1
|
Yang LJ, Zhang J, Chen QP, Pan EG, Huang ZJ, Yin XF, Wang T, He QY, Wang Y. Metastatic colorectal cancer cell preferentially secrets ribosomes, eukaryotic initiation factors and tRNA ligases via extracellular vesicles and aberrantly activate macrophages. Int J Biol Macromol 2025; 311:143938. [PMID: 40328398 DOI: 10.1016/j.ijbiomac.2025.143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025]
Abstract
Metastatic colorectal cancer (mCRC) is an aggressive solid tumor that frequently communicates with tumor-associated macrophage (TAM). Extracellular vesicle (EV) is critical mediator in their cross-talk, however, the difference in EV proteome released by CRC cells with different metastatic potential remains unclear. We found that high metastatic potential CRC cells (mCRCHigh, SW620 and HCT116) significantly induced macrophage transform and activation, as compared to relatively low metastatic potential CRC cells (mCRCLow, Caco2). With Super-SILAC-based quantitative proteomics, the altered proteins in EV of mCRCHigh were primarily enriched in protein translation-associated macromolecules, with more than half of known protein-translation machines like ribosomal subunits (40S and 60S), eukaryotic initiation factors and tRNA ligases were identified. Sequencing of translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) suggested that mCRCHigh-derived EVs exhibited stronger effect on TAM transform by promoting the protein-translation ratio (TR) of TAM-associated genes compared to mCRCLow-derived EVs. Pretreatment of cycloheximide to suppress the endogenous protein translation could not restore the TR and TAM phenotype boosted by mCRCHigh-derived EVs. Taken together, we revealed the active role of EVs secreted from aggressive CRC cells in transforming macrophages. The release of protein translation macromolecules by EVs likely serves as functional unit to promote the translation of specific genes.
Collapse
Affiliation(s)
- Li-Juan Yang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Ping Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - En-Guang Pan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Wang S, Gong Y, Ji Y, Liu D, Pan H, Pan W. M1 macrophage membrane-coated nickel-arsenic nanocomplex promoting synergistic treatment of hepatocellular carcinoma. J Pharm Sci 2025; 114:1280-1295. [PMID: 39826842 DOI: 10.1016/j.xphs.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
By inducing apoptosis, promoting differentiation and reducing the migration of cancer cells, arsenic has a higher therapeutic effect and lower risk of recurrence and metastasis than conventional anticancer drugs. However, the low bioavailability and adverse side effects of arsenic hinder its application in hepatocellular carcinoma (HCC). Therefore, a M1 macrophage membrane-coated nickel-arsenic/polydopamine nanocomplex (NiAsOx@P@M) was constructed to enhance the combined antitumor effects of chemotherapy and immunotherapy. The nanocomplex consisted of a nickel-arsenic oxide core, a polydopamine (PDA) shell and a M1 macrophage membrane (MM) coating. MM endowed the nanocomplex with natural tumor homing and immune escape properties, and the nanocomplex was gradually accumulated in the tumor tissue during the internal circulation. The acid response of PDA led to its degradation in the tumor microenvironment (TME). The degradation product dopamine (DA) and MM jointly promoted tumor immunity and regulated tumor-associated macrophages (TAMs) to repolarization M1 phenotype. The nickel-arsenic oxide core dissociated in an acid environment and released arsenic, thus killing tumor cells. In summary, the nanocomplex provided a promising delivery strategy for arsenic therapy of HCC and a novel design idea for the conversion of inorganic drugs into organic preparations.
Collapse
Affiliation(s)
- Shu Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Gong
- Liaoning University, Shenyang 110036, China
| | - Yang Ji
- Liaoning University, Shenyang 110036, China
| | - Dandan Liu
- Liaoning Institute of Science and Technology, Benxi 117004, China
| | - Hao Pan
- Liaoning University, Shenyang 110036, China.
| | - Weisan Pan
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Chen H, Chen Y, Chung W, Loh Z, Lee K, Hsu H. Circulating CD3 +CD8 + T Lymphocytes as Indicators of Disease Status in Patients With Early Breast Cancer. Cancer Med 2025; 14:e70547. [PMID: 39749673 PMCID: PMC11696249 DOI: 10.1002/cam4.70547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating CD3+CD8+ cell levels were lower in breast cancer patients, elevated posttreatment, and subsequently declining upon recurrence. Elevated plasma chemokine (C-C motif) ligand 2 (CCL2) levels distinguished patients with breast cancer from healthy controls. In summary, circulating CD3+CD8+ CTL and plasma CCL2 levels emerged as promising dual-purpose biomarkers and therapeutic targets in breast cancer management.
Collapse
Affiliation(s)
- Han‐Kun Chen
- Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of NursingMeiho UniversityPingtungTaiwan
| | - Yi‐Ling Chen
- Department of Health and NutritionChia Nan University of Pharmacy and ScienceTainanTaiwan
| | - Wei‐Pang Chung
- Department of Oncology, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
- Center of Applied NanomedicineNational Cheng Kung UniversityTainanTaiwan
| | - Zhu‐Jun Loh
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
| | - Kuo‐Ting Lee
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
| | - Hui‐Ping Hsu
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
- Department of Biochemistry and Molecular BiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
4
|
Pallathadka H, Khaleel AQ, Zwamel AH, Malathi H, Sharma S, Rizaev JA, Mustafa YF, Pramanik A, Shuhata Alubiady MH, Jawad MA. Multi-Drug Resistance and Breast Cancer Progression via Toll-Like Receptors (TLRs) Signaling. Cell Biochem Biophys 2024; 82:3015-3030. [PMID: 39110298 DOI: 10.1007/s12013-024-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 11/20/2024]
Abstract
Toll-like receptors (TLRs) are essential receptors involved in inflammation and innate immunity. Various types of cancer cells, as well as innate immune cells, express TLRs. There is mounting proof that TLRs are critical to the development and spread of cancer as well as metabolism. In breast cancer, up-regulated levels of TLRs have been linked to the aggressiveness of the diseases, worse treatment outcomes, and the emergence of therapeutic resistance. Patients with advanced non-resectable, recurring, and metastatic breast cancer currently have few available treatment choices. An intriguing new strategy is an innate immunity-mediated anticancer immunotherapy, either used alone or in conjunction with existing treatments. In fact, several TLR agonists and antagonists have been used in clinical studies for anti-cancer immunotherapy. Consequently, TLRs serve as critical targets for controlling the course of breast cancer and treatment resistance in addition to being implicated in immune responses against pathogen infection and cancer immunology. In this review, we deliver an overview of the most current findings on TLR involvement in the development of breast cancer and treatment resistance.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Mohamed MM, Schneider RJ. Multifunctional role of the tumor-associated monocytes/macrophages in the metastatic potential of inflammatory breast cancer. QJM 2024; 117:831-835. [PMID: 39437012 DOI: 10.1093/qjmed/hcae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal phenotype form of breast cancer, which afflicts young women at high incidence in North Africa compared to other continents of the world. IBC is characterized by highly metastatic behavior and possesses specific pathobiological properties different from non-IBC. IBC disease displays unusual common properties at typical presentation, including positive metastatic lymph nodes, high infiltration of tumor-associated monocytes/macrophages (TAMs/Ms), rapid progression to distant metastasis and possibly the production of a unique repertoire of growth factors, cytokines and chemokines, as well as a striking association with different polarized macrophages compared to non-IBC. Indeed, TAMs/Ms play a crucial role in breast cancer development. Previously, we showed that cross-talk between IBC cells and patient-derived TAMs occurs via secretion of inflammatory mediators from TAMs that act on specific extracellular domain receptors activating down-stream signaling pathways that promote the epithelial-to-mesenchymal transition, cancer cell invasion, IBC stem cell properties, drug resistance, local and metastatic recurrence of residual tumor cells and other key markers of malignancy, including in vitro colony formation capacity. In this mini-review, we will discuss the role of TAMs in IBC cancer metastatic potential and molecules involved. The review also discusses the recent discoveries in the field of IBC research.
Collapse
Affiliation(s)
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Hayes AJ, Pingen M, Wilson G, Hansell C, Love S, Burgoyne P, McElroy D, Bartolini R, Vidler F, Schuette F, Gamble A, Campbell J, Galatis D, Campbell JDM, Graham GJ. Enhanced CCR2 expression by ACKR2-deficient NK cells increases tumoricidal cell therapy efficacy. J Leukoc Biol 2024; 116:1544-1553. [PMID: 39052923 DOI: 10.1093/jleuko/qiae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Chemokines regulate leukocyte navigation to inflamed sites and specific tissue locales and may therefore be useful for ensuring accurate homing of cell therapeutic products. We, and others, have shown that atypical chemokine receptor 2 (ACKR2)-deficient mice (ACKR2-/-) are protected from metastasis development in cell line and spontaneous mouse models. We have shown that this relates to enhanced CCR2 expression on ACKR2-/- natural killer cells, allowing them to home more effectively to CCR2 ligand-expressing metastatic deposits. Here we demonstrate that the metastatic-suppression phenotype in ACKR2-/- mice is not a direct effect of the absence of ACKR2. Instead, enhanced natural killer cell CCR2 expression is caused by passenger mutations that originate from the creation of the ACKR2-/- mouse strain in 129 embryonic stem cells. We further demonstrate that simple selection of CCR2+ natural killer cells enriches for a population of cells with enhanced antimetastatic capabilities. Given the widespread expression of CCR2 ligands by tumors, our study highlights CCR2 as a potentially important contributor to natural killer cell tumoricidal cell therapy.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mice
- Mice, Knockout
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Neoplasm Metastasis
- Cytotoxicity, Immunologic
- Cell Line, Tumor
- Mice, Inbred C57BL
- Chemokine Receptor D6
Collapse
Affiliation(s)
- Alan J Hayes
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Marieke Pingen
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gillian Wilson
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Chris Hansell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Samantha Love
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Paul Burgoyne
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Daniel McElroy
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Robin Bartolini
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Francesca Vidler
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Fabian Schuette
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Alistair Gamble
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jordan Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Dimitrios Galatis
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - John D M Campbell
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Gerard J Graham
- Chemokine Research Group, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
7
|
Arora L, Patra D, Roy S, Nanda S, Singh N, Verma AK, Chakraborti A, Dasgupta S, Pal D. Hypoxia-induced miR-210-3p expression in lung adenocarcinoma potentiates tumor development by regulating CCL2 mediated monocyte infiltration. Mol Oncol 2024; 18:1278-1300. [PMID: 35658112 PMCID: PMC11077004 DOI: 10.1002/1878-0261.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
In most cancers, tumor hypoxia downregulates the expression of C-C motif chemokine 2 (CCL2), and this downregulation has been implicated in monocyte infiltration and tumor progression; however, the molecular mechanism is not yet clear. We compared noncancerous and lung-adenocarcinoma human samples for hypoxia-inducible factor 1-alpha (HIF-1A), microRNA-210-3p (mir-210-3p), and CCL2 levels. Mechanistic studies were performed on lung adenocarcinoma cell lines and 3D tumor spheroids to understand the role of hypoxia-induced miR-210-3p in the regulation of CCL2 expression and macrophage polarization. HIF-1Α stabilization increases miR-210-3p levels in lung adenocarcinoma and impairs monocyte infiltration by inhibiting CCL2 expression. Mechanistically, miR-210-3p directly binds to the 3'untranslated region (UTR) of CCL2 mRNA and silences it. Suppressing miR-210-3p substantially downregulates the effect of hypoxia on CCL2 expression. Monocyte migration is significantly hampered in miR-210-3p mimic-transfected HIF-1A silenced cancer cells. In contrast, inhibition of miR-210-3p in HIF-1A-overexpressed cells markedly restored monocyte migration, highlighting a direct link between the miR-210-3p level and tumor monocyte burden. Moreover, miR-210-3p inhibition in 3D tumor spheroids promotes monocyte recruitment and skewing towards an antitumor M1 phenotype. Anti-hsa-miR-210-3p-locked nucleic acid (LNA) delivery in a lung tumor xenograft zebrafish model caused tumor regression, suggesting that miR-210-3p could be a promising target for immunomodulatory therapeutic strategies against lung adenocarcinoma.
Collapse
Affiliation(s)
- Leena Arora
- Department of Biomedical EngineeringIndian Institute of Technology RoparPunjabIndia
| | - Debarun Patra
- Department of Biomedical EngineeringIndian Institute of Technology RoparPunjabIndia
| | - Soumyajit Roy
- Department of Biomedical EngineeringIndian Institute of Technology RoparPunjabIndia
| | - Sidhanta Nanda
- Department of Biomedical EngineeringIndian Institute of Technology RoparPunjabIndia
| | - Navneet Singh
- Department of Pulmonary MedicinePostgraduate Institute of Medical Education & Research (PGIMER)ChandigarhIndia
| | - Anita K. Verma
- Department of Zoology, Kirori Mal CollegeUniversity of DelhiIndia
| | - Anuradha Chakraborti
- Department of Experimental Medicine & BiotechnologyPostgraduate Institute of Medical Education & Research (PGIMER)ChandigarhIndia
| | - Suman Dasgupta
- Department of Molecular Biology & BiotechnologyTezpur UniversityAssamIndia
| | - Durba Pal
- Department of Biomedical EngineeringIndian Institute of Technology RoparPunjabIndia
| |
Collapse
|
8
|
Nilkhet S, Mongkolpobsin K, Sillapachaiyaporn C, Wongsirojkul N, Tencomnao T, Chuchawankul S. M1 macrophages polarized by crude polysaccharides isolated from Auricularia polytricha exhibit anti-tumor effect on human breast cancer cells. Sci Rep 2024; 14:8179. [PMID: 38589471 PMCID: PMC11001921 DOI: 10.1038/s41598-024-58208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Breast cancer has been reported to correlate with the infiltration of tumor-associated macrophages (TAMs) or M2-like macrophages in tumor microenvironment (TME) that could promote breast cancer progression. In contrast, M1-like macrophages displayed anti-tumor activity toward cancer. This study was focused on Auricularia polytricha (AP), a cloud ear mushroom, which has been reported for anti-tumor activity and immunomodulation. AP extracts were screened on differentiated THP-1 macrophages (M0). Results demonstrated that water extract (APW) and crude polysaccharides (APW-CP) could upregulate M1-related genes and cytokines production (IL-6, IL-1 β and TNF-α) significantly. Moreover, APW and APW-CP showed a high expression of CD86 (M1 marker) compared to M0. The NF-κB signaling pathway is crucial for pro-inflammatory gene regulation. The APW and APW-CP treatment showed the induction of the NF-κB pathway in a dose-dependent manner, which related to the β-glucan content in the extracts. Furthermore, APW-CP polarized macrophages were investigated for anti-tumor activity on human breast cancer cells (MCF-7 and MDA-MB-231). Results showed that APW-CP could inhibit the invasion of breast cancer cells and induce apoptosis. Therefore, M1 macrophages polarized by APW-CP showed anti-tumor activity against the breast cancer cells and β-glucan may be the potential M1-phenotype inducer.
Collapse
Affiliation(s)
- Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kuljira Mongkolpobsin
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Pant A, Hwa-Lin Bergsneider B, Srivastava S, Kim T, Jain A, Bom S, Shah P, Kannapadi N, Patel K, Choi J, Cho KB, Verma R, Yu-Ju Wu C, Brem H, Tyler B, Pardoll DM, Jackson C, Lim M. CCR2 and CCR5 co-inhibition modulates immunosuppressive myeloid milieu in glioma and synergizes with anti-PD-1 therapy. Oncoimmunology 2024; 13:2338965. [PMID: 38590799 PMCID: PMC11000615 DOI: 10.1080/2162402x.2024.2338965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Siddhartha Srivastava
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Shah
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nivedha Kannapadi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M. Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina Jackson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
10
|
Yoshimura T, Li C, Wang Y, Matsukawa A. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. Cell Mol Immunol 2023; 20:714-738. [PMID: 37208442 PMCID: PMC10310763 DOI: 10.1038/s41423-023-01013-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide, and metastasis is the leading cause of death in cancer patients. Human monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated from the culture supernatants of not only mitogen-activated peripheral blood mononuclear leukocytes but also malignant glioma cells based on its in vitro chemotactic activity toward human monocytes. MCP-1 was subsequently found to be identical to a previously described tumor cell-derived chemotactic factor thought to be responsible for the accumulation of tumor-associated macrophages (TAMs), and it became a candidate target of clinical intervention; however, the role of TAMs in cancer development was still controversial at the time of the discovery of MCP-1. The in vivo role of MCP-1 in cancer progression was first evaluated by examining human cancer tissues, including breast cancers. Positive correlations between the level of MCP-1 production in tumors and the degree of TAM infiltration and cancer progression were established. The contribution of MCP-1 to the growth of primary tumors and metastasis to the lung, bone, and brain was examined in mouse breast cancer models. The results of these studies strongly suggested that MCP-1 is a promoter of breast cancer metastasis to the lung and brain but not bone. Potential mechanisms of MCP-1 production in the breast cancer microenvironment have also been reported. In the present manuscript, we review studies in which the role of MCP-1 in breast cancer development and progression and the mechanisms of its production were examined and attempt to draw a consensus and discuss the potential use of MCP-1 as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
11
|
Kumata S, Notsuda H, Su MT, Saito-Koyama R, Tanaka R, Suzuki Y, Funahashi J, Endo S, Yokota I, Takai T, Okada Y. Prognostic impact of LILRB4 expression on tumor-infiltrating cells in resected non-small cell lung cancer. Thorac Cancer 2023. [PMID: 37290427 PMCID: PMC10363795 DOI: 10.1111/1759-7714.14991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4/ILT3) is an up-and-coming molecule that promotes immune evasion. We have previously reported that LILRB4 facilitates myeloid-derived suppressor cells (MDSCs)-mediated tumor metastasis in mice. This study aimed to investigate the impact of the LILRB4 expression levels on tumor-infiltrating cells on the prognosis of non-small cell lung cancer (NSCLC) patients. METHODS We immunohistochemically evaluated the LILRB4 expression levels of completely resected 239 NSCLC specimens. Whether the blocking of LILRB4 on human PBMC-derived CD33+ MDSCs inhibited the migration ability of lung cancer cells was also examined using transwell migration assay. RESULTS The LILRB4 high group, in which patients with a high LILRB4 expression level on tumor-infiltrating cells, showed a shorter overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.0017) compared to the LILRB4 low group. Multivariate analyses revealed that a high LILRB4 expression was an independent factor for postoperative recurrence, poor OS and RFS. Even in the cohort background aligned by propensity score matching, OS (p = 0.023) and RFS (p = 0.0046) in the LILRB4 high group were shorter than in the LILRB4 low group. Some of the LILRB4 positive cells were positive for MDSC markers, CD33 and CD14. Transwell migration assay demonstrated that blocking LILRB4 significantly inhibited the migration of human lung cancer cells cocultured with CD33+ MDSCs. CONCLUSION Together, signals through LILRB4 on tumor-infiltrating cells, including MDSCs, play an essential role in promoting tumor evasion and cancer progression, impacting the recurrence and poor prognosis of patients with resected NSCLC.
Collapse
Affiliation(s)
- Sakiko Kumata
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Division of Thoracic Surgery, Miyagi Cancer Center Hospital, Natori, Japan
| | - Hirotsugu Notsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ryoko Saito-Koyama
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, National Hospital Organization, Sendai Medical Center, Sendai, Japan
| | - Ryota Tanaka
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuyo Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Junichi Funahashi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
13
|
Zhang L, Qin Q, Xu C, Zhang N, Zhao T. Identification of immune cell function in breast cancer by integrating multiple single-cell data. Front Immunol 2022; 13:1058239. [PMID: 36479102 PMCID: PMC9719918 DOI: 10.3389/fimmu.2022.1058239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Breast cancer has now become the most commonly diagnosed cancer worldwide. It is a highly complex and heterogeneous disease that comprises distinct histological features and treatment response. With the development of molecular biology and immunology, immunotherapy has become a new field of breast cancer treatment. Identifying cell-type-specific genes critical to the immune microenvironment contributes to breast cancer treatment. Single-cell RNA sequencing (scRNA-seq) technology could serve as a powerful tool to analyze cellular genetic information at single-cell resolution and to uncover the gene expression status of each cell, thus allowing comprehensive assessment of intercellular heterogeneity. Because of the influence of sample size and sequencing depth, the specificity of genes in different cell types for breast cancer cannot be fully revealed. Therefore, the present study integrated two public breast cancer scRNA-seq datasets aiming to investigate the functions of different type of immune cells in tumor microenvironment. We identified total five significant differential expressed genes of B cells, T cells and macrophage and explored their functions and immune mechanisms in breast cancer. Finally, we performed functional annotation analyses using the top fifteen differentially expressed genes in each immune cell type to discover the immune-related pathways and gene ontology (GO) terms.
Collapse
Affiliation(s)
- Liyuan Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, China
| | - Qiyuan Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Xu
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ningyi Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China,*Correspondence: Tianyi Zhao,
| |
Collapse
|
14
|
Zhang JJ, Liu W, Xing GZ, Xiang L, Zheng WM, Ma ZL. Role of CC-chemokine ligand 2 in gynecological cancer. Cancer Cell Int 2022; 22:361. [PMCID: PMC9675065 DOI: 10.1186/s12935-022-02763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Gynecological cancer is one of the most severe diseases that threaten the lives and health of women worldwide. Its incidence rate increases with each passing year and becomes more prevalent among young people. The prognosis of gynecological cancer remains poor despite significant advances in surgical removal and systemic chemotherapy. Several chemokines play a role in the progression of gynecologic cancers. CCL2 (CC-chemokine ligand 2), also termed MCP-1 (monocyte chemotactic protein 1), plays a significant physiological role in monocyte cell migration and the inflammatory response. Recent studies have demonstrated that CCL2 plays a pro-tumorigenic function in the tumor microenvironment. According to previous studies, CCL2 plays a significant role in the occurrence and development of gynecological cancers. Furthermore, recent studies noted that CCL2 could be a potential diagnostic biomarker and prognostic predictor. The purpose of this paper is to review the role of CCL2 in the occurrence and development of gynecological cancers and to discuss the potential therapeutic strategy of CCL2 for gynecological cancers, with a primary focus on breast cancer, ovarian cancer, cervical cancer, and endometrial cancer.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wei Liu
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guo-Zhen Xing
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Li Xiang
- grid.207374.50000 0001 2189 3846Henan Provincial People’s Hospital/People’s Hospital of Zhengzhou University, 7 Weiwu Road, Jinshui District, Zhengzhou, 450000 China
| | - Wen-Ming Zheng
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhen-Ling Ma
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
15
|
Roussot N, Ghiringhelli F, Rébé C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022; 11:cells11223672. [PMID: 36429101 PMCID: PMC9688834 DOI: 10.3390/cells11223672] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The success of anticancer treatments relies on a long-term response which can be mediated by the immune system. Thus, the concept of immunogenic cell death (ICD) describes the capacity of dying cancer cells, under chemotherapy or physical stress, to express or release danger-associated molecular patterns (DAMPs). These DAMPs are essential to activate dendritic cells (DCs) and to stimulate an antigen presentation to CD8 cytotoxic cells. Then, activated CD8 T cells exert their antitumor effects through cytotoxic molecules, an effect which is transitory due to the establishment of a feedback loop leading to T-cell exhaustion. This phenomenon can be reversed using immune checkpoint blockers (ICBs), such as anti-PD-1, PD-L1 or CTLA-4 Abs. However, the blockade of these checkpoints is efficient only if the CD8 T cells are recruited within the tumor. The CD8 T-cell chemoattraction is mediated by chemokines. Hence, an important question is whether the ICD can not only influence the DC activation and resulting CD8 T-cell activation but can also favor the chemokine production at the tumor site, thus triggering their recruitment. This is the aim of this review, in which we will decipher the role of some chemokines (and their specific receptors), shown to be released during ICD, on the CD8 T-cell recruitment and antitumor response. We will also analyze the clinical applications of these chemokines as predictive or prognostic markers or as new targets which should be used to improve patients' response.
Collapse
Affiliation(s)
- Nicolas Roussot
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
| | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, F-21000 Dijon, France
- Genetic and Immunology Medical Institute, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| | - Cédric Rébé
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, F-21000 Dijon, France
- Equipe Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM LNC-UMR1231, F-21000 Dijon, France
- UFR Sciences de Santé, University Bourgogne Franche-Comté, F-21000 Dijon, France
- Correspondence: (F.G.); (C.R.)
| |
Collapse
|
16
|
Creaney J, Patch AM, Addala V, Sneddon SA, Nones K, Dick IM, Lee YCG, Newell F, Rouse EJ, Naeini MM, Kondrashova O, Lakis V, Nakas A, Waller D, Sharkey A, Mukhopadhyay P, Kazakoff SH, Koufariotis LT, Davidson AL, Ramarao-Milne P, Holmes O, Xu Q, Leonard C, Wood S, Grimmond SM, Bueno R, Fennell DA, Pearson JV, Robinson BW, Waddell N. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med 2022; 14:58. [PMID: 35637530 PMCID: PMC9150319 DOI: 10.1186/s13073-022-01060-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. Methods We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. Results The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a ‘hot’ immune environment independent of the somatic mutations. Conclusions We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01060-8.
Collapse
|
17
|
Märkl F, Huynh D, Endres S, Kobold S. Utilizing chemokines in cancer immunotherapy. Trends Cancer 2022; 8:670-682. [DOI: 10.1016/j.trecan.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
18
|
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 2022; 29:10-21. [PMID: 33603130 PMCID: PMC8761573 DOI: 10.1038/s41417-021-00303-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Immune cell infiltration into solid tumors, their movement within the tumor microenvironment (TME), and interaction with other immune cells are controlled by their directed migration towards gradients of chemokines. Dysregulated chemokine signaling in TME favors the growth of tumors, exclusion of effector immune cells, and abundance of immunosuppressive cells. Key chemokines directing the migration of immune cells into tumor tissue have been identified. In this review, we discuss well-studied chemokine receptors that regulate migration of effector and immunosuppressive immune cells in the context of cancer immunology. We discuss preclinical models that have described the role of respective chemokine receptors in immune cell migration into TME and review preclinical and clinical studies that target chemokine signaling as standalone or combination therapies.
Collapse
Affiliation(s)
- Karan Kohli
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Venu G. Pillarisetty
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Teresa S. Kim
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| |
Collapse
|
19
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
20
|
Bahcecioglu G, Yue X, Howe E, Guldner I, Stack MS, Nakshatri H, Zhang S, Zorlutuna P. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100128. [PMID: 34617419 PMCID: PMC8596116 DOI: 10.1002/advs.202100128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Xiaoshan Yue
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Erin Howe
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ian Guldner
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - M. Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Harikrishna Nakshatri
- Department of SurgerySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologySchool of MedicineIndiana UniversityIndianapolisIN46202USA
| | - Siyuan Zhang
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
21
|
Mazzio E, Almalki A, Darling-Reed SF, Soliman KFA. Effects of Wild Yam Root ( Dioscorea villosa) Extract on the Gene Expression Profile of Triple-negative Breast Cancer Cells. Cancer Genomics Proteomics 2021; 18:735-755. [PMID: 34697066 DOI: 10.21873/cgp.20294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIM Wild yam extract [Dioscorea villosa, (WYE)] is consistently lethal at low IC50s across diverse cancer-lines in vitro. Unlike traditional anti-cancer botanicals, WYE contains detergent saponins which reduce oil-water interfacial tensions causing disintegration of lipid membranes and causing cell lysis, creating an interfering variable. Here, we evaluate WYE at sub-lethal concentrations in MDA-MB-231 triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS Quantification of saponins, membrane potential, lytic death and sub-lethal WYE changes in whole transcriptomic (WT) mRNA, miRNAs and biological parameters were evaluated. RESULTS WYE caused 346 differentially expressed genes (DEGs) out of 48,226 transcripts tested; where up-regulated DEGS reflect immune stimulation, TNF signaling, COX2, cytokine release and cholesterol/steroid biosynthesis. Down-regulated DEGs reflect losses in cell division cycle (CDC), cyclins (CCN), cyclin-dependent kinases (CDKs), centromere proteins (CENP), kinesin family members (KIFs) and polo-like kinases (PLKs), which were in alignment with biological studies. CONCLUSION Sub-lethal concentrations of WYE appear to evoke pro-inflammatory, steroid biosynthetic and cytostatic effects in TNBC cells.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Abdulaziz Almalki
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina F Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
22
|
Hsu LJ, Liu CL, Kuo ML, Shen CN, Shen CR. An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines 2021; 9:1323. [PMID: 34680440 PMCID: PMC8533510 DOI: 10.3390/biomedicines9101323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cell therapy is usually defined as the treatment or prevention of human disease by supplementation with cells that have been selected, manipulated, and pharmacologically treated or altered outside the body (ex vivo). Induced pluripotent stem cells (iPSCs), with their unique characteristics of indefinite expansion in cultures and genetic modifications, represent an ideal cell source for differentiation into specialized cell types. Cell therapy has recently become one of the most promising therapeutic approaches for cancers, and different immune cell types are selected as therapeutic platforms. Natural killer (NK) cells are shown to be effective tumor cell killers and do not cause graft-vs-host disease (GVHD), making them excellent candidates for, and facilitating the development of, "off-the-shelf" cell therapies. In this review, we summarize the progress in the past decade in the advent of iPSC technology and review recent developments in gene-modified iPSC-NK cells as readily available "off-the-shelf" cellular therapies.
Collapse
Affiliation(s)
- Li-Jie Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan;
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei 243, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
23
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
24
|
Ma JY, Liu Q, Liu G, Peng S, Wu G. Identification and validation of a robust autophagy-related molecular model for predicting the prognosis of breast cancer patients. Aging (Albany NY) 2021; 13:16684-16695. [PMID: 34185683 PMCID: PMC8266368 DOI: 10.18632/aging.203187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Despite a relatively low mortality rate, high recurrence rates represent a significant problem for breast cancer (BC) patients. Autophagy affects the development, progression, and prognosis of various cancers, including BC. The aim of the present study was to identify candidate autophagy-related genes (ARGs) and construct a molecular-clinicopathological signature to predict recurrence risk in BC. A 10-ARG-based signature was established in a training cohort (GEO-BC dataset GSE25066) with LASSO Cox regression and assessed in an independent validation cohort (GEO-BC GSE22219). Significant differences in recurrence-free survival were observed for high- and low-risk patients segregated based on their signature-based risk score. Time-dependent receiver operating characteristic (tdROC) analysis of signature performance demonstrated satisfactory accuracy and predictive power in both the training and validation cohorts. Moreover, we developed a nomogram to predict 3- and 5-year recurrence-free survival by combining the autophagy-related risk score and clinicopathological data. Both the tdROC and calibration curves indicated high discriminating ability for the nomogram. This study indicates that our ARG-based signature is an independent prognostic classifier for recurrence-free survival in BC. In addition, individualized survival risk assessment and treatment decisions might be effectively improved by implementing the proposed nomogram.
Collapse
Affiliation(s)
- Jian-Ying Ma
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qin Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Gang Liu
- Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Shasha Peng
- Department of Hepatobiliary Surgery, Huangshi Central Hospital of Edong Healthcare Group, Hubei Polytechnic University, Huangshi, Hubei, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Rasmussen RK, Etzerodt A. Therapeutic targeting of tumor-associated macrophages. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:185-211. [PMID: 34099108 DOI: 10.1016/bs.apha.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor-associated macrophages are among the most abundant non-cancerous cells in the tumor microenvironment and in many cancers macrophage infiltration into the tumor is associated with poor prognosis. Macrophages contribute to tumor development by promoting angiogenesis and immune suppression, and display remarkable phenotypic heterogeneity in the tumor microenvironment. Therapeutic strategies targeting macrophages that currently are in clinical development are mainly focused on a general depletion of tumor-associated macrophages, either by targeting the CSF-1/CSF-1R axis or by inhibiting macrophage recruitment by blocking CCR2/CCL2 signaling. Despite good pre-clinical response rates the treatment strategies focusing on general macrophage targeting have only shown limited clinical success and new approaches that target specific subsets of tumo-associated macrophages are emerging. This chapter will briefly present the functions and heterogeneity of tumor-associated macrophages and provide an overview of the current state of clinical development for pan-targeting strategies as well as discuss new strategies for targeting specific macrophage subsets for future anti-tumor immunotherapies.
Collapse
Affiliation(s)
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
26
|
Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment. Biosci Rep 2021; 40:226899. [PMID: 33146700 PMCID: PMC7687043 DOI: 10.1042/bsr20202042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignancy among females worldwide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host to reject the tumor. CC chemokines play a significant role in inflammation and infection. METHODS In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. RESULTS The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remarkably increased while CCL14/21/23/28 was significantly down-regulated in BC tissues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC. Results from Kaplan-Meier plotter and BC Gene-Expression Miner v4.2 (bcGenExMiner) v4.2 demonstrated that BC patients with high CCL8 and low CCL19/21/22 expression were more likely to have a worse prognosis. CCL8 expression was significantly up-regulated in BC tissues compared with normal tissues. High CCL8 expression was significantly correlated with negative PR, negative ER, positive nodal status, triple-negative BC subtype, basal-like BC subtype, triple-negative and basal-like BC subtype and high grades. CCL21 was down-regulated in BC, while high levels of CCL21 was associated with negative PR, triple-negative subtype, basal-like subtype and low tumor grade. Functional analysis demonstrated that CCL8 and CCL21 were involved in carcinogenesis, tumor immune escape and chemoresistance in BC. CONCLUSION Integrative bioinformatics analysis demonstrated CCL8/21 as potential prognostic biomarkers in BC microenvironment.
Collapse
|
27
|
Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, Zuo X, Zhang Y, Chen Z, Ding W, Li X, Lin F, Shen H, Tang J, Zhang Y, Wang X. M2 Macrophage-Derived Exosomes Facilitate HCC Metastasis by Transferring α M β 2 Integrin to Tumor Cells. Hepatology 2021; 73:1365-1380. [PMID: 32594528 PMCID: PMC8360085 DOI: 10.1002/hep.31432] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS The development and progression of hepatocellular carcinoma (HCC) is dependent on its local microenvironment. Tumor-associated macrophages (TAMs) are deemed a key factor for the tumor microenvironment and attribute to contribute to tumor aggressiveness. However, the detailed mechanism underlying the pro-metastatic effect of TAMs on HCC remains undefined. APPROACH AND RESULTS The present study proved that TAMs were enriched in HCC. TAMs were characterized by an M2-polarized phenotype and accelerated the migratory potential of HCC cells in vitro and in vivo. Furthermore, we found that M2-derived exosomes induced TAM-mediated pro-migratory activity. With the use of mass spectrometry, we identified that integrin, αM β2 (CD11b/CD18), was notably specific and efficient in M2 macrophage-derived exosomes (M2 exos). Blocking either CD11b and/or CD18 elicited a significant decrease in M2 exos-mediated HCC cell metastasis. Mechanistically, M2 exos mediated an intercellular transfer of the CD11b/CD18, activating the matrix metalloproteinase-9 signaling pathway in recipient HCC cells to support tumor migration. CONCLUSIONS Collectively, the exosome-mediated transfer of functional CD11b/CD18 protein from TAMs to tumor cells may have the potency to boost the migratory potential of HCC cells, thus providing insights into the mechanism of tumor metastasis.
Collapse
|
28
|
O'Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:1-14. [PMID: 34286437 DOI: 10.1007/978-3-030-62658-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-C motif chemokine ligand 2 (CCL2) is a crucial mediator of immune cell recruitment during microbial infections and tissue damage. CCL2 is also frequently overexpressed in cancer cells and other cells in the tumor microenvironment, and a large body of evidence indicates that high CCL2 levels are associated with more aggressive malignancies, a higher probability of metastasis, and poorer outcomes in a wide range of cancers. CCL2 plays a role in recruiting tumor-associated macrophages (TAMs), which adopt a pro-tumorigenic phenotype and support cancer cell survival, facilitate tumor cell invasion, and promote angiogenesis. CCL2 also has direct, TAM-independent effects on tumor cells and the tumor microenvironment, including recruitment of other myeloid subsets and non-myeloid cells, maintaining an immunosuppressive environment, stimulating tumor cell growth and motility, and promoting angiogenesis. CCL2 also plays important roles in the metastatic cascade, such as creating a pre-metastatic niche in distant organs and promoting tumor cell extravasation across endothelia. Due to its many roles in tumorigenesis and metastatic processes, the CCL2-CCR2 signaling axis is currently being pursued as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
29
|
Iwamoto H, Izumi K, Mizokami A. Is the C-C Motif Ligand 2-C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int J Mol Sci 2020; 21:ijms21239328. [PMID: 33297571 PMCID: PMC7730417 DOI: 10.3390/ijms21239328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
C-C motif ligand 2 (CCL2) was originally reported as a chemical mediator attracting mononuclear cells to inflammatory tissue. Many studies have reported that CCL2 can directly activate cancer cells through a variety of mechanisms. CCL2 can also promote cancer progression indirectly through increasing the recruitment of tumor-associated macrophages into the tumor microenvironment. The role of CCL2 in cancer progression has gradually been understood, and various preclinical cancer models elucidate that CCL2 and its receptor C-C chemokine receptor 2 (CCR2) are attractive targets for intervention in cancer development. However, clinically available drugs that regulate the CCL2-CCR2 axis as anticancer agents are not available at this time. The complete elucidation of not only the oncological but also the physiological functions of the CCL2-CCR2 axis is required for achieving a satisfactory effect of the CCL2-CCR2 axis-targeted therapy.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
30
|
Alves A, Diel L, Ramos G, Pinto A, Bernardi L, Yates J, Lamers M. Tumor microenvironment and Oral Squamous Cell Carcinoma: A crosstalk between the inflammatory state and tumor cell migration. Oral Oncol 2020; 112:105038. [PMID: 33129055 DOI: 10.1016/j.oraloncology.2020.105038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To analyze the inflammatory millieu in oral squamous cell carcinoma (OSCC) tumors and the influence of macrophages related-cytokines on the tumor cell migration. MATERIALS AND METHODS Inflammatory protein profile and macrophage population (M2/M1 ratio) of human OSCC fragments were analyzed by proteomic analysis and flow cytometry assay respectively. To evaluate the effects of inflammation on OSCC behavior, we analyzed the role of polarized macrophages and cytokines (IL-6, IL-1β and TNF-α) on OSCC cell lines (SCC25 and Cal27) responsiveness by western blotting (cell signaling) and time-lapse (cell migration). Also, it was addressed the crosstalk of IL-6-STAT3 axis with cell migration signaling using a STAT3 inhibitor (Stattic®) and a pull down assay for the RhoGTPase Rac1 activity. RESULTS It was observed a ~2 fold predominance of M2 over M1 macrophages and a pro-inflammatory state in OSCC fragments. The M2 conditioned media increased migration speed and directionality of highly invasive OSCC cells (SCC25). OSCC cell lines were responsive to cytokine stimuli (IL6, IL-1β and TNF-α), but only IL-6 increased migration properties of OSCC cells. This effect was dependent on STAT3-phosphorylation levels, which interfered with Rac1 activation levels. CONCLUSION Our results suggest that the inflammatory milieu might favor invasion and metastasis of OSCC by the direct effect of macrophage-related cytokines on tumor migration.
Collapse
Affiliation(s)
- Alessandro Alves
- School of Dentistry, University Center Univates, Lajeado, RS, Brazil
| | - Leonardo Diel
- School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Grasieli Ramos
- School of Dentistry, University of Oeste de Santa Catarina, Joaçaba, SC, Brazil
| | - Antônio Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, United States
| | - Lisiane Bernardi
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - John Yates
- Department of Molecular Medicine, The Scripps Research Institute, United States.
| | - Marcelo Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Karin N. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Front Immunol 2020; 11:557586. [PMID: 33193327 PMCID: PMC7649122 DOI: 10.3389/fimmu.2020.557586] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of immature myeloid cells. Under normal conditions, they differentiate into macrophages, dendritic cells, and granulocytes. Under pathological conditions, such as chronic inflammation, or cancer, they tend to maintain their immature state as immature myeloid cells that, within the tumor microenvironment, become suppressor cells and assist tumor escape from immune eradication. MDSC are comprised of two major subsets: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC). Monocytic myeloid cells give rise to monocytic cells, whereas PMN-MDSC share similarities with neutrophils. Based on their biological activities, a two-stage model that includes the mobilization of the periphery as myeloid cells and their activation within the tumor microenvironment converting them into suppressor cells was previously suggested by D. Gabrilovich. From the migratory viewpoint, we are suggesting a more complex setup. It starts with crosstalk between the tumor site and the hematopoietic stem and progenitor cells (HSPCs) at the bone marrow (BM) and secondary lymphatic organs, resulting in rapid myelopoiesis followed by mobilization to the blood. Although myelopoiesis is coordinated by several cytokines and transcription factors, mobilization is selectively directed by chemokine receptors and may differ between M-MDSC and PMN-MDSC. These myeloid cells may then undergo further expansion at these secondary lymphatic organs and then home to the tumor site. Finally, selective homing of T cell subsets has been associated with retention at the target organs directed by adhesion molecules or chemokine receptors. The possible relevance to myeloid cells is still speculative but is discussed.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
Xiao F, Liu N, Ma X, Qin J, Liu Y, Wang X. M2 macrophages reduce the effect of gefitinib by activating AKT/mTOR in gefitinib-resistant cell lines HCC827/GR. Thorac Cancer 2020; 11:3289-3298. [PMID: 32956565 PMCID: PMC7606002 DOI: 10.1111/1759-7714.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The biological behavior of cells change after they develop drug resistance, and the degree of resistance will be affected by the tumor microenvironment. Here, we aimed to explore the changes in the biological behavior of tumors and to observe the differences in the release of cytokines and chemokines which can influence the tumor microenvironment. We also aimed to study how TKIs-resistant cell lines recruit macrophages to reduce the sensitivity of the cells following gefitinib administration. METHODS We generated and maintained gefitinib-resistant cell lines to study the differences between gefitinib-sensitive cell lines according to clone formation, cell growth curve analysis, whole-exome sequencing, and qPCR ARRAY technology. We used the WNT/β-catenin inhibitor, WNT/β-catenin activator and overexpression β-catenin lentivirus to observe the changes in CCL2. M2 macrophages and gefitinib-resistant cell lines HCC827/GR were cocultured to detect the viability gefitinib for inducing cell death. RESULTS The proliferation and migratory activities were much more pronounced in HCC827/GR cells. CCL2 expression was also enhanced and regulated by β-catenin in HCC827/GR. CCL2 promoted the chemotactic ability of M2 macrophages. M2 macrophages reduced the antitumor effect of gefitinib treatment by activating AKT/mTOR. CONCLUSIONS Gefitinib-resistant cell lines have stronger proliferation and migration capabilities, and attract macrophages by releasing more CCL2 to reduce the sensitivity of cells to gefitinib.
Collapse
Affiliation(s)
- Fengqi Xiao
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Ni Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinchun Ma
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Qin
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
33
|
López C, Bosch-Príncep R, Orero G, Fontoura Balagueró L, Korzynska A, García-Rojo M, Bueno G, Fernández-Carrobles MDM, Roszkowiak L, Callau Casanova C, Salvadó-Usach MT, Jaén Martínez J, Gibert-Ramos A, Roso-Llorach A, Gras Navarro A, Berenguer-Poblet M, Llobera M, Gil Garcia J, Tomás B, Gestí V, Laine E, Plancoulaine B, Baucells J, Lejeune M. Peritumoral immune infiltrates in primary tumours are not associated with the presence of axillary lymph node metastasis in breast cancer: a retrospective cohort study. PeerJ 2020; 8:e9779. [PMID: 32953267 PMCID: PMC7474517 DOI: 10.7717/peerj.9779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
Background The axillary lymph nodes (ALNs) in breast cancer patients are the body regions to where tumoral cells most often first disseminate. The tumour immune response is important for breast cancer patient outcome, and some studies have evaluated its involvement in ALN metastasis development. Most studies have focused on the intratumoral immune response, but very few have evaluated the peritumoral immune response. The aim of the present article is to evaluate the immune infiltrates of the peritumoral area and their association with the presence of ALN metastases. Methods The concentration of 11 immune markers in the peritumoral areas was studied in 149 patients diagnosed with invasive breast carcinoma of no special type (half of whom had ALN metastasis at diagnosis) using tissue microarrays, immunohistochemistry and digital image analysis procedures. The differences in the concentration of the immune response of peritumoral areas between patients diagnosed with and without metastasis in their ALNs were evaluated. A multivariate logistic regression model was developed to identify the clinical-pathological variables and the peritumoral immune markers independently associated with having or not having ALN metastases at diagnosis. Results No statistically significant differences were found in the concentrations of the 11 immune markers between patients diagnosed with or without ALN metastases. Patients with metastases in their ALNs had a higher histological grade, more lymphovascular and perineural invasion and larger-diameter tumours. The multivariate analysis, after validation by bootstrap simulation, revealed that only tumour diameter (OR = 1.04; 95% CI [1.00–1.07]; p = 0.026), lymphovascular invasion (OR = 25.42; 95% CI [9.57–67.55]; p < 0.001) and histological grades 2 (OR = 3.84; 95% CI [1.11–13.28]; p = 0.033) and 3 (OR = 5.18; 95% CI [1.40–19.17]; p = 0.014) were associated with the presence of ALN metastases at diagnosis. This study is one of the first to study the association of the peritumoral immune response with ALN metastasis. We did not find any association of peritumoral immune infiltrates with the presence of ALN metastasis. Nevertheless, this does not rule out the possibility that other peritumoral immune populations are associated with ALN metastasis. This matter needs to be examined in greater depth, broadening the types of peritumoral immune cells studied, and including new peritumoral areas, such as the germinal centres of the peritumoral tertiary lymphoid structures found in extensively infiltrated neoplastic lesions.
Collapse
Affiliation(s)
- Carlos López
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| | - Ramón Bosch-Príncep
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Guifré Orero
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | | | - Anna Korzynska
- Laboratory of Processing and Analysis of Microscopic Images, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Marcial García-Rojo
- Department of Pathology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Gloria Bueno
- VISILAB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | - Lukasz Roszkowiak
- Laboratory of Processing and Analysis of Microscopic Images, Nałęcz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | | | - M Teresa Salvadó-Usach
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| | | | - Albert Gibert-Ramos
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Albert Roso-Llorach
- Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Andrea Gras Navarro
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Marta Berenguer-Poblet
- Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain.,Department of Knowledge Management, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Montse Llobera
- Department of Oncology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Júlia Gil Garcia
- Department of Surgery, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Bárbara Tomás
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Vanessa Gestí
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Eeva Laine
- Department of Knowledge Management, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | | | - Jordi Baucells
- Department of Informatics, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Maryléne Lejeune
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.,Campus Terres de l'Ebre, Universitat Rovira Virgili Tarragona, Tortosa, Spain
| |
Collapse
|
34
|
Masuda T, Noda M, Kogawa T, Kitagawa D, Hayashi N, Jomori T, Nakanishi Y, Nakayama KI, Ohno S, Mimori K. Phase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Sci 2020; 111:924-931. [PMID: 31943636 PMCID: PMC7060487 DOI: 10.1111/cas.14306] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The formation of premetastatic niches creates a fertile environment for the seeding of disseminated cancer cells in selected secondary organs. This is crucial for the development of metastasis in various malignancies, including breast cancer (BC). We previously reported that the loss of FBXW7 in bone marrow‐derived stromal cells promoted cancer metastasis by increasing the production of the chemokine CCL2, which attracts myeloid‐derived suppressor cells and macrophages to the premetastatic niche. Furthermore, treatment with the CCL2 inhibitor propagermanium (PG), which has been used in Japan as a therapeutic agent against chronic hepatitis B, was shown to block the enhancement of metastasis in FBXW7‐deficient mice through inhibiting the formation of premetastatic niches. Here, we describe a phase I dose‐escalation study of PG used as an antimetastatic drug for perioperative patients with primary BC. The primary end‐point was the percentage of patients who experience dose‐limiting toxicity. Twelve patients were enrolled in the study. Dose‐limiting toxicity was not observed, and the maximum dose was determined to be 90 mg/body/day. The serum concentrations of PG were nearly within the normal range in all observation days. We observed an inverse correlation between FBXW7 mRNA levels in blood and the serum concentrations of CCL2 and interleukin (IL)‐6, in agreement with our previous mouse model. Also, IL‐6 was downregulated in a PG dose‐dependent manner, as observed in mice. Thus, PG was given safely and it is expected to have antimetastatic potential in BC. This trial is registered in the UMIN Clinical Trials Registry as UMIN000022494.
Collapse
Affiliation(s)
- Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takahiro Kogawa
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Dai Kitagawa
- Breast Oncology Center, The Cancer Institute Hospital Ariake of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | - Yoichi Nakanishi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinji Ohno
- Breast Oncology Center, The Cancer Institute Hospital Ariake of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
35
|
Bauer D, Mazzio E, Hilliard A, Oriaku ET, Soliman KFA. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol Lett 2020; 19:2123-2132. [PMID: 32194710 PMCID: PMC7038999 DOI: 10.3892/ol.2020.11327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of hormone receptors in triple negative breast cancer (TNBC) is associated with the inefficacy of anti-estrogen chemotherapies, leaving fewer options for patient treatment and higher mortality rates. Additionally, as with numerous types of inflammatory breast cancer, infiltration of tumor associated macrophages and other leukocyte sub-populations within the tumor inevitably lead to aggressive, chemo-resistant, metastatic and invasive types of cancer which escape immune surveillance. These processes are orchestrated by the release of potent cytokines, including TNFα, IL-6 and CCL2 from the stroma, tumor and immune cells within the tumor microenvironment. The present study evaluated apigenin modulating effects on the pro-inflammatory activating action of TNFα in TNBC MDA-MB-468 cells, derived from an African American woman. Initially, cell viability was determined to establish an optimal sub-lethal dose of TNFα and apigenin in MDA-MB-468 cells. Subsequently, various treatments effects were evaluated using whole transcriptomic analysis of mRNA and long intergenic non-coding RNA with Affymetrix HuGene-2.1-st human microarrays. Gene level differential expression analysis was conducted on 48,226 genes where TNFα caused significant upregulation of 53 transcripts and downregulation of 11 transcripts. The largest upward differential shift was for CCL2 [+61.86 fold change (FC); false discovery rate (FDR), P<0.0001]; which was down regulated by apigenin (to +10.71 FC vs. Control; FDR P-value <0.001), equivalent to an 83% reduction. Several TNFα deferentially upregulated transcripts were reduced by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint target) and MMP13. Confirmation of CCL2 experimentally induced transcript alterations was corroborated at the protein level by ELISA assays. The high level of CCL2 transcript in the cell line was comparable to that in our previous studies in MDA-MB-231 cells. The differential effects of TNFα were corroborated by ELISA, where the data revealed a >10-fold higher releasing rate of CCL2 in MDA-MB-468 cells compared with in MDA-MB-231 cells, both of which were attenuated by apigenin. The data obtained in the present study demonstrated a high level of CCL2 in MDA-MB-468 cells and a possible therapeutic role for apigenin in downregulating TNFα-mediated processes in these TNBC cells.
Collapse
Affiliation(s)
- David Bauer
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron Hilliard
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ebenezer T Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
36
|
Geisler J, Touma J, Rahbar A, Söderberg-Nauclér C, Vetvik K. A Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers (Basel) 2019; 11:cancers11121842. [PMID: 31766600 PMCID: PMC6966479 DOI: 10.3390/cancers11121842] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Previously recognized classical human onco-viruses can regulate complex neoplastic events, and are estimated to play a role during carcinogenesis in 15-20% of cancer cases. Although the DNA and gene products of several viruses have been found in breast tumors, none of the classical onco-viruses have definitely been linked to the initiation of breast cancer. However, recent evidence shows that human cytomegalovirus (HCMV) gene products are found in >90% of tumors and metastases of breast cancers, and their increased expression can be correlated to a more aggressive breast cancer phenotype. Supporting the active role of HCMV in breast cancer, a specific HCMV strain, HCMV-DB, was recently shown to exert oncogenic transformational activity in breast epithelial cells in vitro, and to give rise to fast-growing, triple-negative breast tumors when injected into immune deficient mice. The same observation holds true for clinical studies implying increased HCMV protein expression in triple negative breast cancer biopsies. In addition to functionally being able to hijack tumor-promoting cellular events, HCMV is known to exhibit a wide range of immunosuppressive effects, which can have radical impact on the tumor microenvironment. HCMV infected cells can avoid recognition and elimination by the immune system by orchestrating polarization of immunosuppressive type II macrophages, preventing antigen presentation, by expressing T cell inhibitory molecules, and possibly, by the induction of regulatory T (Treg) cell responses. These actions would be especially deleterious for the antigenic activation and proliferation of tumor specific CD8+ cytotoxic T lymphocytes (CTLs), whose effector functions have recently been targeted by successful, experimental immunotherapy protocols. The recognition of alternative causes and drivers of breast cancer is a pivotal research topic for the development of diagnostics and novel, effective preventive and therapeutic strategies targeting both tumor cells and their microenvironments.
Collapse
Affiliation(s)
- Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Joel Touma
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway; (J.G.); (J.T.)
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Afsar Rahbar
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Division of Microbial Pathogenesis, Bioclinicum, Karolinska Institutet, 17176 Stockholm, Sweden; (A.R.); (C.S.-N.)
- Department of Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Department of Breast and Endocrine Surgery at Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
- Correspondence: ; Tel.: +47-95796638
| |
Collapse
|
37
|
Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, Singh S. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:593. [PMID: 31807574 DOI: 10.21037/atm.2019.09.68] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy and a leading cause of cancer-related death in women worldwide. It also exhibits pronounced racial disparities in terms of incidence and clinical outcomes. There has been a growing interest in research community to better understand the role of the microenvironment in cancer. Several lines of evidence have highlighted the significance of chronic inflammation at the local and/or systemic level in breast tumor pathobiology. Inflammation can influence breast cancer progression, metastasis and therapeutic outcome by establishing a tumor supportive immune microenvironment. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Targeting of immune and inflammatory pathways has met tremendous success in some cancers underscoring the importance of research to further our understanding of these systems in breast cancer. This knowledge can be helpful not only in the development of novel prevention and therapeutic strategies, but also help in better prediction of therapeutic responses in patients. This review summarizes some of the significant findings on the role of inflammation in breast cancer to gain collective molecular and mechanistic insights. We also discuss ongoing efforts and future outlook to exploit the existing knowledge for improved breast cancer management.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Donna Lynn Dyess
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
38
|
Gibert-Ramos A, López C, Bosch R, Fontoura L, Bueno G, García-Rojo M, Berenguer M, Lejeune M. Immune response profile of primary tumour, sentinel and non-sentinel axillary lymph nodes related to metastasis in breast cancer: an immunohistochemical point of view. Histochem Cell Biol 2019; 152:177-193. [DOI: 10.1007/s00418-019-01802-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
|
39
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|