide candidates. However, currently known Mis suffers from low biological activity and limited possibilities for structural modification. Here, cryptolepine and its halogenated derivatives were discovered as MIs against all of four insect chitinolytic enzymes from Ostrinia furnacalis (OfChtI, OfChtII, OfChi-h and OfHex1) with Ki values at μM level. Notably, the inhibitory activities of cryptolepine can be increased by 1 order of magnitude through a simple two-site halogenation (CD-4). Molecular docking results indicated that halogen modifications may directly form halogen bonds with polar residues or change the electrostatic potential of the conjugation plane to enhance its π-π stacking interaction with tryptophan residues. Cryptolepine and CD-4 showed insecticidal activities toward both O. furnacalis and Plutella xylostella. Interestingly, CD-4, but not cryptolepine, prevents the formation of the protective color in P. xylostella by competing with biliverdin for binding to the bilin-binding protein. This study not only reports new MIs as insecticide leads, but also provides a new idea for pest control by inhibiting its protective color.
Collapse
Affiliation(s)
- Huijie Xie
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Wei-Qi Jiang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yi Ding
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - An-Ping Li
- School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Zihan Pang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jinhui Liang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yuhang He
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Chen-Xin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
3
|
Tong X, Qiao L, Luo J, Ding X, Wu S. The evolution and genetics of lepidopteran egg and caterpillar coloration. Curr Opin Genet Dev 2021; 69:140-146. [PMID: 34030080 DOI: 10.1016/j.gde.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Insect colors and color patterns have fascinated biologists for centuries. While extensive research has focused on the adult colors of Drosophila and butterflies, our understanding of how colors are generated and diversified in embryonic and larval stages remains limited, especially, the genetics behind the protective coloration of the immobile embryonic and larval stages. Lepidoptera, one of the most widespread and species-rich insect orders, are extremely helpful uncovering those mechanisms due to their remarkable diverse colors in eggs and caterpillars within or among species, and these colors usually are variable in different developmental stages or in response to different environments. Here we review the recent progress on coloration of lepidopteran eggs and caterpillars, focusing on the genetic basis, developmental mechanisms, ecology, and evolution underlying the remarkable color diversity.
Collapse
Affiliation(s)
- Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jiangwen Luo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Xin Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
| | - Songyuan Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
5
|
Jin H, Seki T, Yamaguchi J, Fujiwara H. Prepatterning of Papilio xuthus caterpillar camouflage is controlled by three homeobox genes: clawless, abdominal-A, and Abdominal-B. SCIENCE ADVANCES 2019; 5:eaav7569. [PMID: 30989117 PMCID: PMC6457947 DOI: 10.1126/sciadv.aav7569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 06/02/2023]
Abstract
Color patterns often function as camouflage to protect insects from predators. In most swallowtail butterflies, younger larvae mimic bird droppings but change their pattern to mimic their host plants during their final molt. This pattern change is determined during the early fourth instar by juvenile hormone (JH-sensitive period), but it remains unclear how the prepatterning process is controlled. Using Papilio xuthus larvae, we performed transcriptome comparisons to identify three camouflage pattern-associated homeobox genes [clawless, abdominal-A, and Abdominal-B (Abd-B)] that are up-regulated during the JH-sensitive period in a region-specific manner. Electroporation-mediated knockdown of each gene at the third instar caused loss or change of original fifth instar patterns, but not the fourth instar mimetic pattern, and knockdown of Abd-B after the JH-sensitive period had no effect on fifth instar patterns. These results indicate the role of these genes during the JH-sensitive period and in the control of the prepatterning gene network.
Collapse
|
6
|
Lehnert MS, Kramer VR, Rawlins JE, Verdecia V, Daniels JC. Jamaica's Critically Endangered Butterfly: A Review of the Biology and Conservation Status of the Homerus Swallowtail (Papilio (Pterourus) homerus Fabricius). INSECTS 2017; 8:E68. [PMID: 28698508 PMCID: PMC5620688 DOI: 10.3390/insects8030068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
The Homerus swallowtail, Papilio (Pterourus) homerus Fabricius, is listed as an endangered species and is endemic to the Caribbean island of Jamaica. The largest butterfly in the Western Hemisphere, P. homerus once inhabited seven of Jamaica's 14 parishes and consisted of at least three populations; however, now only two stronghold populations remain, a western population in the rugged Cockpit Country and an eastern population in the Blue and John Crow Mountains. Despite numerous studies of its life history, much about the population biology, including estimates of total numbers of individuals in each population, remains unknown. In addition, a breeding program is needed to establish an experimental population, which could be used to augment wild populations and ensure the continued survival of the species. Here, we present a review of the biology of P. homerus and recommendations for a conservation plan.
Collapse
Affiliation(s)
- Matthew S Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA.
| | - Valerie R Kramer
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA.
| | - John E Rawlins
- Carnegie Museum of Natural History, Pittsburgh, PA 15213, USA.
| | | | - Jaret C Daniels
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainesville, FL 32611, USA.
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Fujiwara H, Nishikawa H. Functional analysis of genes involved in color pattern formation in Lepidoptera. CURRENT OPINION IN INSECT SCIENCE 2016; 17:16-23. [PMID: 27720069 DOI: 10.1016/j.cois.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hideki Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
8
|
Tynyakov J, Bentov S, Abehsera S, Yehezkel G, Roth Z, Khalaila I, Weil S, Berman A, Plaschkes I, Tom M, Aflalo ED, Sagi A. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. ACTA ACUST UNITED AC 2015; 218:3487-98. [PMID: 26385331 DOI: 10.1242/jeb.123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation.
Collapse
Affiliation(s)
- Jenny Tynyakov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shmuel Bentov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shai Abehsera
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Ziv Roth
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Berman
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Inbar Plaschkes
- National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Moshe Tom
- Israel Oceanographic and Limnological Research, Haifa 8511911, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
A novel chitin binding crayfish molar tooth protein with elasticity properties. PLoS One 2015; 10:e0127871. [PMID: 26010981 PMCID: PMC4444123 DOI: 10.1371/journal.pone.0127871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/21/2015] [Indexed: 12/04/2022] Open
Abstract
The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.
Collapse
|
10
|
Protruding structures on caterpillars are controlled by ectopic Wnt1 expression. PLoS One 2015; 10:e0121736. [PMID: 25815728 PMCID: PMC4376876 DOI: 10.1371/journal.pone.0121736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Spine-like or protruding structures, which may be aposematic for predators, are often observed in multiple segments of lepidopteran larvae (caterpillars). For example, the larvae of the Chinese wheel butterfly, Byasa alcinous, display many protrusions on their backs as a warning that they are toxic. Although these protrusions are formed by an integument lined with single-layered epidermal cells, the molecular mechanisms underlying their formation have remained unclear. In this study, we focused on a spontaneous mutant of the silkworm, Bombyx mori, Knobbed, which shows similar protrusions to B. alcinous and demonstrates that Wnt1 plays a crucial role in the formation of protrusion structures. Using both transgene expression and RNAi-based knockdown approaches, we showed that Wnt1 designates the position where epidermal cells excessively proliferate, leading to the generation of knobbed structures. Furthermore, in the B. alcinous larvae, Wnt1 was also specifically expressed in association with the protrusions. Our results suggest that Wnt1 plays a role in the formation of protrusions on the larval body, and is conserved broadly among diverse species in Lepidoptera.
Collapse
|
11
|
Souza-Ferreira PS, Moreira MF, Atella GC, Oliveira-Carvalho AL, Eizemberg R, Majerowicz D, Melo ACA, Zingali RB, Masuda H. Molecular characterization of Rhodnius prolixus' embryonic cuticle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:89-100. [PMID: 24418313 DOI: 10.1016/j.ibmb.2013.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/05/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The embryonic cuticle (EC) of Rhodnius prolixus envelopes the entire body of the embryo during hatching and provides physical protection, allowing the embryo to pass through a narrow chorionic border. Most of the knowledge about the EC of insects is derived from studies on ultrastructure and secretion processes during embryonic development, and little is known about the molecular composition of this structure. We performed a comprehensive molecular characterization of the major components extracted from the EC of R. prolixus, and we discuss the role of the different molecules that were identified during the eclosion process. The results showed that, similar to the post-embryonic cuticles of insects, the EC of R. prolixus is primarily composed of carbohydrates (57%), lipids (19%), and proteins (8%). Considering only the carbohydrates, chitin is by far the major component (approximately 70%), and it is found primarily along the body of the EC. It is scarce or absent in its prolongations, which are composed of glycosaminoglycans. In addition to chitin, we also identified amino (15%), neutral (12%) and acidic (3%) carbohydrates in the EC of R. prolixus. In addition carbohydrates, we also identified neutral lipids (64.12%) and phospholipids (35.88%). Proteomic analysis detected 68 proteins (55 were identified and 13 are hypothetical proteins) using the sequences in the R. prolixus genome (http://www.vectorbase.org). Among these proteins, 8 out of 15 are associated with cuticle metabolism. These proteins are unequivocally cuticle proteins, and they have been described in other insects. Approximately 35% of the total proteins identified were classified as having a structural function. Chitin-binding protein, amino peptidase, amino acid oxidase, oxidoreductase, catalase and peroxidase are all proteins associated with cuticle metabolism. Proteins known to be cuticle constituents may be related to the function of the EC in assisting the insect during eclosion. To our knowledge, this is the first study to describe the global molecular composition of an EC in insects.
Collapse
Affiliation(s)
- Paula S Souza-Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mônica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Geórgia C Atella
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Ana Lúcia Oliveira-Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Roberto Eizemberg
- Universidade Federal do Rio de Janeiro, Escola de Educação Física e Desportos, 21941-599 Rio de Janeiro, RJ, Brazil
| | - David Majerowicz
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Hatisaburo Masuda
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Shi XF, Bin Han, Li YN, Yi YZ, Li XM, Shen XJ, Zhang ZF. Proteomic analysis of the phenotype of the scaleless wings mutant in the silkworm, Bombyx mori. J Proteomics 2012; 78:15-25. [PMID: 23174119 DOI: 10.1016/j.jprot.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/20/2012] [Accepted: 11/04/2012] [Indexed: 10/27/2022]
Abstract
A scaleless wing mutant of silkworm, Bombyx mori, has much fewer scales than wild type (WT). The scaleless phenotype was associated with tracheal system developmental deficiency and excessive apoptosis of scale cells. In this study, the wing discs proteins of WT and scaleless during pupation were studied using 2-DE and mass spectrometry. Of the 99 identified protein spots, four critical differentially expressed proteins between WT and scaleless were further verified using Q-PCR. At the first day of pupation (P0) in WT, imaginal disk growth factor (IDGF) was upregulated, whereas actin-depolymerizing factor 1 (ADF1) and profilin (PFN), which associated with cellular motility and cytoplasmic extension, were downregulated. We speculated their coaction counteracts the correct organization of the tracheal system in wing disc. Thiol peroxiredoxin (TPx) was upregulated in scaleless at P0, but its mRNA higher expression occurred in the day before pupation (S4). TPx could inhibit the formation of hydrogen peroxide, preventing the release of cytochrome C and activation of the caspase family protease. Its higher expression in scaleless was responsible for the apoptosis of scale cells delayed. The results provide further evidence that the scaleless phenotype was related to the tracheal system developmental deficiency and excessive apoptosis of scale cells.
Collapse
Affiliation(s)
- Xiao-Feng Shi
- The Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Futahashi R, Shirataki H, Narita T, Mita K, Fujiwara H. Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus. BMC Biol 2012; 10:46. [PMID: 22651552 PMCID: PMC3386895 DOI: 10.1186/1741-7007-10-46] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022] Open
Abstract
Background Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. Results To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation. Conclusions This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits.
Collapse
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
14
|
Futahashi R. Whole-mount in situ hybridization of sectioned tissues of species hybrids to detect cis-regulatory changes in gene expression pattern. Methods Mol Biol 2012; 772:319-28. [PMID: 22065447 DOI: 10.1007/978-1-61779-228-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To distinguish whether differences in gene expression between species or between individuals of the same species are caused by cis-regulatory changes or by distribution differences in trans-regulatory proteins, comparison of species-specific mRNA expression in an F1 hybrid by whole-mount in situ hybridization is a rarely used yet very powerful tool. If asymmetric expression pattern is observed for the two alleles, this implies a cis-regulatory divergence of this gene. Alternatively, if symmetric expression pattern is observed for both alleles, the change in expression of this gene is probably caused by changes in the distribution of trans-regulatory proteins. In this chapter, I describe how to prepare RNA probes, tissue samples and how to detect mRNA expression pattern using in situ hybridization. Although I choose to present here the detection of yellow-related gene (YRG) expression pattern in the larval epidermis of swallowtail butterflies, this protocol can be adapted to other species and tissues. YRG mRNA expression is correlated with interspecific differences of yellow and green larval color pattern such as V-shaped markings in swallowtail butterflies. F1 hybrids show an intermediate color pattern between parental species. In this case, both species-specific YRG mRNA showed a similar expression pattern in F1 hybrids, suggesting that the change in expression of YRG is mainly caused by changes in the distribution of trans-regulatory proteins.
Collapse
Affiliation(s)
- Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
15
|
Bae N, Lödl M, Pollak A, Lubec G. Mass spectrometrical analysis of cuticular proteins from the wing of Hebemoia glaucippe (Linnaeus, 1758) (Lepidoptera: Pieridae). J Proteomics 2011; 75:517-31. [DOI: 10.1016/j.jprot.2011.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 12/29/2022]
|
16
|
Shirataki H, Futahashi R, Fujiwara H. Species-specific coordinated gene expression and trans-regulation of larval color pattern in three swallowtail butterflies. Evol Dev 2010; 12:305-14. [DOI: 10.1111/j.1525-142x.2010.00416.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Minelli A, Fusco G. Developmental plasticity and the evolution of animal complex life cycles. Philos Trans R Soc Lond B Biol Sci 2010; 365:631-40. [PMID: 20083638 DOI: 10.1098/rstb.2009.0268] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Metazoan life cycles can be complex in different ways. A number of diverse phenotypes and reproductive events can sequentially occur along the cycle, and at certain stages a variety of developmental and reproductive options can be available to the animal, the choice among which depends on a combination of organismal and environmental conditions. We hypothesize that a diversity of phenotypes arranged in developmental sequence throughout an animal's life cycle may have evolved by genetic assimilation of alternative phenotypes originally triggered by environmental cues. This is supported by similarities between the developmental mechanisms mediating phenotype change and alternative phenotype determination during ontogeny and the common ecological condition that favour both forms of phenotypic variation. The comparison of transcription profiles from different developmental stages throughout a complex life cycle with those from alternative phenotypes in closely related polyphenic animals is expected to offer critical evidence upon which to evaluate our hypothesis.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131 Padova, Italy.
| | | |
Collapse
|
18
|
Futahashi R, Banno Y, Fujiwara H. Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 2010; 12:157-67. [PMID: 20433456 DOI: 10.1111/j.1525-142x.2010.00401.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
19
|
Willis JH. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:189-204. [PMID: 20171281 PMCID: PMC2872936 DOI: 10.1016/j.ibmb.2010.02.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 05/03/2023]
Abstract
The availability of whole genome sequences of several arthropods has provided new insights into structural cuticular proteins (CPs), in particular the distribution of different families, the recognition that these proteins may comprise almost 2% of the protein coding genes of some species, and the identification of features that should aid in the annotation of new genomes and EST libraries as they become available. Twelve CP families are described: CPR (named after the Rebers and Riddiford Consensus); CPF (named because it has a highly conserved region consisting of about forty-four amino acids); CPFL (like the CPFs in a conserved C-terminal region); the TWDL family, named after a picturesque phenotype of one mutant member; four families in addition to TWDL with a preponderance of low complexity sequence that are not member of the families listed above. These were named after particular diagnostic features as CPLCA, CPLCG, CPLCW, CPLCP. There are also CPG, a lepidopteran family with an abundance of glycines, the apidermin family, named after three proteins in Apis mellifera, and CPAP1 and CPAP3, named because they have features analogous to peritrophins, namely one or three chitin-binding domains. Also described are common motifs and features. Four unusual CPs are discussed in detail. Data that facilitated the analysis of sequence variation of single CP genes in natural populations are analyzed.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H. Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1138-1146. [PMID: 19280704 DOI: 10.1016/j.ibmb.2008.05.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many kinds of cuticular proteins are found in a single insect species and their numbers and features are diversified among insects. Because there are so many cuticular proteins and so much sequence variation among them, an overview of cuticular protein gene is needed. Recently, a complete silkworm genome sequence was obtained through the integration of data from two whole genome sequence projects performed independently in 2004. To identify cuticular protein genes in the silkworm Bombyx mori exhaustively, we searched both the Bombyx whole genome sequence as well as various EST libraries, and found 220 putative cuticular protein genes. We also revised the annotation of the gene model, and named each identified cuticular protein based on its motif. The phylogenetic tree of cuticular protein genes among B. mori, Drosophila melanogaster, and Apis mellifera revealed that duplicate cuticular protein clusters have evolved independently among insects. Comparison of EST libraries and northern blot analyses showed that the tissue- and stage-specific expression of each gene was intricately regulated, even between adjacent genes in the same gene cluster. This study reveals many novel cuticular protein genes as well as insights into cuticular protein gene regulation.
Collapse
Affiliation(s)
- Ryo Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
yellow and ebony are the responsible genes for the larval color mutants of the silkworm Bombyx mori. Genetics 2008; 180:1995-2005. [PMID: 18854583 DOI: 10.1534/genetics.108.096388] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many larval color mutants have been obtained in the silkworm Bombyx mori. Mapping of melanin-synthesis genes on the Bombyx linkage map revealed that yellow and ebony genes were located near the chocolate (ch) and sooty (so) loci, respectively. In the ch mutants, body color of neonate larvae and the body markings of elder instar larvae are reddish brown instead of normal black. Mutations at the so locus produce smoky larvae and black pupae. F(2) linkage analyses showed that sequence polymorphisms of yellow and ebony genes perfectly cosegregated with the ch and so mutant phenotypes, respectively. Both yellow and ebony were expressed in the epidermis during the molting period when cuticular pigmentation occurred. The spatial expression pattern of yellow transcripts coincided with the larval black markings. In the ch mutants, nonsense mutations of the yellow gene were detected, whereas large deletions of the ebony ORF were detected in the so mutants. These results indicate that yellow and ebony are the responsible genes for the ch and so loci, respectively. Our findings suggest that Yellow promotes melanization, whereas Ebony inhibits melanization in Lepidoptera and that melanin-synthesis enzymes play a critical role in the lepidopteran larval color pattern.
Collapse
|