1
|
Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int 2025; 25:165. [PMID: 40296128 PMCID: PMC12039184 DOI: 10.1186/s12935-025-03787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The human microbiome has always been an important determinant of health and recently, its role has also been described in cancer. The altered microbiome could aid cancer progression, modulate chemoresistance and significantly alter drug efficacy. The broad implications of microbes in cancer have prompted researchers to investigate the microbe-cancer axis and identify whether modifying the microbiome could sensitize cancer cells for therapy and improve the survival outcome of cancer patients. The preclinical data has shown that enhancing the number of specific microbial species could restore the patients' response to cancer drugs and the microbial biomarkers may play a vital role in cancer diagnostics. The elucidation of detailed interactions of the human microbiota with cancer would not only help identify the novel drug targets but would also enhance the efficacy of existing drugs. The field exploring the emerging roles of microbiome in cancer is at a nascent stage and an in-depth scientific perspective on this topic would make it more accessible to a wider audience. In this review, we discuss the scientific evidence connecting the human microbiome to the origin and progression of cancer. We also discuss the potential mechanisms by which microbiota affects initiation of cancer, metastasis and chemoresistance. We highlight the significance of the microbiome in therapeutic outcome and evaluate the potential of microbe-based cancer therapy.
Collapse
Affiliation(s)
- Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector-125, Noida, Uttar Pradesh, 201303, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Xu JX, Ma LJ, Tu LY, Tang QS, Wu B, Jiang LH. The Effect of Cuproptosis-Related Proteins on Macrophage Polarization in Mesothelioma is Revealed by scRNA-seq. Biol Trace Elem Res 2025; 203:1898-1908. [PMID: 39177724 PMCID: PMC11920352 DOI: 10.1007/s12011-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
High invasiveness mesothelioma is a malignant tumor of the peritoneum or pleura. The effect of cuproptosis on mesothelioma (MESO) is still unknown, though. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets were used to identify differential genes linked to cuproptosis in mesothelioma. Multigene features were then created to assess the course of the disease. Use single-cell data and in vitro validation to uncover crucial gene regulation mechanisms. In MESO, we found nine differentially expressed genes linked to cuproptosis. Using univariate Cox and LASSO regression techniques, a 3-gene feature (P < 0.05) was created, showing a good predictive potential for survival time. According to the risk score, patients in the low-risk subset had a considerably greater survival rate than those in the high-risk subset (P = 0). The similar survival pattern and prediction performance are also seen in the validation queue. The findings of the drug sensitivity research indicate that in high-risk patients, vinblastine, paclitaxel, gefitinib, and erlotinib are sensitive medications (P < 0.05). Classical monocytes were identified as core cells connected to cuproptosis by the CellChat results. SLC31A1 is implicated in the positive regulation of M2 macrophage polarization, according to cell subtype analysis and in vitro confirmation. Genes linked to cuproptosis have a major influence on tumor immunity and can predict how MESO will progress.
Collapse
Affiliation(s)
- Jia-Xin Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Li-Jing Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Li-Ying Tu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Qi-Sheng Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China
| | - Bian Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| | - Li-Hong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong District, Kunming, 400042, China.
- Department of General Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Zushuai M, Yanrong J, Chengdu Z, Xu Z, Qianshan D. Network pharmacological approach combined with weighted gene co-expression network analysis identifies CDKN2A as the keg target of Changweiqing against colorectal cancer. Hereditas 2025; 162:33. [PMID: 40065477 PMCID: PMC11892207 DOI: 10.1186/s41065-025-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Changweiqing (CWQ) is a Chinese herbal formula for the treatment of the gastrointestinal tract diseases, but its role in the treatment of colorectal cancer (CRC) has not been clarified. This study aimed to explore the molecular mechanism of CWQ in CRC treatment through bioinformatics analysis and network pharmacology. METHODS Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTargetPrediction database were used to collect the bioactive components of CWQ. The databases including DisgeNET, GeneCards, MalaCards, Online Mendelian Inheritance in Man and Comparative Toxicogenomics were used to obtain CRC-related targets. The Cancer Genome Atlas - colon adenocarcinoma dataset was used to obtain prognosis-related genes in CRC based on weighted gene co-expression network analysis (WGCNA). A protein-protein interaction network was constructed to screen core targets, with STRING database and Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery database. Molecular docking was performed with AutoDock Vina software. Core targets were further analyzed using Gene Expression Profiling Interactive Analysis platform, Human Protein Atlas database, University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) and GeneMANIA database. In vitro experiments were further performed to investigate the effects of quercetin, one of the main components of CWQ, on CRC cells. RESULTS 6356, 1901 and 2980 CRC-related genes were obtained from differential expression analysis, WGCNA and open access databases, respectively. CWQ contained a total of 70 bioactive ingredients, of which 64 ingredients had a total of 836 therapeutic targets. Functional enrichment analysis indicated that CWQ may be involved in regulating pathways in cancer, MAPK signaling pathway and AGE-RAGE signaling pathway, and further analysis identified 14 core targets of CWQ. These core targets were significantly correlated with cell cycle, p53 signaling pathway, FoxO signaling pathway and pathways in cancer. Among these core targets, cyclin-dependent kinase inhibitor 2 A (CDKN2A) expression was closely associated with shorter overall survival and clinical stage of CRC patients. The main bioactive ingredients of CWQ targeting CDKN2A were quercetin, luteolin, kaempferol, isorhamnetin, 7-O-methylisomucronulatol and 7-Methoxy-2-methyl isoflavone. Additionally, quercetin caused G0/G1 phase arrest and inhibited the viability of CRC cells. CONCLUSION The active ingredients of CWQ may play an anti-CRC role through multi-targets and multi-pathways, regulating the cell cycle and cell viability of CRC cells.
Collapse
Affiliation(s)
- Ma Zushuai
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhongxiang, Hubei, 431900, China
- Department of Gastroenterology, Zhongxiang People's Hospital, Zhongxiang, Hubei, 431900, China
| | - Ji Yanrong
- Department of Gastroenterology, Zhongxiang People's Hospital, Zhongxiang, Hubei, 431900, China
| | - Zhao Chengdu
- Department of Gastroenterology, Zhongxiang People's Hospital, Zhongxiang, Hubei, 431900, China
| | - Zhu Xu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Ding Qianshan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Zhongxiang, Hubei, 431900, China.
| |
Collapse
|
5
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
6
|
Zhang L, Duan X, Zhao Y, Zhang D, Zhang Y. Implications of intratumoral microbiota in tumor metastasis: a special perspective of microorganisms in tumorigenesis and clinical therapeutics. Front Immunol 2025; 16:1526589. [PMID: 39995663 PMCID: PMC11847830 DOI: 10.3389/fimmu.2025.1526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Tumor metastasis is the main cause of therapeutic failure and mortality in cancer patients. The intricate metastastic process is influenced by both the intrinsic properties of tumor cells and extrinsic factors, such as microorganisms. Notably, some microbiota have been discovered to colonize tumor tissues, collectively known as intratumoral microbiota. Intratumoral microbiota can modulate tumor progression through multiple mechanisms, including regulating immune responses, inducing genomic instability and gene mutations, altering metabolic pathways, controlling epigenetic pathways, and disrupting cancer-related signaling pathways. Furthermore, intratumoral microbiota have been shown to directly impact tumor metastasis by regulating cell adhesion, stem cell plasticity and stemness, mechanical stresses and the epithelial-mesenchymal transition. Indirectly, they may affect tumor metastasis by modulating the host immune system and the tumor microenvironment. These recent findings have reshaped our understanding of the relationship between microorganims and the metastatic process. In this review, we comprehensively summarize the existing knowledge on tumor metastasis and elaborate on the properties, origins and carcinogenic mechanisms of intratumoral microbiota. Moreover, we explore the roles of intratumoral microbiota in tumor metastasis and discuss their clinical implications. Ongoing research in this field will establish a solid foundation for novel therapeutic strategies and clinical treatments for various tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| | | | | | | | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Bo S, You Y, Wang Y, Zhang Y, Bai B, Jiang T, Gao Y. Identification of signatures associated with microsatellite instability and immune characteristics to predict the prognostic risk of colon cancer. Open Med (Wars) 2024; 19:20241056. [PMID: 39726813 PMCID: PMC11669901 DOI: 10.1515/med-2024-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background Microsatellite instability (MSI) significantly impacts treatment response and outcomes in colon cancer; however, its underlying molecular mechanisms remain unclear. This study aimed to identify prognostic biomarkers by comparing MSI and microsatellite stability (MSS). Methods Data from the GSE39582 dataset downloaded from the Gene Expression Omnibus database were analyzed for differentially expressed genes (DEGs) and immune cell infiltration between MSI and MSS. Then, weighted gene co-expression network analysis (WGCNA) was utilized to identify the key modules, and the modules related to immune infiltration phenotypes were considered as the immune-related gene modules, followed by enrichment analysis of immune-related module genes. Prognostic signatures were derived using Cox regression, and their correlation with immune features and clinical features was assessed, followed by a nomogram construction. Results A total of 857 DEGs and 14 differential immune cell infiltration between MSI and MSS were obtained. Then, WGCNA identified two immune-related modules comprising 356 genes, namely MEturquoise and MEbrown. Eight signature genes were identified, namely PLK2, VSIG4, LY75, GZMB, GAS1, LIPG, ANG, and AMACR, followed by prognostic model construction. Both training and validation cohorts revealed that these eight signature genes have prognostic value, and the prognostic model showed superior predictive performance for colon cancer prognosis and distinguished the clinical characteristics of colon cancer patients. Notably, VSIG4 among the signature genes correlated significantly with immune infiltration, human leukocyte antigen expression, and immune pathway enrichment. Finally, the constructed nomogram model could significantly predict the prognosis of colorectal cancer. Conclusion This study identifies eight prognostic signature genes associated with MSI and immune infiltration in colon cancer, suggesting their potential for predicting prognostic risk.
Collapse
Affiliation(s)
- Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yan Zhang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| |
Collapse
|
9
|
Gibbs RJ, Chambers AC, Hill DJ. The emerging role of Fusobacteria in carcinogenesis. Eur J Clin Invest 2024; 54 Suppl 2:e14353. [PMID: 39674881 DOI: 10.1111/eci.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
The Fusobacterium genus comprises Gram-negative, obligate anaerobic bacteria that typically reside in the periodontium of the oral cavity, gastrointestinal tract, and female genital tract. The association of Fusobacterial spp. with colorectal tumours is widely accepted, with further evidence that this pathogen may also be implicated in the development of other malignancies. Fusobacterial spp. influence malignant cell behaviours and the tumour microenvironment in various ways, which can be related to the multiple surface adhesins expressed. These adhesins include Fap2 (fibroblast-activated protein 2), CpbF (CEACAM binding protein of Fusobacteria), FadA (Fusobacterium adhesin A) and FomA (Fusobacterial outer membrane protein A). This review outlines the influence of Fusobacteria in promoting cancer initiation and progression, impacts of therapeutic outcomes and discusses potential therapeutic interventions where appropriate.
Collapse
|
10
|
Zhou Q, Zhou L, Chen X, Chen Q, Hao L. Crosstalk Between the Intratumoral Microbiota and the Tumor Microenvironment: New Frontiers in Solid Tumor Progression and Treatment. Cancer Rep (Hoboken) 2024; 7:e70063. [PMID: 39559964 PMCID: PMC11574561 DOI: 10.1002/cnr2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The microbiota plays a significant role in the tumor microenvironment, and its impact on tumor development and treatment outcome cannot be overlooked. Thus, it is essential to comprehend the interactions between the microbiota and the tumor microenvironment. RECENT FINDINGS With the advent of next-generation sequencing, microbiota research has advanced significantly in recent years. The interaction between the intratumoral microbiota and the tumor microenvironment is an emerging area of research that holds great promise for understanding and treating solid tumor progression. This crosstalk between the intratumoral microbiota and the tumor microenvironment is a complex process that involves a multitude of factors, including the immune system, cellular signaling pathways, and metabolic processes. The origin of the intratumoral microbiota differs between various solid tumor, and the quantity and diversity of intratumoral microbiota also fluctuate significantly within each solid tumor. CONCLUSION The aim of this review is to provide a detailed summary of the intratumoral microbiota in various types of solid tumors. This will include an analysis of their origins, differences, and how they impact the progression of solid tumors. Furthermore, we will emphasize the significant potential that the intratumoral microbiota holds for the diagnosis and treatment of solid tumors.
Collapse
Affiliation(s)
- Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Lijun Zhou
- Department of Urology, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
11
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
12
|
Moe KT, Tan KSW. Mechanistic Insights on Microbiota-Mediated Development and Progression of Esophageal Cancer. Cancers (Basel) 2024; 16:3305. [PMID: 39409925 PMCID: PMC11475040 DOI: 10.3390/cancers16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide, and its two major types, esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), present a severe global public health problem with an increasing incidence and mortality. Established risk factors include smoking, alcohol consumption, and dietary habits, but recent research has highlighted the substantial role of oral microbiota in EC pathogenesis. This review explores the intricate relationship between the microbiome and esophageal carcinogenesis, focusing on the following eight significant mechanisms: chronic inflammation, microbial dysbiosis, production of carcinogenic metabolites, direct interaction with epithelial cells, epigenetic modifications, interaction with gastroesophageal reflux disease (GERD), metabolic changes, and angiogenesis. Certain harmful bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are specifically implicated in sustaining irritation and tumor progression through pathways including NF-κB and NLRP3 inflammasome. Additionally, the review explores how microbial byproducts, including short-chain fatty acids (SCFAs) and reactive oxygen species (ROS), contribute to DNA harm and disease advancement. Furthermore, the impact of reflux on microbiota composition and its role in esophageal carcinogenesis is evaluated. By combining epidemiological data with mechanistic understanding, this review underscores the potential to target the microbiota-immune system interplay for novel therapeutic and diagnostic strategies to prevent and treat esophageal cancer.
Collapse
Affiliation(s)
- Kyaw Thu Moe
- Biomedical Sciences, Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Health Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| |
Collapse
|
13
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
14
|
Bi X, Wang J, Liu C. Intratumoral Microbiota: Metabolic Influences and Biomarker Potential in Gastrointestinal Cancer. Biomolecules 2024; 14:917. [PMID: 39199305 PMCID: PMC11353126 DOI: 10.3390/biom14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Gastrointestinal (GI) cancers impose a substantial global health burden, highlighting the necessity for deeper understanding of their intricate pathogenesis and treatment strategies. This review explores the interplay between intratumoral microbiota, tumor metabolism, and major types of GI cancers (including esophageal, gastric, liver, pancreatic, and colorectal cancers), summarizing recent studies and elucidating their clinical implications and future directions. Recent research revealed altered microbial signatures within GI tumors, impacting tumor progression, immune responses, and treatment outcomes. Dysbiosis-induced alterations in tumor metabolism, including glycolysis, fatty acid metabolism, and amino acid metabolism, play critical roles in cancer progression and therapeutic resistance. The integration of molecular mechanisms and potential biomarkers into this understanding further enhances the prognostic significance of intratumoral microbiota composition and therapeutic opportunities targeting microbiota-mediated tumor metabolism. Despite advancements, challenges remain in understanding the dynamic interactions within the tumor microenvironment (TME). Future research directions, including advanced omics technologies and prospective clinical studies, offer promising avenues for precision oncology and personalized treatment interventions in GI cancer. Overall, integrating microbiota-based approaches and molecular biomarkers into GI cancer management holds promise for improving patient outcomes and survival.
Collapse
Affiliation(s)
- Xueyuan Bi
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Cuicui Liu
- Department of Science and Education, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
15
|
Xuan M, Gu X, Liu Y, Yang L, Li Y, Huang D, Li J, Xue C. Intratumoral microorganisms in tumors of the digestive system. Cell Commun Signal 2024; 22:69. [PMID: 38273292 PMCID: PMC10811838 DOI: 10.1186/s12964-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Tumors of the digestive system pose a significant threat to human health and longevity. These tumors are associated with high morbidity and mortality rates, leading to a heavy economic burden on healthcare systems. Several intratumoral microorganisms are present in digestive system tumors, and their sources and abundance display significant heterogeneity depending on the specific tumor subtype. These microbes have a complex and precise function in the neoplasm. They can facilitate tumor growth through various mechanisms, such as inducing DNA damage, influencing the antitumor immune response, and promoting the degradation of chemotherapy drugs. Therefore, these microorganisms can be targeted to inhibit tumor progression for improving overall patient prognosis. This review focuses on the current research progress on microorganisms present in the digestive system tumors and how they influence the initiation, progression, and prognosis of tumors. Furthermore, the primary sources and constituents of tumor microbiome are delineated. Finally, we summarize the application potential of intratumoral microbes in the diagnosis, treatment, and prognosis prediction of digestive system tumors. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingru Liu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Li Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Yi Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
17
|
Gutierrez-Angulo M, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Garcia-Ayala FD. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front Genet 2023; 14:1037406. [PMID: 37614819 PMCID: PMC10442805 DOI: 10.3389/fgene.2023.1037406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.
Collapse
Affiliation(s)
- Melva Gutierrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Maria de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jose Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fernando Daniel Garcia-Ayala
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
18
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Little A, Tangney M, Tunney MM, Buckley NE. Fusobacterium nucleatum: a novel immune modulator in breast cancer? Expert Rev Mol Med 2023; 25:e15. [PMID: 37009688 PMCID: PMC10407221 DOI: 10.1017/erm.2023.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer was the most commonly diagnosed cancer worldwide in 2020. Greater understanding of the factors which promote tumour progression, metastatic development and therapeutic resistance is needed. In recent years, a distinct microbiome has been detected in the breast, a site previously thought to be sterile. Here, we review the clinical and molecular relevance of the oral anaerobic bacterium Fusobacterium nucleatum in breast cancer. F. nucleatum is enriched in breast tumour tissue compared with matched healthy tissue and has been shown to promote mammary tumour growth and metastatic progression in mouse models. Current literature suggests that F. nucleatum modulates immune escape and inflammation within the tissue microenvironment, two well-defined hallmarks of cancer. Furthermore, the microbiome, and F. nucleatum specifically, has been shown to affect patient response to therapy including immune checkpoint inhibitors. These findings highlight areas of future research needed to better understand the influence of F. nucleatum in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Alexa Little
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mark Tangney
- Cancer Research, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Michael M. Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Niamh E. Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Wang N, Fang JY. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol 2023; 31:159-172. [PMID: 36058786 DOI: 10.1016/j.tim.2022.08.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC), one of the most prevalent cancers, has complex etiology. The dysbiosis of intestinal bacteria has been highlighted as an important contributor to CRC. Fusobacterium nucleatum, an oral anaerobic opportunistic pathogen, is enriched in both stools and tumor tissues of patients with CRC. Therefore, F. nucleatum is considered to be a risk factor for CRC. This review summarizes the biological characteristics and the mechanisms underlying the regulatory behavior of F. nucleatum in the tumorigenesis and progression of CRC. F. nucleatum as a marker for the early warning and prognostic prediction of CRC, and as a target for prevention and treatment, is also described.
Collapse
Affiliation(s)
- Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China; NHC Key Laboratory of Digestive Diseases, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory for Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Xue C, Chu Q, Zheng Q, Yuan X, Su Y, Bao Z, Lu J, Li L. Current understanding of the intratumoral microbiome in various tumors. Cell Rep Med 2023; 4:100884. [PMID: 36652905 PMCID: PMC9873978 DOI: 10.1016/j.xcrm.2022.100884] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023]
Abstract
It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
22
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
23
|
Ou S, Wang H, Tao Y, Luo K, Ye J, Ran S, Guan Z, Wang Y, Hu H, Huang R. Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front Cell Infect Microbiol 2022; 12:1020583. [PMID: 36523635 PMCID: PMC9745098 DOI: 10.3389/fcimb.2022.1020583] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer(CRC) is the third most frequent malignant tumor. The gut microbiome acts as a vital component of CRC etiology. Fusobacterium nucleatum(Fn) is a key member of colorectal cancer-associated bacteria. But we lack a systematic and in-depth understanding on its role in CRC evolution. In this article, We reviewed the abundance changes and distribution of Fn in CRC occurrence and development, potential effect of Fn in the initiation of CRC, the source of intratumoral Fn and the cause of its tropism to CRC. In addition, We described the mechanism by which Fn promotes the malignant biological behavior of CRC, affects CRC response to therapy, and shapes the tumor immune microenvironment in great detail. Based on the relationship between Fn and CRC, we proposed strategies for CRC prevention and treatment, and discussed the feasibility and limitations of specific cases, to gain insights into further basic and clinical research in the future.
Collapse
Affiliation(s)
- Suwen Ou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hufei Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yangbao Tao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kangjia Luo
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of Gastrointestinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jinhua Ye
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Songlin Ran
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zilong Guan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuliuming Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Rui Huang,
| |
Collapse
|
24
|
Wang Y, Wen Y, Wang J, Lai X, Xu Y, Zhang X, Zhu X, Ruan C, Huang Y. Clinicopathological differences of high Fusobacterium nucleatum levels in colorectal cancer: A review and meta-analysis. Front Microbiol 2022; 13:945463. [PMID: 36406461 PMCID: PMC9672069 DOI: 10.3389/fmicb.2022.945463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To systematically evaluate the significance of Fusobacterium nucleatum (Fn) levels the clinicopathological impacts of cancer. Methods Literature from Pubmed, Embase, and Web of Science was retrieved to collect all English literatures on the correlation between Fn and cancer, and the quality of literatures collected was assessed based on the Newcastle-Ottawa Quality Assessment Scale. The heterogeneity and sensitivity were detected by Stata 14.0 software, and the correlation between Fn and cancer clinicopathological as the effect variables was assessed according to the odds ratio (OR) and 95% confidence interval (CI). The forest plot was drawn. Results A total of 19 articles meeting the inclusion criteria were selected. The incidence of Fn prevalence varied considerably (range: 6.1 to 83.3%) and was greater than 10% in 13 of 19 studies. Compared with those with no/low Fn levels, the high levels of Fn was positively associated with vascular invasion, nerve invasion, depth of invasion, and distant metastasis [vascular invasion: OR = 1.66, 95%CI(1.07, 2.57), I2 = 21.9%, fixed effect model; nerve invasion: OR = 1.36, 95%CI(1.00, 1.84), I2 = 43.1%, fixed effect model; infiltration depth: OR = 1.94, 95%CI(1.20, 3.15), I2 = 67.2%, random effect model; distant metastasis: OR = 1.80, 95%CI(1.23, 2.64), I2 = 3.4%, fixed effect model]. Patients with MLH1 methylation always present a higher Fn levels than those without methylation [OR = 2.53, 95%CI(1.42, 4.53), P = 0.01, I2 = 57.5%, random effect model]. Further, Fn was associatedwith the molecular characteristics of cancers [MSI-H Vs. MSS/MSI-low: OR = 2.92, 95%CI(1.61, 5.32), P = 0.01, I2 = 63.2%, random effect model; High Vs. Low/Negative CIMP: OR = 2.23, 95%CI(1.64, 3.03), P = 0.01, I2 = 64.2%, random effect model; KRAS mutation Vs. wild-type: OR = 1.24, 95%CI(1.04, 1.48), P = 0.02, I2 = 27.0%, fixed effect model; Present Vs. Abscent BRAF mutations: OR = 1.88, 95%CI(1.44, 2.45), P = 0.01, I2 = 24.2%, fixed effect model]. The cancer patients with high levels of Fn often have worse RFS than those with no/low Fn levels[OR = 1.14, 95%CI(0.61, 1.68), P = 0.01, I2 = 80.7%, random effect model]. Conclusion This review and meta-analysis showed that Fn could be used to predict unfavorable prognosis and function as potential prognostic biomarkers in colorectal cancer (CRC). Our data may have implications for targeting Fn to develop strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Yi Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Pathology, Xi’an Ninth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuting Wen
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Pathology, Xi’an Ninth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jiayin Wang,
| | - Xin Lai
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Xu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenglin Ruan
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yao Huang
- Department of Pathology, Xi’an Ninth Hospital Affiliated to Medical College of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
25
|
Xie Y, Jiao X, Zeng M, Fan Z, Li X, Yuan Y, Zhang Q, Xia Y. Clinical Significance of Fusobacterium nucleatum and Microsatellite Instability in Evaluating Colorectal Cancer Prognosis. Cancer Manag Res 2022; 14:3021-3036. [PMID: 36262751 PMCID: PMC9576466 DOI: 10.2147/cmar.s382464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
Objective Both genetic and microbial factors play important roles in colorectal cancer (CRC) development. The effects of Fusobacterium nucleatum (F. nucleatum) and microsatellite instability (MSI) on CRC prognosis require more clinical evidence. We aimed to investigate the role of F. nucleatum and MSI as biomarkers in predicting the prognosis of CRC. Methods CRC patients in various TNM stages were enrolled. MSI status and F. nucleatum were detected by immunohistochemical staining of formalin-fixed paraffin-embedded (FFPE) specimens. The associations between MSI status and F. nucleatum and clinical parameters were analyzed. Results MSI tumors were more frequently observed in the colon than in the rectum. Cancerous tissues had higher levels of F. nucleatum than adjacent noncancerous tissues. There were no significant differences in F. nucleatum abundance in different age, sex, tumor stage, location, and tumor marker groups. MSI status was associated with tumor location and stage. Survival analyses revealed that disease-free survival (DFS) was significantly longer in the F. nucleatum-negative, younger age, and TNM stage I-II groups (p< 0.05), and age, advanced TNM stage (III and IV), and F. nucleatum status were independent factors for poor prognosis. Multivariate Cox regression and receiver operating characteristic (ROC) curve analyses showed that conventional tumor biomarkers of CRC had more prognostic value than F. nucleatum and MSI. Conclusion Age, advanced TNM stage, and F. nucleatum positivity were independent factors of poor prognosis, suggesting that F. nucleatum and MSI may contribute to the identification of new strategies for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yanxuan Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Qiaoxin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| | - Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, People’s Republic of China
| |
Collapse
|
26
|
Borelli B, Antoniotti C, Carullo M, Germani MM, Conca V, Masi G. Immune-Checkpoint Inhibitors (ICIs) in Metastatic Colorectal Cancer (mCRC) Patients beyond Microsatellite Instability. Cancers (Basel) 2022; 14:4974. [PMID: 36291761 PMCID: PMC9599678 DOI: 10.3390/cancers14204974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 09/06/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) showed impressive results in terms of activity and efficacy in metastatic colorectal cancer (mCRC) patients bearing tumors with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H). Despite that microsatellite status is the major predictive biomarker for the efficacy of ICIs, a proportion of dMMR/MSI-H mCRC tumors do not achieve benefit from immunotherapy due to the primary resistance. Deeper knowledge of biological mechanisms regulating dMMR/MSI-H CRC tumors and immune response may be useful to find new predictive biomarkers of ICIs benefit and tailor the use of immunotherapy even in dMMR/MSI-H mCRC patients. Moreover, several issues are still open, such as the secondary resection of metastases and the optimal duration of ICIs therapy in dMMR/MSI-H mCRC patients. Looking beyond microsatellite status, in a future perspective, several tools (i.e., Tumor Mutational Burden and PD-L1 expression) have been investigated to clarify their possible role as predictive biomarkers. Furthermore, a small subgroup of pMMR/MSS CRC tumors with a POLE mutation of the proofreading domain is characterized by hypermutated phenotype and might derive benefit from immune checkpoint inhibition. In the present work, we aim to review the most recent literature regarding treatment with ICIs in mCRC, focusing on dMMR/MSI-H and special subgroups of CRC patients. Hence, we summarize possible future targets and the most promising predictive biomarkers.
Collapse
Affiliation(s)
- Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Martina Carullo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
27
|
Son YM, Kim J. The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. J Microbiol Biotechnol 2022; 32:1086-1097. [PMID: 36116940 PMCID: PMC9628962 DOI: 10.4014/jmb.2208.08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
During the last decades, research and therapeutic methods in cancer treatment have been evolving. As the results, nowadays, cancer patients are receiving several types of treatments, ranging from chemotherapy and radiation therapy to surgery and immunotherapy. In fact, most cancer patients take a combination of current anti-cancer therapies to improve the efficacy of treatment. However, current strategies still cause some side effects to patients, such as pain and depression. Therefore, there is the need to discover better ways to eradicate cancer whilst minimizing side effects. Recently, immunotherapy, particularly immune checkpoint blockade, is rising as an effective anti-cancer treatment. Unlike chemotherapy or radiation therapy, immunotherapy has few side effects and a higher tumor cell removal efficacy depend on cellular immunological mechanisms. Moreover, recent studies suggest that tissue immune responses are regulated by their microbiome composition. Each tissue has their specific microenvironment, which makes their microbiome composition different, particularly in the context of different types of cancer, such as breast, colorectal, kidney, lung, and skin. Herein, we review the current understanding of the relationship of immune responses and tissue microbiome in cancer in both animal and human studies. Moreover, we discuss the cancermicrobiome-immune axis in the context of cancer development and treatment. Finally, we speculate on strategies to control tissue microbiome alterations that may synergistically affect the immune system and impact cancer treatment outcomes.
Collapse
Affiliation(s)
- Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-4792 E-mail:
| | - Jihwan Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
28
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Fusobacterium Nucleatum Is a Risk Factor for Metastatic Colorectal Cancer. Curr Med Sci 2022; 42:538-547. [DOI: 10.1007/s11596-022-2597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
|
30
|
Villar-Ortega P, Expósito-Ruiz M, Gutiérrez-Soto M, Ruiz-Cabello Jiménez M, Navarro-Marí JM, Gutiérrez-Fernández J. The association between Fusobacterium nucleatum and cancer colorectal: A systematic review and meta-analysis. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:224-234. [PMID: 35256335 DOI: 10.1016/j.eimce.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The etiological factors of colorectal cancer (CRC) are not precisely known, although genetic and environmental factors have been implicated. A possible association with Fusobacterium nucleatum may provide opportunities for an early diagnosis. OBJECTIVE To review studies that address the association between F. nucleatum and CRC. METHODS The MEDLINE PubMed database was searched using the terms «colorectal cancer» and "Fusobacterium nucleatum", retrieving publications published up to January 1 2020. Stata software was used for a meta-analysis. RESULTS The systematic review included 57 articles. Meta-analysis results indicated a more frequent presence of F. nucleatum in CRC tumour tissue samples in comparison to control samples of healthy tissue, with an odds ratio of 4.558 (95% CI: 3.312-6.272), and in comparison, to control samples of colorectal adenomas, with an odds ratio of 3.244 (95 % CI: 2.359-4.462). CONCLUSION There is a more frequent resence of F. nucleatum in the CRC. However, further studies are needed to verify this relationship.
Collapse
Affiliation(s)
- Paola Villar-Ortega
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain
| | - Manuela Expósito-Ruiz
- Departamento de Bioestadística de FIBAO, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain
| | | | - Miguel Ruiz-Cabello Jiménez
- UGC de Digestivo, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain
| | - José Gutiérrez-Fernández
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain; Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, Spain.
| |
Collapse
|
31
|
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20:178. [PMID: 35449107 PMCID: PMC9022293 DOI: 10.1186/s12967-022-03378-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death and the third most frequently diagnosed cancer. Besides the lifestyle, genetic and epigenetic alterations, and environmental factors, gut microbiota also plays a vital role in CRC development. The interruption of the commensal relationship between gut microbiota and the host could lead to an imbalance in the bacteria population, in which the pathogenic bacteria become the predominant population in the gut. Different therapeutic strategies have been developed to modify the gut immune system, prevent pathogen colonization, and alter the activity and composition of gut microbiota, such as prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). Even though the employed strategies exhibit promising results, their translation into the clinic requires evaluating potential implications and risks, as well as assessment of their long-term effects. This study was set to review the gut microbiota imbalances and their relationship with CRC and their effects on CRC therapy, including chemotherapy and immunotherapy. More importantly, we reviewed the strategies that have been used to modulate gut microbiota, their impact on the treatment of CRC, and the challenges of each strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
32
|
Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R, Briquez PS. Molecular Mechanisms of Tumor Immunomodulation in the Microenvironment of Colorectal Cancer. Int J Mol Sci 2022; 23:2782. [PMID: 35269922 PMCID: PMC8910988 DOI: 10.3390/ijms23052782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains one of the most important health challenges in our society. The development of cancer immunotherapies has fostered the need to better understand the anti-tumor immune mechanisms at play in the tumor microenvironment and the strategies by which the tumor escapes them. In this review, we provide an overview of the molecular interactions that regulate tumor inflammation. We particularly discuss immunomodulatory cell-cell interactions, cell-soluble factor interactions, cell-extracellular matrix interactions and cell-microbiome interactions. While doing so, we highlight relevant examples of tumor immunomodulation in colorectal cancer.
Collapse
Affiliation(s)
- Dorothea Plundrich
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sophia Chikhladze
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
- Department of Medicine, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 900048, USA
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Reinhild Feuerstein
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Priscilla S Briquez
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
33
|
Li R, Shen J, Xu Y. Fusobacterium nucleatum and Colorectal Cancer. Infect Drug Resist 2022; 15:1115-1120. [PMID: 35321079 PMCID: PMC8937307 DOI: 10.2147/idr.s357922] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230012, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- Correspondence: Yuanhong Xu, Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China, Tel +86 13505694447, Email
| |
Collapse
|
34
|
Datorre JG, de Carvalho AC, dos Reis MB, dos Reis M, Matsushita M, Santos F, Guimarães DP, Reis RM. Accuracy and Clinical Relevance of Intra-Tumoral Fusobacterium nucleatum Detection in Formalin-Fixed Paraffin-Embedded (FFPE) Tissue by Droplet Digital PCR (ddPCR) in Colorectal Cancer. Diagnostics (Basel) 2022; 12:114. [PMID: 35054281 PMCID: PMC8775036 DOI: 10.3390/diagnostics12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
The use of droplet digital PCR (ddPCR) to identify and quantify low-abundance targets is a significant advantage for accurately detecting potentially oncogenic bacteria. Fusobacterium nucleatum (Fn) is implicated in colorectal cancer (CRC) tumorigenesis and is becoming an important prognostic biomarker. We evaluated the detection accuracy and clinical relevance of Fn DNA by ddPCR in a molecularly characterized, formalin-fixed, paraffin-embedded (FFPE) CRC cohort previously analyzed by qPCR for Fn levels. Following a ddPCR assay optimization and an analytical evaluation, Fn DNA were measured in 139 CRC FFPE cases. The measures of accuracy for Fn status compared to the prior results generated by qPCR and the association with clinicopathological and molecular patients' features were also evaluated. The ddPCR-based Fn assay was sensitive and specific to positive controls. Fn DNA were detected in 20.1% of cases and further classified as Fn-high and Fn-low/negative, according to the median amount of Fn DNA that were detected in all cases and associated with the patient's worst prognosis. There was a low agreement between the Fn status determined by ddPCR and qPCR (Cohen's Kappa = 0.210). Our findings show that ddPCR can detect and quantify Fn in FFPE tumor tissues and highlights its clinical relevance in Fn detection in a routine CRC setting.
Collapse
Affiliation(s)
- José Guilherme Datorre
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Ana Carolina de Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Mariana Bisarro dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Monise dos Reis
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.d.R.); (M.M.)
| | - Marcus Matsushita
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.d.R.); (M.M.)
| | - Florinda Santos
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784400, Brazil;
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
- Department of Prevention, Barretos Cancer Hospital, Barretos 14784400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4704553 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704553 Braga, Portugal
| |
Collapse
|
35
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
36
|
Lee JB, Kim KA, Cho HY, Kim D, Kim WK, Yong D, Lee H, Yoon SS, Han DH, Han YD, Paik S, Jang M, Kim HS, Ahn JB. Association between Fusobacterium nucleatum and patient prognosis in metastatic colon cancer. Sci Rep 2021; 11:20263. [PMID: 34642332 PMCID: PMC8511250 DOI: 10.1038/s41598-021-98941-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that Fusobacterium nucleatum (Fn) is associated with the development and progression of colorectal cancer. We aimed to delineate the clinical implications of Fn in metastatic colon cancer. We performed quantitative polymerase chain reaction (qPCR) using DNA samples from synchronous metastatic colon cancer patients with either formalin-fixed paraffin-embedded (FFPE) archival primary site tumor samples or fresh colon tissues. Progression-free survival (PFS)1 and PFS2 were defined as PFS of first- and second-line palliative settings. qPCR for Fn was successfully performed using 112 samples (FFPE, n = 61; fresh tissue, n = 51). Forty-one and 68 patients had right-sided and left-sided colon cancer, respectively. Patients with Fn enriched right-sided colon cancers had shorter PFS1 (9.7 vs. 11.2 months) than the other subgroups (HR 3.54, 95% confidence interval [CI] 1.05–11.99; P = 0.04). Fn positive right-sided colon was also associated with shorter PFS2 (3.7 vs. 6.7 months; HR 2.34, 95% CI 0.69–7.91; P = 0.04). In the univariate analysis, PFS1 was affected by differentiation and Fn positive right-sided colon cancer. The multivariate analysis showed that differentiation (HR 2.68, 95% CI 1.40–5.14, P = 0.01) and Fn positive right-sided colon (HR 0.40, 95% CI 0.18–0.88, P = 0.02) were associated with PFS1. Fn enrichment in right sided colon was not associated with overall survival (OS). Fn enrichment has significantly worse prognosis in terms of PFS1 and PFS2 in patients with right-sided metastatic colon cancers.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kyung-A Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ho Yeon Cho
- Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - DooA Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Won Kyu Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangnung, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Sun Yoon
- Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea.,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Soonmyung Paik
- Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Jang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea. .,Department of Pathology, National Health Insurance Service Ilsan Hospital, Goyang, 10444, Korea.
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| | - Joong Bae Ahn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
37
|
Lamprinaki D, Garcia-Vello P, Marchetti R, Hellmich C, McCord KA, Bowles KM, Macauley MS, Silipo A, De Castro C, Crocker PR, Juge N. Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis. Front Immunol 2021; 12:744184. [PMID: 34659241 PMCID: PMC8517482 DOI: 10.3389/fimmu.2021.744184] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid-binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction.
Collapse
Affiliation(s)
- Dimitra Lamprinaki
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Charlotte Hellmich
- Norfolk and Norwich University Hospitals, NHS Foundation Trust, Norwich, United Kingdom
| | - Kelli A. McCord
- Departments of Chemistry, and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kristian M. Bowles
- Norfolk and Norwich University Hospitals, NHS Foundation Trust, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Matthew S. Macauley
- Departments of Chemistry, and Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
38
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Hatta MNA, Mohamad Hanif EA, Chin SF, Neoh HM. Pathogens and Carcinogenesis: A Review. BIOLOGY 2021; 10:533. [PMID: 34203649 PMCID: PMC8232153 DOI: 10.3390/biology10060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a global health problem associated with genetics and unhealthy lifestyles. Increasingly, pathogenic infections have also been identified as contributors to human cancer initiation and progression. Most pathogens (bacteria, viruses, fungi, and parasites) associated with human cancers are categorized as Group I human carcinogens by the International Agency for Research on Cancer, IARC. These pathogens cause carcinogenesis via three known mechanisms: persistent infection that cause inflammation and DNA damage, initiation of oncogene expression, and immunosuppression activity of the host. In this review, we discuss the carcinogenesis mechanism of ten pathogens, their implications, and some future considerations for better management of the disease. The pathogens and cancers described are Helicobacter pylori (gastric cancer), Epstein-Barr virus (gastric cancer and lymphoma), Hepatitis B and C viruses (liver cancer), Aspergillus spp. (liver cancer), Opisthorchis viverrine (bile duct cancer), Clonorchis sinensis (bile duct cancer), Fusobacterium nucleatum (colorectal cancer), Schistosoma haematobium (bladder cancer); Human Papillomavirus (cervical cancer), and Kaposi's Sarcoma Herpes Virus (Kaposi's sarcoma).
Collapse
Affiliation(s)
| | | | | | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Ya’acob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (M.N.A.H.); (E.A.M.H.); (S.-F.C.)
| |
Collapse
|
40
|
Shariati A, Razavi S, Ghaznavi-Rad E, Jahanbin B, Akbari A, Norzaee S, Darban-Sarokhalil D. Association between colorectal cancer and Fusobacterium nucleatum and Bacteroides fragilis bacteria in Iranian patients: a preliminary study. Infect Agent Cancer 2021; 16:41. [PMID: 34108031 PMCID: PMC8191199 DOI: 10.1186/s13027-021-00381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
Background and aim Recent studies have proposed that commensal bacteria might be involved in the development and progression of gastrointestinal disorders such as colorectal cancer (CRC). Therefore, in this study, the relative abundance of Fusobacterium nucleatum, Bacteroides fragilis, Streptococcus bovis/gallolyticus, and Enteropathogenic Escherichia coli (EPEC) in CRC tissues, and their association with clinicopathologic characteristics of CRC was investigated in Iranian patients. Moreover, the role of these bacteria in the CRC-associated mutations including PIK3CA, KRAS, and BRAF was studied. Method To these ends, the noted bacteria were quantified in paired tumors and normal tissue specimens of 30 CRC patients, by TaqMan quantitative Real-Time Polymerase Chain Reaction (qPCR). Next, possible correlations between clinicopathologic factors and mutations in PIK3CA, KRAS, and BRAF genes were analyzed. Results In studied samples, B. fragilis was the most abundant bacteria that was detected in 66 and 60% of paired tumor and normal samples, respectively. Furthermore, 15% of the B. fragilis-positive patients were infected with Enterotoxigenic B. fragilis (ETBF) in both adenocarcinoma and matched adjacent normal samples. F. nucleatum was also identified in 23% of tumors and 13% of adjacent normal tissue samples. Moreover, the relative abundance of these bacteria determined by 2-ΔCT was significantly higher in CRC samples than in adjacent normal mucosa (p < 0.05). On the other hand, our findings indicated that S. gallolyticus and EPEC, compared to adjacent normal mucosa, were not prevalent in CRC tissues. Finally, our results revealed a correlation between F. nucleatum-positive patients and the KRAS mutation (p = 0.02), while analyses did not show any association between bacteria and mutation in PIK3CA and BRAF genes. Conclusion The present study is the first report on the analysis of different bacteria in CRC tissue samples of Iranian patients. Our findings revealed that F. nucleatum and B. fragilis might be linked to CRC. However, any link between gut microbiome dysbiosis and CRC remains unknown.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Liu Q, Li J, Xu L, Wang J, Zeng Z, Fu J, Huang X, Chu Y, Wang J, Zhang HY, Zeng F. Individualized Prediction of Colorectal Cancer Metastasis Using a Radiogenomics Approach. Front Oncol 2021; 11:620945. [PMID: 33996544 PMCID: PMC8113949 DOI: 10.3389/fonc.2021.620945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: To evaluate whether incorporating the radiomics, genomics, and clinical features allows prediction of metastasis in colorectal cancer (CRC) and to develop a preoperative nomogram for predicting metastasis. Methods: We retrospectively analyzed radiomics features of computed tomography (CT) images in 134 patients (62 in the primary cohort, 28 in the validation cohort, and 44 in the independent-test cohort) clinicopathologically diagnosed with CRC at Dazhou Central Hospital from February 2018 to October 2019. Tumor tissues were collected from all patients for RNA sequencing, and clinical data were obtained from medical records. A total of 854 radiomics features were extracted from enhanced venous-phase CT of CRC. Least absolute shrinkage and selection operator regression analysis was utilized for data dimension reduction, feature screen, and radiomics signature development. Multivariable logistic regression analysis was performed to build a multiscale predicting model incorporating the radiomics, genomics, and clinical features. The receiver operating characteristic curve, calibration curve, and decision curve were conducted to evaluate the performance of the nomogram. Results: The radiomics signature based on 16 selected radiomics features showed good performance in metastasis assessment in both primary [area under the curve (AUC) = 0.945, 95% confidence interval (CI) 0.892–0.998] and validation cohorts (AUC = 0.754, 95% CI 0.570–0.938). The multiscale nomogram model contained radiomics features signatures, four-gene expression related to cell cycle pathway, and CA 19-9 level. The multiscale model showed good discrimination performance in the primary cohort (AUC = 0.981, 95% CI 0.953–1.000), the validation cohort (AUC = 0.822, 95% CI 0.635–1.000), and the independent-test cohort (AUC = 0.752, 95% CI 0.608–0.896) and good calibration. Decision curve analysis confirmed the clinical application value of the multiscale model. Conclusion: This study presented a multiscale model that incorporated the radiological eigenvalues, genomics features, and CA 19-9, which could be conveniently utilized to facilitate the individualized preoperatively assessing metastasis in CRC patients.
Collapse
Affiliation(s)
- Qin Liu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Lin Xu
- Department of Radiology, Dazhou Central Hospital, Dazhou, China
| | - Jiasi Wang
- Department of Clinical Laboratory, Dazhou Central Hospital, Dazhou, China
| | - Zhaoping Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jiangping Fu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Xuan Huang
- Department of Ophthalmology, Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.,School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Bakhti SZ, Latifi-Navid S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next? BMC Microbiol 2021; 21:71. [PMID: 33663382 PMCID: PMC7934379 DOI: 10.1186/s12866-021-02130-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies causing death worldwide, and Helicobacter pylori is a powerful inducer of precancerous lesions and GC. The oral microbiota is a complex ecosystem and is responsible for maintaining homeostasis, modulating the immune system, and resisting pathogens. It has been proposed that the gastric microbiota of oral origin is involved in the development and progression of GC. Nevertheless, the causal relationship between oral microbiota and GC and the role of H. pylori in this relationship is still controversial. This study was set to review the investigations done on oral microbiota and analyze various lines of evidence regarding the role of oral microbiota in GC, to date. Also, we discussed the interaction and relationship between H. pylori and oral microbiota in GC and the current understanding with regard to the underlying mechanisms of oral microbiota in carcinogenesis. More importantly, detecting the patterns of interaction between the oral cavity microbiota and H. pylori may render new clues for the diagnosis or screening of cancer. Integration of oral microbiota and H. pylori might manifest a potential method for the assessment of GC risk. Hence it needs to be specified the patterns of bacterial transmission from the oral cavity to the stomach and their interaction. Further evidence on the mechanisms underlying the oral microbiota communities and how they trigger GC may contribute to the identification of new prevention methods for GC. We may then modulate the oral microbiota by intervening with oral-gastric bacterial transmission or controlling certain bacteria in the oral cavity.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
| |
Collapse
|
43
|
Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. New Insights Into the Cancer-Microbiome-Immune Axis: Decrypting a Decade of Discoveries. Front Immunol 2021; 12:622064. [PMID: 33708214 PMCID: PMC7940198 DOI: 10.3389/fimmu.2021.622064] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed groundbreaking advances in the field of microbiome research. An area where immense implications of the microbiome have been demonstrated is tumor biology. The microbiome affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. It can also determine response to cancer therapies and predict disease progression and survival. Modulation of the microbiome can be harnessed to potentiate the efficacy of immunotherapies and decrease their toxicity. In this review, we comprehensively dissect recent evidence regarding the interaction of the microbiome and anti-tumor immune machinery and outline the critical questions which need to be addressed as we further explore this dynamic colloquy.
Collapse
Affiliation(s)
| | | | | | - Selwyn M. Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
44
|
Villar-Ortega P, Expósito-Ruiz M, Gutiérrez-Soto M, Ruiz-Cabello Jiménez M, Navarro-Marí JM, Gutiérrez-Fernández J. The association between Fusobacterium nucleatum and cancer colorectal: a systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00026-4. [PMID: 33632539 DOI: 10.1016/j.eimc.2021.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The etiological factors of colorectal cancer (CRC) are not precisely known, although genetic and environmental factors have been implicated. A possible association with Fusobacterium nucleatum may provide opportunities for an early diagnosis. OBJECTIVE To review studies that address the association between F. nucleatum and CRC. METHODS The MEDLINE PubMed database was searched using the terms «colorectal cancer» and «Fusobacterium nucleatum», retrieving publications published up to January 1 2020. Stata software was used for a meta-analysis. RESULTS The systematic review included 57 articles. Meta-analysis results indicated a more frequent presence of F. nucleatum in CRC tumor tissue samples in comparison to control samples of healthy tissue, with an odds ratio of 4.558 (95% CI: 3.312-6.272), and in comparison, to control samples of colorectal adenomas, with an odds ratio of 3.244 (95% CI: 2.359-4.462). CONCLUSION There is a more frequent presence of F. nucleatum in the CRC. However, further studies are needed to verify this relationship.
Collapse
Affiliation(s)
- Paola Villar-Ortega
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - Manuela Expósito-Ruiz
- Departamento de Bioestadística de FIBAO. Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | | | - Miguel Ruiz-Cabello Jiménez
- UGC de Digestivo, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José María Navarro-Marí
- Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España
| | - José Gutiérrez-Fernández
- Departamento de Microbiología, Universidad de Granada-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España; Laboratorio de Microbiología, Hospital Universitario Virgen de las Nieves-Instituto de Investigación BioSanitaria-ibs-Granada, Granada, España.
| |
Collapse
|
45
|
Kang X, Zhang R, Kwong TN, Lui RN, Wu WK, Sung JJ, Yu J, Wong SH. Serrated neoplasia in the colorectum: gut microbiota and molecular pathways. Gut Microbes 2021; 13:1-12. [PMID: 33382354 PMCID: PMC7781617 DOI: 10.1080/19490976.2020.1863135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with different gene expression patterns. There are two major colorectal carcinogenesis pathways: conventional adenoma-carcinoma pathway and alternative serrated neoplasia pathway. Apart from the conventional pathway that is typically initiated by characteristic APC mutation and chromosomal instability, the serrated neoplasia pathway is mainly characterized by mutations of BRAF or KRAS, microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). Despite the malignant potential of serrated lesions, they can be easily overlooked during endoscopy screening and even in pathological assessment due to its anatomical location, morphology, and histological features. It has been shown that environmental factors especially the gut microbial composition play a key role in CRC pathogenesis. Thus, the preferential localization of serrated lesions in specific intestine areas suggest that niche-specific microbiota composition might intertwined with host genetic perturbations during the development of serrated lesions. Although serrated lesions and conventional adenomas are biologically different, most studies have focused on conventional adenomas, while the pathophysiology and role of microorganisms in the development of serrated lesions remain elusive. In this review, we discuss on the role of gut microbiota in the serrated neoplasia pathway of colorectal carcinogenesis and its specific clinical and molecular features, and summarize the potential mechanisms involved.
Collapse
Affiliation(s)
- Xing Kang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ru Zhang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Gastroenterology, Department of Medicine, Shenzhen People’s Hospital, Shenzhen, China
| | - Thomas Ny Kwong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rashid Ns Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Kk Wu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Joseph Jy Sung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Sunny H Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
46
|
Wang R, Chen M, Ye X, Poon K. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108360. [PMID: 34083049 DOI: 10.1016/j.mrrev.2020.108360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
ARID1A (AT-rich interactive domain 1A) is a newly discovered tumor suppressor gene, and its encoded product is an important component of the SWI/SNF chromatin remodeling complex. ARID1A plays an important role in cell proliferation, invasion and metastasis, apoptosis, cell cycle regulation, epithelial mesenchymal transition, and the regulation of other of biological behaviors. Recently, ARID1A mutations have been increasingly reported in esophageal adenocarcinoma, gastric cancer, colorectal cancer, hepatocellular carcinoma, cholangiocarcinoma, pancreatic cancer, and other malignant tumors of the digestive system. This article reviews the relationship between ARID1A mutation and the molecular mechanisms of carcinogenesis, including microsatellite instability and the PI3K/ATK signaling pathway, and relates these mechanisms to the prognostic assessment of digestive malignancy. Further, this review describes the potential for molecular pathologic epidemiology (MPE) to provide new insights into environment-tumor-host interactions.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Mei Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Xiaojun Ye
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| |
Collapse
|
47
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
48
|
Lee JA, Yoo SY, Oh HJ, Jeong S, Cho NY, Kang GH, Kim JH. Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol Immunother 2020; 70:47-59. [PMID: 32623478 DOI: 10.1007/s00262-020-02657-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
It has been suggested that Fusobacterium nucleatum (Fn) may differentially impact tumor immune responses according to microsatellite instability (MSI) status in colorectal cancers (CRCs). We aimed to reveal the detailed relationship between intratumoral Fn and immune microenvironmental features in MSI-high CRCs. A total of 126 MSI-high CRCs were subjected to analyses for intratumoral Fn DNA load using quantitative PCR and for densities of tumor-infiltrating immune cells, including CD3+ T cells, CD4+ T cells, CD8+ T cells, FoxP3+ T cells, CD68+ macrophages, CD163+ macrophages, and CD177+ neutrophils, at invasive margin (IM) and center of tumor (CT) areas using computational image analysis of immunohistochemistry. Based on the Fn load, the 126 MSI-high CRCs were classified into Fn-high, -low, and -negative subgroups. The Fn-high subset of MSI-high CRCs was significantly correlated with larger tumor size and advanced invasion depth (p = 0.017 and p = 0.034, respectively). Compared with the Fn-low/negative subgroup, Fn-high tumors demonstrated significantly lower density of FoxP3+ cells in both IM and CT areas (p = 0.002 and p = 0.003, respectively). Additionally, Fn-high was significantly associated with elevated CD163+ cell to CD68+ cell ratio in only CT areas of MSI-high CRCs (p = 0.028). In conclusion, the Fn-enriched subset of MSI-high CRCs is characterized by increased tumor growth and invasion and distinct immune microenvironmental features, including decreased FoxP3+ T cells throughout the tumor and increased proportion of M2-polarized macrophages in the tumor center. These findings collectively support that Fn may be linked to pro-tumoral immune responses in MSI-high CRCs.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. Int J Mol Sci 2020; 21:ijms21072473. [PMID: 32252452 PMCID: PMC7177219 DOI: 10.3390/ijms21072473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress with subsequent premutagenic oxidative DNA damage has been implicated in colorectal carcinogenesis. The repair of oxidative DNA damage is initiated by lesion-specific DNA glycosylases (hOGG1, NTH1, MUTYH). The direct evidence of the role of oxidative DNA damage and its repair is proven by hereditary syndromes (MUTYH-associated polyposis, NTHL1-associated tumor syndrome), where germline mutations cause loss-of-function in glycosylases of base excision repair, thus enabling the accumulation of oxidative DNA damage and leading to the adenoma-colorectal cancer transition. Unrepaired oxidative DNA damage often results in G:C>T:A mutations in tumor suppressor genes and proto-oncogenes and widespread occurrence of chromosomal copy-neutral loss of heterozygosity. However, the situation is more complicated in complex and heterogeneous disease, such as sporadic colorectal cancer. Here we summarized our current knowledge of the role of oxidative DNA damage and its repair on the onset, prognosis and treatment of sporadic colorectal cancer. Molecular and histological tumor heterogeneity was considered. Our study has also suggested an additional important source of oxidative DNA damage due to intestinal dysbiosis. The roles of base excision repair glycosylases (hOGG1, MUTYH) in tumor and adjacent mucosa tissues of colorectal cancer patients, particularly in the interplay with other factors (especially microenvironment), deserve further attention. Base excision repair characteristics determined in colorectal cancer tissues reflect, rather, a disease prognosis. Finally, we discuss the role of DNA repair in the treatment of colon cancer, since acquired or inherited defects in DNA repair pathways can be effectively used in therapy.
Collapse
|
50
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|