1
|
Hegyi B, Csikó KG, Balatoni T, Fröhlich G, Bőcs K, Tóth E, Mohos A, Neumark AR, Menyhárt CD, Ferrone S, Ladányi A. Tumor-Infiltrating Immune Cells and HLA Expression as Potential Biomarkers Predicting Response to PD-1 Inhibitor Therapy in Stage IV Melanoma Patients. Biomolecules 2024; 14:1609. [PMID: 39766316 PMCID: PMC11674713 DOI: 10.3390/biom14121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PD-1 inhibitors are known to be effective in melanoma; however, a considerable proportion of patients fail to respond to therapy, necessitating the identification of predictive markers. We examined the predictive value of tumor cell HLA class I and II expression and immune cell infiltration in melanoma patients treated with PD-1 inhibitors. Pretreatment surgical samples from 40 stage IV melanoma patients were studied immunohistochemically for melanoma cell expression of HLA class I molecules (using four antibody clones with different specificities), HLA-II, and immune cell infiltration (using a panel of 10 markers). Among the responders, the ratio of patients showing melanoma cell HLA-II expression was higher compared to non-responders (p = 0.0158), and similar results were obtained in the case of two anti-HLA-I antibodies. A combined score of HLA-I/II expression also predicted treatment response (p = 0.0019). Intratumoral infiltration was stronger in the responders for most immune cell types. Progression-free survival showed an association with HLA-II expression, the combined HLA score, and the density of immune cells expressing CD134 and PD-1, while overall survival was significantly associated only with HLA class II expression. Our findings corroborate previous results indicating the importance of immune cell infiltration and tumor cell HLA-II expression in the efficacy of PD-1 inhibitor treatment in a "real world" patient cohort and suggest the potential predictive role of HLA class I expression.
Collapse
Affiliation(s)
- Barbara Hegyi
- Department of Chest and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (B.H.); (K.G.C.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Doctoral College, Semmelweis University, H-1085 Budapest, Hungary
| | - Kristóf György Csikó
- Department of Chest and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary; (B.H.); (K.G.C.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Doctoral College, Semmelweis University, H-1085 Budapest, Hungary
| | - Tímea Balatoni
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Oncodermatology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Georgina Fröhlich
- Center of Radiotherapy, National Institute of Oncology, H-1122 Budapest, Hungary;
- Department of Biophysics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Katalin Bőcs
- Department of Diagnostic Radiology, National Institute of Oncology, H-1122 Budapest, Hungary;
| | - Erika Tóth
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Surgical and Molecular Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Anita Mohos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary
| | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Ladányi
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (T.B.); (E.T.)
- Department of Surgical and Molecular Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| |
Collapse
|
2
|
Zhao Y, Yang T, Ouyang Y, Rao W, Liu K, Zheng J, Lv F, Shi Y, Wang F, Liu D, Qiao L, Xia Z, Zhang Y, Chen D, Wang W. Radiofrequency ablation plays double role in immunosuppression and activation of PBMCs in recurrent hepatocellular carcinoma. Front Immunol 2024; 15:1339213. [PMID: 38348038 PMCID: PMC10859425 DOI: 10.3389/fimmu.2024.1339213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Background Radiofrequency ablation (RFA) is the primary curative treatment for hepatocellular carcinoma (HCC) patients who are not eligible for surgery. However, the effects of RFA on the global tumor immune response remain unclear. Method In this study, we examined the phenotypic and functional changes in peripheral blood mononuclear cells (PBMCs) from recurrent HCC patients who had undergone two RFA treatments using mass cytometry and high-throughput mRNA assays. Results We observed significant increase in monocytes and decrease in T cell subpopulations three days after the first RFA treatment and three days after the second RFA treatment. The down-regulation of GZMB, GZMH, GZMK, and CD8A, which are involved in the cytotoxic function of T cells, was observed following RFA. Furthermore, the population of CD8 effector and memory T cells (CD8 Teff and CD8 Tem) significantly decreased after RFA. The expression of CD5 and CD161 in various T cell subpopulations also showed significant reductions. Additionally, elevated secretion of VEGF was observed in monocytes, B cells, regulatory T cells (Tregs), and CD4 naive T cells. Conclusion In recurrent HCC patients, serum components derived from radiofrequency therapy can enhance the antigen-presenting capacity of monocytes. However, they also inhibit the anti-cancer immune response by reducing the population of CD8 effector and memory T cells and suppressing the activation of T cells, as well as down-regulating the expression of CD161 and CD5 in various T cell subpopulations. These tumor-derived components also contribute to an immunosuppressive microenvironment by promoting the secretion of VEGF in monocytes, Tregs, B cells, and CD4 naive T cells.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong, China
| | - Tongwang Yang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Yabo Ouyang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Wei Rao
- The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong, China
| | - Kai Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Jiasheng Zheng
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
| | - Fudong Lv
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
| | - Ying Shi
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Feng Wang
- The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong, China
| | - Dongjie Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Luxin Qiao
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Zhenying Xia
- The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dexi Chen
- The Affiliated Hospital of Qingdao University, Organ Transplantation Center, Qingdao, Shandong, China
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Wenjing Wang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
3
|
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol 2023; 83:102330. [PMID: 37130456 PMCID: PMC10524529 DOI: 10.1016/j.coi.2023.102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
Major histocompatibility complex class-II-restricted presentation by nonprofessional antigen-presenting cells in the tumor microenvironment can regulate antitumor T-cell responses. In murine models, tumor cell-specific MHC class II expression decreases in vivo tumor growth, dependent on T cells. Tumor cell-specific MHC class II expression is associated with improved survival and response to immune checkpoint inhibitors in human cancers. Antigen-presenting cancer-associated fibroblasts (apCAF) present MHC class-II-restricted antigens and activate CD4 T cells. The role of MHC class II on apCAFs depends on the cell of origin. MHC class II on tumoral lymphatic endothelial cells leads to expansion of regulatory T cells and increased in vivo tumor growth.
Collapse
Affiliation(s)
- Anne M Macy
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Lauren M Herrmann
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Anngela C Adams
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - K Taraszka Hastings
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| |
Collapse
|
4
|
Baleeiro RB, Bouwens CJ, Liu P, Di Gioia C, Dunmall LSC, Nagano A, Gangeswaran R, Chelala C, Kocher HM, Lemoine NR, Wang Y. MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncoimmunology 2022; 11:2080329. [PMID: 35655709 PMCID: PMC9154752 DOI: 10.1080/2162402x.2022.2080329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022] Open
Abstract
MHC class II expression is a hallmark of professional antigen-presenting cells and key to the induction of CD4+ T helper cells. We found that these molecules are ectopically expressed on tumor cells in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC) and on several PDAC cell lines. In contrast to the previous reports that tumoral expression of MHC-II in melanoma enabled tumor cells to evade immunosurveillance, the expression of MHC-II on PDAC cells neither protected cancer cells from Fas-mediated cell death nor caused T-cell suppression by engagement with its ligand LAG-3 on activated T-cells. In fact and surprisingly, the MHC-II/LAG-3 pathway contributed to CD4+ and CD8+ T-cell cytotoxicity toward MHC-II-positive PDAC cells. By combining bioinformatic tools and cell-based assays, we identified a number of immunogenic neo-antigens that can be presented by the patients' HLA class II alleles. Furthermore, CD4+ T-cells stimulated with neo-antigens were capable of recognizing and killing a human PDAC cell line expressing the mutated genes. To expand this approach to a larger number of PDAC patients, we show that co-treatment with IFN-γ and/or MEK/HDAC inhibitors induced tumoral MHC-II expression on MHC-II-negative tumors that are IFN-γ-resistant. Taken together, our data point to the possibility of harnessing MHC-II expression on PDAC cells for neo-antigen-based immunotherapy.
Collapse
Affiliation(s)
- Renato B. Baleeiro
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christian J. Bouwens
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ai Nagano
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathistevy Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas R. Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Chen P, Zhao L, Wang H, Zhang L, Zhang W, Zhu J, Yu J, Zhao S, Li W, Sun C, Wu C, He Y, Zhou C. Human leukocyte antigen class II-based immune risk model for recurrence evaluation in stage I-III small cell lung cancer. J Immunother Cancer 2021; 9:jitc-2021-002554. [PMID: 34362829 PMCID: PMC8351500 DOI: 10.1136/jitc-2021-002554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 01/17/2023] Open
Abstract
Background Immunotherapy has revolutionized therapeutic patterns of small cell lung cancer (SCLC). Human leukocyte antigen class II (HLA class II) is related to antitumor immunity. However, the implications of HLA class II in SCLC remain incompletely understood. Materials and methods We investigated the expression patterns of HLA class II on tumor cells and tumor-infiltrating lymphocytes (TILs) by immunohistochemistry staining and its association with clinical parameters, immune markers, and recurrence-free survival (RFS) in 102 patients with stage I–III SCLC with radical surgery. Additionally, an HLA class II-based immune risk model was established by least absolute shrinkage and selection operator regression. With bioinformatics methods, we investigated HLA class II-related enrichment pathways and immune infiltration landscape in SCLC. Results HLA class II on tumor cells and TILs was positively expressed in 9 (8.8%) and 45 (44.1%) patients with SCLC, respectively. HLA class II on TILs was negatively associated with lymph node metastasis and positively correlated with programmed death-ligand 1 (PD-L1) on TILs (p<0.001) and multiple immune markers (CD3, CD4, CD8, FOXP3; p<0.001). Lymph node metastasis (OR 0.314, 95% CI 0.118 to 0.838, p=0.021) and PD-L1 on TILs (OR 3.233, 95% CI 1.051 to 9.95, p=0.041) were independent predictive factors of HLA class II on TILs. HLA class II positivity on TILs prompted a longer RFS (40.2 months, 95% CI 31.7 to 48.7 vs 28.8 months, 95% CI 21.4 to 36.3, p=0.014). HLA class II on TILs, PD-L1 on TILs, CD4, and FOXP3 were enrolled in the immune risk model, which categorized patients into high-risk and low-risk groups and had better power for predicting the recurrence than tumor stage. Pathway enrichment analyses showed that patients with high HLA class II expression demonstrated signatures of transmembrane transportation, channel activity, and neuroactive ligand–receptor interaction. High-risk SCLC patients had a higher proportion of T follicular helper cells (p=0.034) and a lower proportion of activated memory CD4-positive T cells (p=0.040) and resting dendritic cells (p=0.045) versus low-risk patients. Conclusions HLA class II plays a crucial role in tumor immune microenvironment and recurrence prediction. This work demonstrates the prognostic and clinical values of HLA class II in patients with SCLC.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China.,Department of Oncology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jun Zhu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China .,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, School of Medicine, Tongji University, Shanghai 200092, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| |
Collapse
|
6
|
Gaida MM. [The ambiguous role of the inflammatory micromilieu in solid tumors]. DER PATHOLOGE 2021; 41:118-123. [PMID: 33104890 DOI: 10.1007/s00292-020-00837-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Besides host defense against infections, the main function of the immune system is to eliminate tumor cells. Therefore, nearly, all solid tumors have a heterogeneous fibro-inflammatory microenvironment, which consists of myofibroblastic cells, extracellular matrix components, and infiltrates from various types of immune cell. In particular, pancreatic ductal adenocarcinoma is a prototype of a tumor with a pronounced inflammatory microenvironment, in which the majority of the tumor mass consists of nonneoplastic stromal and immune cells. Our own data and data from the literature indicate a protective role of tumor-infiltrating T cells for the host. On the other hand, we were able to show that a defined T cell subpopulation paradoxically promotes the progression of the tumor. Our investigations now focus on these cells, known as "Th17," in the tumor microenvironment. OBJECTIVES To elucidate the mechanisms of the infiltrated immune cells and their mediators in the tumor microenvironment. MATERIALS AND METHODS Human pancreatic cancer tissue was used for (immune) histological staining and morphometric analysis and the results were correlated with clinical parameters and with diffusion-weighted magnetic resonance imaging images. The molecular mechanisms were analyzed in cell culture approaches using human tumor cells and human immune cells. With molecular biological methods and functional assays cell growth, invasion and colony formation were assessed. The in vivo correlation of the results and functional interventions were tested in murine and avian (xenograft) models. RESULTS AND CONCLUSION Tumor-infiltrating immune cells of type Th17 and their mediators promoted the progression of the tumor depending on density, activation status, and cytokine profile. On molecular level, we identified a Th17-mediated increase of tumor cell migration and invasion, an increased neoangiogenesis, as well as a reorganization of the tumor stroma and microarchitecture. The data show that the progression of pancreatic cancer, depends on the status of activation and the cytokine profile of the infiltrated T cells.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institut für Pathologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
7
|
Zhao X, Ren Y, Lu Z. Potential diagnostic and therapeutic roles of exosomes in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188414. [PMID: 32866530 DOI: 10.1016/j.bbcan.2020.188414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PaCa) is considered an aggressive but still asymptomatic malignancy. Due to the lack of effective diagnostic markers, PaCa is often diagnosed during late metastatic stages. Besides surgical resection, no other treatment appears to be effective during earlier stages of the disease. Exosomes are related to a class of nanovesicles coated by a bilayer lipid membrane and enriched in protein, nucleic acid, and lipid contents. They are widely present in human body fluids, including blood, saliva, and pancreatic duct fluid, with functions in signal transduction and material transport. A large number of studies have suggested for a crucial role for exosomes in PaCa, which may be utilized to improve its future diagnosis and treatment, but the underlying molecular mechanisms as well as their potential clinical applications are largely unknown. By collecting and analyzing the most up-to-date literature, here we summarize the current progress of the clinical applications related to exosomes in PaCa. Therefore, we presently provide some rationale for the potential value of exosomes in PaCa, thereby promoting putative applications in targeted PaCa treatment.
Collapse
Affiliation(s)
- Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
8
|
Gastroenteropancreatic neuroendocrine neoplasms and inflammation: A complex cross-talk with relevant clinical implications. Crit Rev Oncol Hematol 2019; 146:102840. [PMID: 31918344 DOI: 10.1016/j.critrevonc.2019.102840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict interaction between neuroendocrine system and inflammation, which can play an important role in NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, can favor cancer induction and progression, and can promote immune editing. On the other hand, a balanced immune system represents a relevant step in cancer prevention through the elimination of dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. In this review, we provide an overview concerning the complex interplay between inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical implications in these tumors.
Collapse
|
9
|
Stern L, Giese N, Hackert T, Strobel O, Schirmacher P, Felix K, Gaida MM. Overcoming chemoresistance in pancreatic cancer cells: role of the bitter taste receptor T2R10. J Cancer 2018; 9:711-725. [PMID: 29556329 PMCID: PMC5858493 DOI: 10.7150/jca.21803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
Bitter taste receptors (T2Rs) are G-protein coupled transmembrane proteins initially identified in the gustatory system as sensors for the taste of bitter. Recent evidence on expression of these receptors outside gustatory tissues suggested alternative functions, and there is growing interest of their potential role in cancer biology. In this study, we report for the first time, expression and functionality of the bitter receptor family member T2R10 in both human pancreatic ductal adenocarcinoma (PDAC) tissue and PDAC derived cell lines. Caffeine, a known ligand for T2R10, rendered the tumor cells more susceptible to two standard chemotherapeutics, Gemcitabine and 5-Fluoruracil. Knocking down T2R10 in the cell line BxPC-3 reduced the caffeine-induced effect. As possible underlying mechanism, we found that caffeine via triggering T2R10 inhibited Akt phosphorylation and subsequently downregulated expression of ABCG2, the so-called multi-drug resistance protein that participates in rendering cells resistant to a variety of chemotherapeutics. In conclusion, T2R10 is expressed in pancreatic cancer and it downmodulates the chemoresistance of the tumor cells.
Collapse
Affiliation(s)
- Louisa Stern
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Ding G, Zhou L, Shen T, Cao L. IFN-γ induces the upregulation of RFXAP via inhibition of miR-212-3p in pancreatic cancer cells: A novel mechanism for IFN-γ response. Oncol Lett 2018; 15:3760-3765. [PMID: 29467893 DOI: 10.3892/ol.2018.7777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/05/2017] [Indexed: 01/05/2023] Open
Abstract
Previous studies have demonstrated that pancreatic cancer-derived microRNA (miR)-212-3p can inhibit the expression of regulatory factor X-associated protein (RFXAP), an important transcription factor for major histocompatibility complex (MHC) class II, and thereby lead to downregulation of MHC class II in dendritic cells. It has also been established that interferon (IFN)-γ can increase the expression of MHC class II in immune cells. It was therefore hypothesized that IFN-γ can inhibit miR-212-3p expression in pancreatic cancer, leading to the upregulation of RFXAP and MHC class II expression. This may represent a novel molecular mechanism underlying the use of IFN-γ in immunotherapy. Data from the present study revealed that miR-212-3p was inhibited by IFN-γ in a dose and time-dependent manner in the pancreatic ductal adenocarcinoma cell line PANC-1. RFXAP and MHC class II expression were increased following IFN-γ stimulation. A luciferase assay was performed to validate RFXAP as a target gene of miR-212-3p. The expression levels of RFXAP and MHC class II were decreased by miR-212-3p mimics and increased by miR-212-3p inhibitors. In PANC-1 cells transfected with miR-212-3p mimics, IFN-γ stimulation could not increase the RFXAP and MHC class II. The results from the present study suggest that IFN-γ increases RFXAP and MHC class II expression by inhibiting miR-212-3p. To the best of our knowledge, this is the first report of this novel molecular mechanism underlying the effects of IFN-γ on pancreatic cancer, which may aid with the development of immunotherapies for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Tao Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
11
|
Mayer P, Dinkic C, Jesenofsky R, Klauss M, Schirmacher P, Dapunt U, Hackert T, Uhle F, Hänsch GM, Gaida MM. Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging. Theranostics 2018; 8:13-30. [PMID: 29290790 PMCID: PMC5743457 DOI: 10.7150/thno.21089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/13/2017] [Indexed: 01/06/2023] Open
Abstract
In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor.
Collapse
|
12
|
Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, Xiang J, Wu Z, Jiang G, Cao L. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2016; 6:29877-88. [PMID: 26337469 PMCID: PMC4745769 DOI: 10.18632/oncotarget.4924] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
It has been reported tumor-derived exosomes can transfer miRNAs to recipient cells in the tumor microenvironment, promoting tumor invasion and metastasis. The present research aimed to explore how pancreatic cancer (PC) derived exosomal miRNAs inhibited mRNA expression of dendritic cells and induced immune tolerance. Our study revealed that 9 PC-related miRNAs were increased and 208 mRNAs were inhibited in exosome-stimulated dendritic cells (exo-iDCs) compared to immature dendritic cells (iDCs). A target prediction between the 9 miRNAs and 208 mRNAs was performed by bioinformatics database analysis. From the target prediction, it was predicted and validated that regulatory factor X-associated protein (RFXAP), an important transcription factor for MHC II, was inhibited by miR-212-3p transferred from PC-secreted exosomes, resulting in decreased MHC II expression. Moreover, a clinical study showed a negative correlation between miR-212-3p and RFXAP in PC tissue. From these data, we concluded that PC-related miRNAs can be transferred to dendritic cells via exosome and inhibit target mRNA expression. More importantly, PC-derived exosomes inhibit RFXAP expression via miR-212-3p, which decrease MHC II expression and induce immune tolerance of dendritic cells. RFXAP deficiency has never been reported in solid tumors. The functions and mechanisms of RFXAP in tumors deserve future explorations.
Collapse
Affiliation(s)
- Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjing Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingming Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mingnian Fu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyang Xiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengrong Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guixing Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Pham K, Delitto D, Knowlton AE, Hartlage ER, Madhavan R, Gonzalo DH, Thomas RM, Behrns KE, George TJ, Hughes SJ, Wallet SM, Liu C, Trevino JG. Isolation of Pancreatic Cancer Cells from a Patient-Derived Xenograft Model Allows for Practical Expansion and Preserved Heterogeneity in Culture. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1537-46. [PMID: 27102771 DOI: 10.1016/j.ajpath.2016.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/18/2023]
Abstract
Commercially available, highly passaged pancreatic cancer (PC) cell lines are of limited translational value. Attempts to overcome this limitation have primarily consisted of cancer cell isolation and culture directly from human PC specimens. However, these techniques are associated with exceedingly low success rates. Here, we demonstrate a highly reproducible culture of primary PC cell lines (PPCLs) from patient-derived xenografts, which preserve, in part, the intratumoral heterogeneity known to exist in PC. PPCL expansion from patient-derived xenografts was successful in 100% of attempts (5 of 5). Phenotypic analysis was evaluated with flow cytometry, immunofluorescence microscopy, and short tandem repeat profiling. Importantly, tumorigenicity of PPCLs expanded from patient-derived xenografts was assessed by subcutaneous injection into nonobese diabeteic.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice. Morphologically, subcutaneous injection of all PPCLs into mice yielded tumors with similar characteristics to the parent xenograft. PPCLs uniformly expressed class I human leukocyte antigen, epithelial cell adhesion molecule, and cytokeratin-19. Heterogeneity within each PPCL persisted in culture for the frequency of cells expressing the cancer stem cell markers CD44, CD133, and c-Met and the immunologic markers human leukocyte antigen class II and programmed death ligand 1. This work therefore presents a reliable method for the rapid expansion of primary human PC cells and, thereby, provides a platform for translational investigation and, importantly, potential personalized therapeutic approaches.
Collapse
Affiliation(s)
- Kien Pham
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Daniel Delitto
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Andrea E Knowlton
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Emily R Hartlage
- Department of Oral Biology, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ricky Madhavan
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - David H Gonzalo
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Ryan M Thomas
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Kevin E Behrns
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Thomas J George
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Steven J Hughes
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Shannon M Wallet
- Department of Internal Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida
| | - Chen Liu
- Department of Pathology, Immunology, Laboratory Medicine, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| | - Jose G Trevino
- Department of Surgery, Colleges of Medicine, Dentistry, and Public Health and Health Professions, University of Florida Health Science Center, Gainesville, Florida.
| |
Collapse
|
14
|
Shen H, Liu C, Shao P, Yi L, Wang Y, Mills Ko E, Tian Z, Zhao X, Wang J, Xing L, Zhang X. Enhanced phenotypic alterations of alveolar type II cells in response to Aflatoxin G1 -induced lung inflammation. J Cell Physiol 2015; 230:1199-211. [PMID: 25336278 DOI: 10.1002/jcp.24852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/14/2014] [Indexed: 12/13/2022]
Abstract
Recently, we discovered that Aflatoxin G1 (AFG1 ) induces chronic lung inflammatory responses, which may contribute to lung tumorigenesis in Balb/C mice. The cancer cells originate from alveolar type II cells (AT-II cells). The activated AT-II cells express high levels of MHC-II and COX-2, may exhibit altered phenotypes, and likely inhibit antitumor immunity by triggering regulatory T cells (Tregs). However, the mechanism underlying phenotypic alterations of AT-II cells caused by AFG1 -induced inflammation remains unknown. In this study, increased MHC-II expression in alveolar epithelium was observed and associated with enhanced Treg infiltration in mouse lung tissues with AFG1 -induced inflammation. This provides a link between phenotypically altered AT-II cells and Treg activity in the AFG1 -induced inflammatory microenvironment. AFG1 -activated AT-II cells underwent phenotypic maturation since AFG1 upregulated MHC-II expression on A549 cells and primary human AT-II cells in vitro. However, mature AT-II cells may exhibit insufficient antigen presentation, which is necessary to activate effector T cells, due to the absence of CD80 and CD86. Furthermore, we treated A549 cells with AFG1 and TNF-α together to mimic an AFG1 -induced inflammatory response in vitro, and we found that TNF-α and AFG1 coordinately enhanced MHC-II, CD54, COX-2, IL-10, and TGF-β expression levels in A549 cells compared to AFG1 alone. The phenotypic alterations of A549 cells in response to the combination of TNF-α and AFG1 were mainly regulated by TNF-α-mediated induction of the NF-κB pathway. Thus, enhanced phenotypic alterations of AT-II cells were induced in response to AFG1 -induced inflammation. Thus, AT-II cells are likely to suppress anti-tumor immunity by triggering Treg activity.
Collapse
Affiliation(s)
- Haitao Shen
- Lab of Pathology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci 2014; 106:1-8. [PMID: 25338734 PMCID: PMC4317780 DOI: 10.1111/cas.12559] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/19/2014] [Accepted: 10/14/2014] [Indexed: 12/24/2022] Open
Abstract
The immunological significance of autophagy in the tumor microenvironment remains unclear. To explore the relationship between autophagy and anti-tumor immune responses, we investigated the expression of autophagy-related proteins and infiltration of immune cells using immunohistochemistry (IHC). The expression of three representative autophagy components, LC3, Beclin-1 and p62/SQSTM1, as well as the number of dendritic cells (DC), T cells and NK cells were examined by IHC in 74 patients with oral squamous cell carcinoma (OSCC). The relationship between the expression of autophagy-associated molecules and various clinicopathological parameters was also evaluated. The expression of both LC3 and p62/SQSTM1 in the peripheral site significantly correlated with an increase in the infiltration of T cells. Furthermore, the expression of p62/SQSTM1 and Beclin-1 correlated with that of HLA class I and class II in tumor cells, respectively. In addition, several unfavorable clinicopathological parameters correlated with an increase in the expression of LC3 in the peripheral site. The correlation observed between LC3 or p62/SQSTM1 and the infiltration of T cells suggests that autophagy may actively mobilize immune cells toward the cancer bed. Meanwhile, the three autophagy-associated proteins examined were linked to malignant potential and an unfavorable prognosis.
Collapse
Affiliation(s)
- Koichi Sakakura
- Department of Otolaryngology - Head and Neck Surgery, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response. Pancreas 2014; 43:1066-72. [PMID: 24987872 DOI: 10.1097/mpa.0000000000000160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The loss of major histocompatibility complex (MHC) classes I and II is a well-known mechanism by which cancer cells are able to escape from immune recognition. In this study, we analyzed the expression of antigen processing and presenting molecules in 2 cell lines derived from mouse models of pancreatic ductal adenocarcinoma (PDA) and the effects of the re-expression of MHC class II on PDA rejection. METHODS The PDA cell lines were analyzed for the expression of MHC class I, II, and antigen-processing molecules by flow cytometry or polymerase chain reaction. We generated stable PDA-MHC class II transactivator (CIITA) cells and injected them into syngeneic mice. The CD4 and CD8 T-cell role was analyzed in vitro and in vivo. RESULTS Murine PDA cell lines were negative for MHC and antigen-processing molecules, but their expression was restored by exogenous interferon-γ. CIITA-tumor cells were rejected in 80% to 100% of injected mice, which also developed long-lasting immune memory. In vitro assays and immunohistochemical analyses revealed the recruitment of T effector cells and CD8 T cells into the tumor area. CONCLUSIONS Overall, these data confirm that immunotherapy is a feasible therapeutic approach to recognize and target an aggressive cancer such as PDA.
Collapse
|
17
|
Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clin Dev Immunol 2012; 2012:720768. [PMID: 23227088 PMCID: PMC3514849 DOI: 10.1155/2012/720768] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT) is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN) and the tumor cell transition, biopsies of patients with PDAC (n = 115) were analysed with regard to PMN infiltration and nuclear expression of β-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation of β-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated, β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMT in vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.
Collapse
|
18
|
Gaida MM, Steffen TG, Günther F, Tschaharganeh DF, Felix K, Bergmann F, Schirmacher P, Hänsch GM. Polymorphonuclear neutrophils promote dyshesion of tumor cells and elastase-mediated degradation of E-cadherin in pancreatic tumors. Eur J Immunol 2012; 42:3369-80. [PMID: 23001948 DOI: 10.1002/eji.201242628] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presenting with a micropapillary growth pattern is frequently associated with a prominent neutrophil infiltration into the tumor. The relevance of neutrophil infiltrates for tumor progression, however, is still debated. To gain insight into the role of polymorphonuclear neutrophils (PMNs) in PDAC, we assessed their effect on pancreatic tumor cells grown in vitro as monolayers. Time-lapse video microscopy showed a PMN-induced dyshesion of the tumor cells, and subsequent experiments revealed that this dyshesion was due to PMN elastase-mediated degradation of E-cadherin, an adhesion molecule that mediates the intercellular contact of the tumor cells. E-cadherin degradation by elastase or--(for comparison) down-modulation by specific siRNA, significantly increased the migratory capacity of the pancreatic tumor cells, leading to the hypothesis that PMNs could contribute to the invasive tumor growth. To address this issue, biopsies of patients with PDAC (n = 112) were analyzed. We found that E-cadherin expression correlated negatively with PMN infiltration, compatible with the notion that E-cadherin is cleaved by PMN-derived elastase, which in turn could result in the dispersal of the tumor cells, enhanced migratory capacity and thus invasive tumor growth.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|