1
|
Wang Y, Fukuma R, Seymour B, Yang H, Kishima H, Yanagisawa T. Neurofeedback modulation of insula activity via MEG-based brain-machine interface: a double-blind randomized controlled crossover trial. Commun Biol 2025; 8:770. [PMID: 40399603 PMCID: PMC12095675 DOI: 10.1038/s42003-025-08176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
Insula activity has often been linked to pain perception, making it a potential target for therapeutic neuromodulation strategies such as neurofeedback. However, it is not known whether insula activity is under cognitive control and, if so, whether this activity is consequently causally related to pain. Here, we conducted a double-blind randomized controlled crossover trial to test the modulation of insula activity and pain thresholds using neurofeedback training. Nineteen healthy subjects underwent neurofeedback training for upmodulation and downmodulation of right insula activity using our magnetoencephalography (MEG)-based brain-machine interface. We observed significant differences in insula activity between the upmodulation and downmodulation training sessions. Furthermore, resting-state insula activity significantly decreased following downmodulation training compared to following upmodulation training. Compared with upmodulation training, downmodulation training was also associated with increased pain thresholds, albeit with no significant interaction effect. These findings show that humans can cognitively modulate insula activity as a potential route to develop therapeutic MEG neurofeedback systems for clinical testing. However, the present findings do not provide direct evidence of a causal link between modulation of insula activity and changes in pain thresholds.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Neurosurgery, Graduate School of Medicine, The University of Osaka, Suita, Japan
- Institute for Advanced Co-Creation Studies, The University of Osaka, Suita, Japan
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, The University of Osaka, Suita, Japan
- Institute for Advanced Co-Creation Studies, The University of Osaka, Suita, Japan
| | - Ben Seymour
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Center for Information and Neural Networks, National Institute for Information and Communications Technology, Suita, Japan
| | - Huixiang Yang
- Institute for Advanced Co-Creation Studies, The University of Osaka, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, The University of Osaka, Suita, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Osaka, Suita, Japan.
- Institute for Advanced Co-Creation Studies, The University of Osaka, Suita, Japan.
- Department of Neuroinformatics, Graduate School of Medicine, The University of Osaka, Suita, Japan.
| |
Collapse
|
2
|
Seo J, Lee D, Pantazis D, Min BK. Phase-lagged tACS between executive and default mode networks modulates working memory. Sci Rep 2025; 15:9171. [PMID: 40097468 PMCID: PMC11914490 DOI: 10.1038/s41598-025-91881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique to enhance cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether a cross-frequency coupled tACS protocol with a phase lag (45 and 180 degrees) between the central executive and the default mode networks modulated working-memory performance. We found tACS-phase-dependent modulation of task performance reflected in hippocampal activation and task-related functional connectivity. Our observations provide a neurophysiological basis for neuromodulation and a feasible non-invasive approach to selectively stimulate a task-relevant deep brain structure. Overall, our study highlights the potential of tACS as a powerful tool for enhancing cognitive function and sheds light on the underlying mechanisms of this technique.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Korea
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
3
|
Corbo I, Favieri F, Forte G, Casagrande M. Decision-making under uncertainty in healthy and cognitively impaired aging: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 129:105643. [PMID: 39369563 DOI: 10.1016/j.archger.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Decision-making (DM) is a complex cognitive behavior that involves gathering information and assessing options to identify choices under risky and uncertain conditions. Mild Cognitive Impairment (MCI) is a construct that includes a constellation of symptoms ranging from behavioral to cognitive impairments. This cluster of symptoms is frequently associated with poor decision-making. This study aimed to examine decision-making in pathological aging, specifically MCI. Therefore, we conducted a systematic review and meta-analysis to evaluate these relationships. According to the PRISMA 2020 Statement, nine studies were selected for the systematic review and eight for the meta-analysis. The results highlighted that MCI is associated with impaired decision-making in risky and ambiguous situations. The systematic review reported that MCI was associated with impaired decision-making in ambiguous and in risky conditions. In contrast, the meta-analysis showed significant differences in overall decision-making and particularly in ambiguous conditions. This difficulty may be due to different impairments that affect MCI. The difficulty in advantageous decision-making could be due to different brain alterations in MCI, which could lead to problems in tasks requiring feedback-based responses. These findings advance our understanding of decision-making in aging and suggest how decision-making alterations in MCI would affect the totality of executive functions and daily activities.
Collapse
Affiliation(s)
- Ilaria Corbo
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Francesca Favieri
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Giuseppe Forte
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| | - Maria Casagrande
- Department of Dynamic and Clinical Psychology, and Health Studies - "Sapienza" University of Rome, Italy.
| |
Collapse
|
4
|
Gu J, Buidze T, Zhao K, Gläscher J, Fu X. The neural network of sensory attenuation: A neuroimaging meta-analysis. Psychon Bull Rev 2025; 32:31-51. [PMID: 38954157 DOI: 10.3758/s13423-024-02532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
Sensory attenuation refers to the reduction in sensory intensity resulting from self-initiated actions compared to stimuli initiated externally. A classic example is scratching oneself without feeling itchy. This phenomenon extends across various sensory modalities, including visual, auditory, somatosensory, and nociceptive stimuli. The internal forward model proposes that during voluntary actions, an efferent copy of the action command is sent out to predict sensory feedback. This predicted sensory feedback is then compared with the actual sensory feedback, leading to the suppression or reduction of sensory stimuli originating from self-initiated actions. To further elucidate the neural mechanisms underlying sensory attenuation effect, we conducted an extensive meta-analysis of functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies. Utilizing activation likelihood estimation (ALE) analysis, our results revealed significant activations in a prominent cluster encompassing the right superior temporal gyrus (rSTG), right middle temporal gyrus (rMTG), and right insula when comparing external-generated with self-generated conditions. Additionally, significant activation was observed in the right anterior cerebellum when comparing self-generated to external-generated conditions. Further analysis using meta-analytic connectivity modeling (MACM) unveiled distinct brain networks co-activated with the rMTG and right cerebellum, respectively. Based on these findings, we propose that sensory attenuation arises from the suppression of reflexive inputs elicited by self-initiated actions through the internal forward modeling of a cerebellum-centered action prediction network, enabling the "sensory conflict detection" regions to effectively discriminate between inputs resulting from self-induced actions and those originating externally.
Collapse
Affiliation(s)
- Jingjin Gu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tatia Buidze
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan Gläscher
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Allam A, Allam V, Reddy S, Rohren EM, Sheth SA, Froudarakis E, Papageorgiou TD. Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230083. [PMID: 39428879 PMCID: PMC11491853 DOI: 10.1098/rstb.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (n = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Anthony Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vincent Allam
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Sandy Reddy
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eric M. Rohren
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A. Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - T. Dorina Papageorgiou
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| |
Collapse
|
6
|
Flores-Torres J, McRae K, Campos-Arteaga G, Gómez-Pérez L. Enhancing cognitive control of our decisions: Making the most of humor during the IGT in females and males. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1031-1047. [PMID: 39237775 PMCID: PMC11525253 DOI: 10.3758/s13415-024-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
We studied the impact of humor on the Iowa Gambling Task (IGT) decision-making performance and the cognitive control exerted during this task, considering sex as a moderator, and examined whether cognitive control mediated the influence of humor on decision-making. Sixty participants (30 females) performed an extended version of the IGT (500 trials divided into 20 blocks). We randomly assigned them to either an experimental group (Humor Group; Hg; n = 30), where humorous videos were interspersed in the decision-making trials or a control group (Non-Humor Group; NHg; n = 30), where nonhumorous videos were interspersed in the decision-making trials. We recorded participant performance and feedback-related negativity (FRN) and P3b event-related potentials (ERP) during IGT feedback as task monitoring and attention allocation indicators, respectively. We expected that whereas humor would improve IGT decision-making under risk in females during the last blocks (17-20) as well as cognitive control (specifically attention allocation and task monitoring) across the entire IGT, it would impair them in males. Contrary to our expectations, humor improved IGT decision-making under risk for both sexes (specifically at blocks 19 and 20) and attention allocation for most IGT blocks (P3b amplitudes). However, humor impaired IGT decision-making under ambiguity in males during the block six and task monitoring (FRN amplitudes) for most IGT blocks. Attention allocation did not mediate the beneficial effect of humor on decision-making under risk in either sex. Task monitoring decrements fully mediated the humor's detrimental influence on men's decision-making under ambiguity during block six.
Collapse
Affiliation(s)
- Jorge Flores-Torres
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratorio Neurociencias, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kateri McRae
- Department of Psychology, University of Denver, Denver, CO, USA
| | | | - Lydia Gómez-Pérez
- Departamento de Personalidad Evaluación y Tratamiento Psicológico, Facultad de Psicología y Logopedia, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
7
|
Yamashita J, Terashima H, Yoneya M, Maruya K, Oishi H, Kumada T. Pupil Trend Reflects Suboptimal Alertness Maintenance over 10 s in Vigilance and Working Memory Performance: An Exploratory Study. eNeuro 2024; 11:ENEURO.0250-24.2024. [PMID: 39557569 DOI: 10.1523/eneuro.0250-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
Maintaining concentration on demanding cognitive tasks, such as vigilance (VG) and working memory (WM) tasks, is crucial for successful task completion. Previous research suggests that internal concentration maintenance fluctuates, potentially declining to suboptimal states, which can influence trial-by-trial performance in these tasks. However, the timescale of such alertness maintenance, as indicated by slow changes in pupil diameter, has not been thoroughly investigated. This study explored whether "pupil trends"-which selectively signal suboptimal tonic alertness maintenance at various timescales-negatively correlate with trial-by-trial performance in VG and WM tasks. Using the psychomotor vigilance task (VG) and the visual-spatial two-back task (WM), we found that human pupil trends lasting over 10 s were significantly higher in trials with longer reaction times, indicating poorer performance, compared with shorter reaction time trials, which indicated better performance. The attention network test further validated that these slow trends reflect suboptimal states related to (tonic) alertness maintenance rather than suboptimal performance specific to VG and WM tasks, which is more associated with (phasic) responses to instantaneous interference. These findings highlight the potential role of detecting and compensating for nonoptimal states in VG and WM performance, significantly beyond the 10 s timescale. Additionally, the findings suggest the possibility of estimating human concentration during various visual tasks, even when rapid pupil changes occur due to luminance fluctuations.
Collapse
Affiliation(s)
- Jumpei Yamashita
- NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180-8585, Japan
| | - Hiroki Terashima
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Makoto Yoneya
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Kazushi Maruya
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Haruo Oishi
- NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180-8585, Japan
| | - Takatsune Kumada
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Qian Y, Wu B, Chen X, Chi L. Avoiding repetitive mistakes: Understanding post-error adjustment in response to head fake actions. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 76:102781. [PMID: 39577822 DOI: 10.1016/j.psychsport.2024.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Head fake is a common deceptive action in basketball that can effectively disrupt opponents and induce errors. This study investigated post-error behavioral adjustment and neural changes associated with head-fake action and related action cues across different response‒stimulus intervals (RSIs). Participants were asked to respond to the central target player's pass direction, ignoring the head direction of the target person and the flankers. The results revealed that the participants exhibited longer reaction times in the flanker (or head) incongruent condition compared to the flanker (or head) congruent condition. The results also revealed that the participants slowed their responses following an error in response to an action cue, indicating the presence of the post-error slowing (PES) effect. Moreover, the PES effect was greater at short RSI than at long RSI. The results of Event Related Potentials (ERPs) revealed that the participants exhibited a greater amplitude of error-related negativity (ERN) but a smaller amplitude of error positivity (Pe) following an error at a short RSI than at a long RSI. Collectively, these findings suggest that people can exhibit post-error slowing following an error response to action cues. Moreover, the RSI may affect the speed of response after an error and early error processing and erroneous evidence accumulation, as a processing bottleneck exists for a short time after an error. These findings offer insights into sports strategies and behavior modification.
Collapse
Affiliation(s)
- Yiming Qian
- Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, China; School of Psychology, Beijing Sport University, Beijing, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- China Astronaut Research and Training Center, Beijing, China; National Key Laboratory of Human Factors Engineering, China
| | - Lizhong Chi
- School of Psychology, Beijing Sport University, Beijing, China; Laboratory of Sports Stress and Adaptation of General Administration of Sport, China.
| |
Collapse
|
9
|
Runyun ŞL, van Wassenhove V, Balci F. Altered temporal awareness during Covid-19 pandemic. PSYCHOLOGICAL RESEARCH 2024; 88:2335-2345. [PMID: 39034344 DOI: 10.1007/s00426-024-02004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Social isolation during the COVID-19 pandemic had profound effects on human well-being. A handful of studies have focused on how time perception was altered during the COVID-19 pandemic, while no study has tested whether temporal metacognition is also affected by the lockdown. We examined the impact of long-term social isolation during the COVID-19 pandemic on the ability to monitor errors in timing performance. We recruited 1232 participants from 12 countries during lockdown, 211 of which were retested "post-pandemic" for within-group comparisons. We also tested a new group of 331 participants during the "post-pandemic" period and compared their data to those of 1232 participants tested during the lockdown (between-group comparison). Participants produced a 3600 ms target interval and assessed the magnitude and direction of their time production error. Both within and between-group comparisons showed reduced metric error monitoring performance during the lockdown, even after controlling for government-imposed stringency indices. A higher level of reported social isolation also predicted reduced temporal error monitoring ability. Participants produced longer duration during lockdown compared to post-lockdown (again controlling for government stringency indices). We reason that these effects may be underlain by altered biological and behavioral rhythms during social isolation experienced during the COVID-19 pandemic. Understanding these effects is crucial for a more complete characterization of the cognitive consequences of long-term social isolation.
Collapse
Affiliation(s)
- Şerife Leman Runyun
- Department of Psychology, Koç University, Istanbul, Turkey
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA, 02115, USA
| | - Virginie van Wassenhove
- Cognitive Neuroimaging Unit, CEA, INSERM, CNRS, Université Paris-Saclay, NeuroSpin, Gif/Yvette, 91191, France
| | - Fuat Balci
- Department of Psychology, Koç University, Istanbul, Turkey.
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2M5, Canada.
| |
Collapse
|
10
|
Pupillo F, Düzel S, Kühn S, Lindenberger U, Shing YL. Deficits in memory metacognitive efficiency in late adulthood are related to distinct brain profile. Memory 2024; 32:1286-1302. [PMID: 38635864 PMCID: PMC11552703 DOI: 10.1080/09658211.2024.2341711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The tendency of falsely remembering events that did not happen in the past increases with age. This is particularly evident in cases in which features presented at study are re-presented at test in a recombined constellation (termed rearranged pairs). Interestingly, older adults also express high confidence in such false memories, a tendency that may indicate reduced metacognitive efficiency. Within an existing cohort study, we aimed at investigating age-related differences in memory metacognitive efficiency (as measured by meta d' ratio) in a sample of 1522 older adults and 397 young adults. The analysis showed an age-related deficit in metacognition which was more pronounced for rearranged pairs than for new pairs. We then explored associations between cortical thickness and memory metacognitive efficiency for rearranged pairs in a subsample of 231 older adults. By using partial least square analysis, we found that a multivariate profile composed by ventromedial prefrontal cortex, insula, and parahippocampal cortex was uniquely associated with between-person differences in memory metacognitive efficiency. These results suggest that the impairment in memory metacognitive efficiency for false alarms is a distinct age-related deficit, above and beyond a general age-related decline in memory discrimination, and that it is associated with brain regions involved in metacognitive processes.
Collapse
Affiliation(s)
- Francesco Pupillo
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- TS Social and Behavioural Sciences, Tilburg University, Tilburg, Netherlands
| | - Sandra Düzel
- Friede Springer Cardiovascular Prevention Center @Charité, Berlin, Germany
| | - Simone Kühn
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, German
- Lise-Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, German
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yee Lee Shing
- Department of Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
- IDeA Center for Individual Development and Adaptive Education, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Steinhauser K, Steinhauser R, Ernst B, Maier ME, Steinhauser M. The neural signature of an erroneous thought. Cereb Cortex 2024; 34:bhae390. [PMID: 39329359 DOI: 10.1093/cercor/bhae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The human brain detects errors in overt behavior fast and efficiently. However, little is known about how errors are monitored that emerge on a mental level. We investigate whether neural correlates of error monitoring can be found during inner speech and whether the involved neural processes differ between these non-motor responses and behavioral motor responses. Therefore, electroencephalographic data were collected while participants performed two versions of a decision task that only differed between these response modalities. Erroneous responses were identified based on participants' metacognitive judgments. Correlates of error monitoring in event-related potentials were analyzed by applying residue iteration decomposition on stimulus-locked activity. Non-motor responses elicited the same cascade of early error-related negativity and late error positivity as motor responses. An analysis of oscillatory brain activity showed a similar theta response for both error types. A multivariate pattern classifier trained on theta from the motor condition could decode theta from the non-motor condition, demonstrating the similarity of both neural responses. These results show that errors in inner speech are monitored and detected utilizing the same neural processes as behavioral errors, suggesting that goal-directed cognition and behavior are supported by a generic error-monitoring system.
Collapse
Affiliation(s)
- Klara Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Robert Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Benjamin Ernst
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Martin E Maier
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| | - Marco Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Ostenstr. 25, 85072 Eichstätt, Germany
| |
Collapse
|
12
|
Selvan RN, Cheng M, Siestrup S, Mecklenbrauck F, Jainta B, Pomp J, Zahedi A, Tamosiunaite M, Wörgötter F, Schubotz RI. Updating predictions in a complex repertoire of actions and its neural representation. Neuroimage 2024; 296:120687. [PMID: 38871038 DOI: 10.1016/j.neuroimage.2024.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Even though actions we observe in everyday life seem to unfold in a continuous manner, they are automatically divided into meaningful chunks, that are single actions or segments, which provide information for the formation and updating of internal predictive models. Specifically, boundaries between actions constitute a hub for predictive processing since the prediction of the current action comes to an end and calls for updating of predictions for the next action. In the current study, we investigated neural processes which characterize such boundaries using a repertoire of complex action sequences with a predefined probabilistic structure. Action sequences consisted of actions that started with the hand touching an object (T) and ended with the hand releasing the object (U). These action boundaries were determined using an automatic computer vision algorithm. Participants trained all action sequences by imitating demo videos. Subsequently, they returned for an fMRI session during which the original action sequences were presented in addition to slightly modified versions thereof. Participants completed a post-fMRI memory test to assess the retention of original action sequences. The exchange of individual actions, and thus a violation of action prediction, resulted in increased activation of the action observation network and the anterior insula. At U events, marking the end of an action, increased brain activation in supplementary motor area, striatum, and lingual gyrus was indicative of the retrieval of the previously encoded action repertoire. As expected, brain activation at U events also reflected the predefined probabilistic branching structure of the action repertoire. At T events, marking the beginning of the next action, midline and hippocampal regions were recruited, reflecting the selected prediction of the unfolding action segment. In conclusion, our findings contribute to a better understanding of the various cerebral processes characterizing prediction during the observation of complex action repertoires.
Collapse
Affiliation(s)
- Rosari Naveena Selvan
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Department for Computational Neuroscience, Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany.
| | - Minghao Cheng
- Department for Computational Neuroscience, Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
| | - Sophie Siestrup
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Falko Mecklenbrauck
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Benjamin Jainta
- Department of Psychology, University of Münster, Münster, Germany
| | - Jennifer Pomp
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Anoushiravan Zahedi
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Minija Tamosiunaite
- Department for Computational Neuroscience, Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany; Faculty of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Florentin Wörgötter
- Department for Computational Neuroscience, Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Rootes-Murdy K, Panta S, Kelly R, Romero J, Quidé Y, Cairns MJ, Loughland C, Carr VJ, Catts SV, Jablensky A, Green MJ, Henskens F, Kiltschewskij D, Michie PT, Mowry B, Pantelis C, Rasser PE, Reay WR, Schall U, Scott RJ, Watkeys OJ, Roberts G, Mitchell PB, Fullerton JM, Overs BJ, Kikuchi M, Hashimoto R, Matsumoto J, Fukunaga M, Sachdev PS, Brodaty H, Wen W, Jiang J, Fani N, Ely TD, Lorio A, Stevens JS, Ressler K, Jovanovic T, van Rooij SJ, Federmann LM, Jockwitz C, Teumer A, Forstner AJ, Caspers S, Cichon S, Plis SM, Sarwate AD, Calhoun VD. Cortical similarities in psychiatric and mood disorders identified in federated VBM analysis via COINSTAC. PATTERNS (NEW YORK, N.Y.) 2024; 5:100987. [PMID: 39081570 PMCID: PMC11284501 DOI: 10.1016/j.patter.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 08/02/2024]
Abstract
Structural neuroimaging studies have identified a combination of shared and disorder-specific patterns of gray matter (GM) deficits across psychiatric disorders. Pooling large data allows for examination of a possible common neuroanatomical basis that may identify a certain vulnerability for mental illness. Large-scale collaborative research is already facilitated by data repositories, institutionally supported databases, and data archives. However, these data-sharing methodologies can suffer from significant barriers. Federated approaches augment these approaches by enabling access or more sophisticated, shareable and scaled-up analyses of large-scale data. We examined GM alterations using Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation, an open-source, decentralized analysis application. Through federated analysis of eight sites, we identified significant overlap in the GM patterns (n = 4,102) of individuals with schizophrenia, major depressive disorder, and autism spectrum disorder. These results show cortical and subcortical regions that may indicate a shared vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Sandeep Panta
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Ross Kelly
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Javier Romero
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yann Quidé
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Carmel Loughland
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vaughan J. Carr
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Department of Psychiatry, Monash University, Clayton, VIC, Australia
| | - Stanley V. Catts
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Melissa J. Green
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Frans Henskens
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine & Public Health, University of Newcastle, Newcastle, NSW, Australia
- Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, NSW, Australia
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Patricia T. Michie
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Carlton South, VIC, Australia
- Florey Institute of Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Paul E. Rasser
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, NSW, Australia
| | - William R. Reay
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ulrich Schall
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Oliver J. Watkeys
- Neuroscience Research Australia, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Philip B. Mitchell
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Masataka Kikuchi
- Department of Computational Biology and Medical Sciences, University of Tokyo, Chiba, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Aichi, Japan
| | - Perminder S. Sachdev
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Wei Wen
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Aging, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - Kerry Ressler
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Sanne J.H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lydia M. Federmann
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Andreas J. Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sergey M. Plis
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Anand D. Sarwate
- Department of Electrical and Computer Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Seo J, Min BK. Non-invasive electrical brain stimulation modulates human conscious perception of mental representation. Neuroimage 2024; 294:120647. [PMID: 38761552 DOI: 10.1016/j.neuroimage.2024.120647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Mental representation is a key concept in cognitive science; nevertheless, its neural foundations remain elusive. We employed non-invasive electrical brain stimulation and functional magnetic resonance imaging to address this. During this process, participants perceived flickering red and green visual stimuli, discerning them either as distinct, non-fused colours or as a mentally generated, fused colour (orange). The application of transcranial alternating current stimulation to the medial prefrontal region (a key node of the default-mode network) suppressed haemodynamic activation in higher-order subthalamic and central executive networks associated with the perception of fused colours. This implies that higher-order thalamocortical and default-mode networks are crucial in humans' conscious perception of mental representation.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, South Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
15
|
Hu N, Long Q, Wang X, Li Q, Li Q, Chen A. Neural and Behavioral Measures of Stress-induced Impairment in Error Awareness and Post-error Adjustment. Neurosci Bull 2024; 40:937-951. [PMID: 38070027 PMCID: PMC11250752 DOI: 10.1007/s12264-023-01154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 07/16/2024] Open
Abstract
Exposure to stress negatively affects error processing, but the impact of stress on error awareness remains to be determined. In the present study, we examined the temporal dynamics of error awareness and post-error adjustment following acute stress. Forty-nine healthy men were randomly assigned to the control (n = 26) or stress group (n = 23). After stress induction, participants completed the error awareness task, and their brain activity was assessed by electroencephalography. Compared to the control group, the stress group demonstrated lower error awareness accuracy and smaller Pe (error positivity) and ΔPe amplitudes following aware error responses, which indicated impairment of error awareness following stress. Furthermore, the stress group had lower accuracy in post-aware error responses than in post-unaware error responses and the control group, which indicated poor post-error adjustment following stress. Our results showed a stress effect on sequential stages of error processing. Stress induces impaired error identification, which further generates maladaptive post-error performance.
Collapse
Affiliation(s)
- Na Hu
- School of Preschool and Special Education, Kunming University, Kunming, 650214, China
| | - Quanshan Long
- Faculty of Education, Yunnan Normal University, Kunming, 650214, China
| | - Xiaoxi Wang
- School of Preschool and Special Education, Kunming University, Kunming, 650214, China
| | - Quan Li
- College of Teacher Education, Qujing Normal University, Qujing, 655099, China
| | - Qing Li
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
16
|
Guo Z, Jiang Y, Jiang N. Functional Connectivity of Salience Network Predicts Treatment Outcome for rTMS in Mild Cognitive Impairment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039580 DOI: 10.1109/embc53108.2024.10782425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proved a potential therapeutic approach for improving the cognitive performance of patients with mild cognitive impairment (MCI). However, no biomarker is available for identifying who is most likely to respond to rTMS. The purpose of this study was to demonstrate that cognitive improvement after rTMS may be associated with functional connectivity of salience network at baseline. Resting-state functional magnetic resonance imaging (rs-fMRI) data of fifty-three MCI patients were collected before a 10-day of rTMS treatment. Multivoxel pattern analysis was applied to realize the classification of the MCI patients responded or not to rTMS treatment, and the prediction to the cognitive scores. The analysis yielded a significant overall accuracy of 84.91% (90.00% sensitivity, 78.26% specificity). Right anterior cingulate cortex contributed most to the classification. Besides, regression analysis also showed the predictive value of salience network to the changes of cognitive performance. Our study demonstrated that the functional connectivity of salience network is predictive of treatment response to rTMS.
Collapse
|
17
|
Lin Y, White ML, Viravan N, Braver TS. Parsing state mindfulness effects on neurobehavioral markers of cognitive control: A within-subject comparison of focused attention and open monitoring. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:527-551. [PMID: 38351398 PMCID: PMC11081826 DOI: 10.3758/s13415-024-01167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 05/12/2024]
Abstract
Over the past two decades, scientific interest in understanding the relationship between mindfulness and cognition has accelerated. However, despite considerable investigative efforts, pervasive methodological inconsistencies within the literature preclude a thorough understanding of whether or how mindfulness influences core cognitive functions. The purpose of the current study is to provide an initial "proof-of-concept" demonstration of a new research strategy and methodological approach designed to address previous limitations. Specifically, we implemented a novel fully within-subject state induction protocol to elucidate the neurobehavioral influence of discrete mindfulness states-focused attention (FA) and open monitoring (OM), compared against an active control-on well-established behavioral and ERP indices of executive attention and error monitoring assessed during the Eriksen flanker task. Bayesian mixed modeling was used to test preregistered hypotheses pertaining to FA and OM effects on flanker interference, the stimulus-locked P3, and the response-locked ERN and Pe. Results yielded strong but unexpected evidence that OM selectively produced a more cautious and intentional response style, characterized by higher accuracy, slower RTs, and reduced P3 amplitude. Follow-up exploratory analyses revealed that trait mindfulness moderated the influence of OM, such that individuals with greater trait mindfulness responded more cautiously and exhibited higher trial accuracy and smaller P3s. Neither FA nor OM modulated the ERN or Pe. Taken together, our findings support the promise of our approach, demonstrating that theoretically distinct mindfulness states are functionally dissociable among mindfulness-naive participants and that interactive variability associated with different operational facets of mindfulness (i.e., state vs. trait) can be modeled directly.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Marne L White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Natee Viravan
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Stone C, Mattingley JB, Bode S, Rangelov D. Distinct neural markers of evidence accumulation index metacognitive processing before and after simple visual decisions. Cereb Cortex 2024; 34:bhae179. [PMID: 38706138 PMCID: PMC11070453 DOI: 10.1093/cercor/bhae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Perceptual decision-making is affected by uncertainty arising from the reliability of incoming sensory evidence (perceptual uncertainty) and the categorization of that evidence relative to a choice boundary (categorical uncertainty). Here, we investigated how these factors impact the temporal dynamics of evidence processing during decision-making and subsequent metacognitive judgments. Participants performed a motion discrimination task while electroencephalography was recorded. We manipulated perceptual uncertainty by varying motion coherence, and categorical uncertainty by varying the angular offset of motion signals relative to a criterion. After each trial, participants rated their desire to change their mind. High uncertainty impaired perceptual and metacognitive judgments and reduced the amplitude of the centro-parietal positivity, a neural marker of evidence accumulation. Coherence and offset affected the centro-parietal positivity at different time points, suggesting that perceptual and categorical uncertainty affect decision-making in sequential stages. Moreover, the centro-parietal positivity predicted participants' metacognitive judgments: larger predecisional centro-parietal positivity amplitude was associated with less desire to change one's mind, whereas larger postdecisional centro-parietal positivity amplitude was associated with greater desire to change one's mind, but only following errors. These findings reveal a dissociation between predecisional and postdecisional evidence processing, suggesting that the CPP tracks potentially distinct cognitive processes before and after a decision.
Collapse
Affiliation(s)
- Caleb Stone
- Queensland Brain Institute, QBI Building 79, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, QBI Building 79, The University of Queensland, St Lucia 4072, Queensland, Australia
- School of Psychology, McElwain Building 24A, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Stefan Bode
- Melbourne School of Psychological Sciences, Redmond Barry Building, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Dragan Rangelov
- Queensland Brain Institute, QBI Building 79, The University of Queensland, St Lucia 4072, Queensland, Australia
- School of Economics, Colin Clark Building 39, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
19
|
Seo J, Lee J, Min BK. Out-of-phase transcranial alternating current stimulation modulates the neurodynamics of inhibitory control. Neuroimage 2024; 292:120612. [PMID: 38648868 DOI: 10.1016/j.neuroimage.2024.120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea
| | - Jehyeop Lee
- BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Byoung-Kyong Min
- Institute of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; BK21 Four Institute of Precision Public Health, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
20
|
Liu C, Wang K, Yu R. The neural representation of metacognition in preferential decision-making. Hum Brain Mapp 2024; 45:e26651. [PMID: 38646963 PMCID: PMC11033923 DOI: 10.1002/hbm.26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/25/2024] Open
Abstract
Humans regularly assess the quality of their judgements, which helps them adjust their behaviours. Metacognition is the ability to accurately evaluate one's own judgements, and it is assessed by comparing objective task performance with subjective confidence report in perceptual decisions. However, for preferential decisions, assessing metacognition in preference-based decisions is difficult because it depends on subjective goals rather than the objective criterion. Here, we develop a new index that integrates choice, reaction time, and confidence report to quantify trial-by-trial metacognitive sensitivity in preference judgements. We found that the dorsomedial prefrontal cortex (dmPFC) and the right anterior insular were more activated when participants made bad metacognitive evaluations. Our study suggests a crucial role of the dmPFC-insula network in representing online metacognitive sensitivity in preferential decisions.
Collapse
Affiliation(s)
- Cuizhen Liu
- School of PsychologyShaanxi Normal UniversityXi'anChina
| | - Keqing Wang
- School of PsychologyShaanxi Normal UniversityXi'anChina
| | - Rongjun Yu
- Department of Management, Marketing, and Information SystemsHong Kong Baptist UniversityHong KongChina
| |
Collapse
|
21
|
Thakuri DS, Bhattarai P, Wong DF, Chand GB. Dysregulated Salience Network Control over Default-Mode and Central-Executive Networks in Schizophrenia Revealed Using Stochastic Dynamical Causal Modeling. Brain Connect 2024; 14:70-79. [PMID: 38164105 PMCID: PMC10890948 DOI: 10.1089/brain.2023.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Introduction: Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. Methods: In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (n = 67) and healthy controls (n = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. Results: In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10-8). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney U test; p < 10-16). Conclusions: These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.
Collapse
Affiliation(s)
- Deepa S. Thakuri
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Medicine and Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Puskar Bhattarai
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dean F. Wong
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Departments of Neuroscience, Psychiatry, and Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Imaging Core, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ganesh B. Chand
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Imaging Core, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Institute of Clinical and Translational Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Di Gregorio F, Steinhauser M, Maier ME, Thayer JF, Battaglia S. Error-related cardiac deceleration: Functional interplay between error-related brain activity and autonomic nervous system in performance monitoring. Neurosci Biobehav Rev 2024; 157:105542. [PMID: 38215803 DOI: 10.1016/j.neubiorev.2024.105542] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Coordinated interactions between the central and autonomic nervous systems are crucial for survival due to the inherent propensity for human behavior to make errors. In our ever-changing environment, when individuals make mistakes, these errors can have life-threatening consequences. In response to errors, specific reactions occur in both brain activity and heart rate to detect and correct errors. Specifically, there are two brain-related indicators of error detection and awareness known as error-related negativity and error positivity. Conversely, error-related cardiac deceleration denotes a momentary slowing of heart rate following an error, signaling an autonomic response. However, what is the connection between the brain and the heart during error processing? In this review, we discuss the functional and neuroanatomical connections between the brain and heart markers of error processing, exploring the experimental conditions in which they covary. Given the current limitations of available data, future research will continue to investigate the neurobiological factors governing the brain-heart interaction, aiming to utilize them as combined markers for assessing cognitive control in healthy and pathological conditions.
Collapse
Affiliation(s)
- Francesco Di Gregorio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Universita di Bologna, 47521 Cesena, Italy.
| | - Marco Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
| | - Martin E Maier
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
| | - Julian F Thayer
- Department of Psychological Science, 4334 Social and Behavioral Sciences Gateway, University of California, Irvine, CA 92697, USA; Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Universita di Bologna, 47521 Cesena, Italy; Department of Psychology, University of Torino, 10124 Torino, Italy.
| |
Collapse
|
23
|
Huang NX, Huang HW, Dong QY, Wen YL, Li D, Li JQ, Chen HJ. Metabolic alterations in the right anterior insula among patients with cirrhosis without overt hepatic encephalopathy: a magnetic resonance spectroscopy study. Front Neurol 2024; 14:1291478. [PMID: 38283679 PMCID: PMC10811796 DOI: 10.3389/fneur.2023.1291478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose We investigated metabolic alterations in the right anterior insula (rAI) in cirrhotic patients and determined its association with patients' cognitive dysfunction. Methods In this study, 31 healthy controls (HCs) and 32 cirrhotic patients without overt hepatic encephalopathy participated. Both blood ammonia level and Child-Pugh score were measured. The psychometric hepatic encephalopathy score (PHES) was used to evaluate cognitive function. 1H-magnetic resonance spectroscopy (MRS) data located in the rAI were recorded on a commercially available 3T magnetic resonance imaging scanner. The ratios of metabolites were measured, including N-acetylaspartate (NAA)/total creatine (tCr), glutamate plus glutamine (Glx)/tCr, myo-inositol (mI)/tCr, and total choline (tCho)/tCr. We adopted the non-parametric Mann-Whitney U-test for intergroup comparison of metabolic ratios. To determine the association between metabolite concentration and clinical parameters, we performed Spearman correlation analyses. Results Patients with cirrhosis performed worse on PHES in comparison with HCs (P < 0.001). Patients with cirrhosis had significantly decreased mI/tCr (0.87 ± 0.07 vs. 0.74 ± 0.19, P = 0.025) and increased Glx/tCr (1.79 ± 0.17 vs. 2.07 ± 0.29, P < 0.001) in the rAI. We did not observe any significant between-group differences in tCho/tCr and NAA/tCr. The blood ammonia level was correlated with Glx/tCr (r = 0.405, P = 0.022) and mI/tCr (r = -0.398, P = 0.024) of the rAI. In addition, PHES was negatively correlated with Glx/tCr of the rAI (r = -0.379, P = 0.033). Conclusion Metabolic disturbance of the rAI, which is associated with ammonia intoxication, might account for the neural substrate of cirrhosis-related cognitive dysfunction to some extent.
Collapse
Affiliation(s)
- Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui-Wei Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu-Lin Wen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
24
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing. Neurosci Biobehav Rev 2024; 156:105468. [PMID: 37979735 PMCID: PMC10976187 DOI: 10.1016/j.neubiorev.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
25
|
Lewis CM, Gutzwiller RS. Examining post-error performance in a complex multitasking environment. Cogn Res Princ Implic 2023; 8:65. [PMID: 37864085 PMCID: PMC10589164 DOI: 10.1186/s41235-023-00512-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 10/22/2023] Open
Abstract
Previous work on indices of error-monitoring strongly supports that errors are distracting and can deplete attentional resources. In this study, we use an ecologically valid multitasking paradigm to test post-error behavior. It was predicted that after failing an initial task, a subject re-presented with that task in conflict with another competing simultaneous task, would more likely miss their response opportunity for the competing task and stay 'tunneled' on the initially errored task. Additionally, we predicted that an error's effect on attention would dissipate after several seconds, making error cascades less likely when subsequent conflict tasks are delayed. A multi-attribute task battery was used to present tasks and collect measures of both post-error and post-correct performance. Results supported both predictions: post-error accuracy on the competing task was lower compared to post-correct accuracy, and error-proportions were higher at shorter delays, dissipating over time. An exploratory analysis also demonstrated that following errors (as opposed to post-correct trials), participants clicked more on the task panel of the initial error regardless of delay; this continued task-engagement provides preliminary support for errors leading to a cognitive tunneling effect.
Collapse
Affiliation(s)
- Christina M Lewis
- Human Systems Engineering Department, Arizona State University - Polytechnic, SANCA 7271 E Sonoran Arroyo Mall, Mesa, AZ, 85212, USA
| | - Robert S Gutzwiller
- Human Systems Engineering Department, Arizona State University - Polytechnic, SANCA 7271 E Sonoran Arroyo Mall, Mesa, AZ, 85212, USA.
| |
Collapse
|
26
|
Llorens A, Bellier L, Blenkmann AO, Ivanovic J, Larsson PG, Lin JJ, Endestad T, Solbakk AK, Knight RT. Decision and response monitoring during working memory are sequentially represented in the human insula. iScience 2023; 26:107653. [PMID: 37674986 PMCID: PMC10477069 DOI: 10.1016/j.isci.2023.107653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision. Theta band activity showed differential involvement across left and right insulae while sequential HFA modulations were observed along the anteroposterior axis. HFA in anterior insula tracked decision making and subsequent HFA was observed in posterior insula after the behavioral response. Our results provide electrophysiological evidence of engagement of different insula subregions in both decision-making and response monitoring during vWM and expand our knowledge of the role of the insula in complex human behavior.
Collapse
Affiliation(s)
- Anaïs Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Université de Franche-Comté, SUPMICROTECH, CNRS, Institut FEMTO-ST, 25000 Besançon, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team TURC, 75014 Paris, France
| | - Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | | | - Pål G. Larsson
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jack J. Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Anne-Kristin Solbakk
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
27
|
Wiwatowska E, Wypych M, Michałowski JM. Improved attention and performance monitoring in high procrastinating students after positive relative to negative norm-referenced feedback. Int J Psychophysiol 2023; 192:1-12. [PMID: 37524120 DOI: 10.1016/j.ijpsycho.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Procrastination is an irrational delay of task completion. Previous studies have demonstrated that individuals who often procrastinate present deficits in attentional control and performance monitoring and that these dysfunctions might be differentially manifested depending on the motivational context. Building upon these results, the present event-related potential (ERP) study aimed to investigate the impact of norm-referenced feedback on executive functions among students with high (HP; N = 75) or low (LP; N = 77) procrastination levels. Participants completed the parametric Go/No-Go task, while receiving either positive or negative false feedback indicating how well they performed in comparison to others. The results indicated that positive (as opposed to negative) feedback led to higher self-reported arousal and increased post-error slowing in HP (vs. LP) participants. Moreover, neurophysiological measures indicated lower neural activation linked to attentional control (P300) and performance monitoring (ERN, CRN and Pe) in HP than LP participants, while the groups did not differ in these indices during the positive feedback condition. Obtained findings indicate that HP might be more sensitive to the motivating effects of success and more vulnerable to the detrimental influence of failure.
Collapse
Affiliation(s)
- Ewa Wiwatowska
- Laboratory of Affective Neuroscience in Poznan, SWPS University of Social Sciences and Humanities, Poland.
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Poland
| | - Jarosław M Michałowski
- Laboratory of Affective Neuroscience in Poznan, SWPS University of Social Sciences and Humanities, Poland
| |
Collapse
|
28
|
Koele IJ, van Hoorn J, de Bruijn ERA, Güroğlu B. Neural processing of observed performance-based errors and rewards in the context of friends and unfamiliar peers across adolescence. Neuropsychologia 2023; 188:108619. [PMID: 37315891 DOI: 10.1016/j.neuropsychologia.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 03/01/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Adolescence is characterized by changes in performance monitoring, whereby action outcomes are monitored to subsequently adapt behavior and optimize performance. Observation of performance-based outcomes (i.e., errors and rewards) received by others forms the basis of observational learning. Adolescence is also a period of increasing importance of peers, especially friends, and observing peers forms a crucial aspect of learning in the social context of the classroom. However, to our knowledge, no developmental fMRI studies have examined the neural mechanisms underlying observed performance monitoring of errors and rewards in the context of peers. The current fMRI study investigated the neural correlates of observing performance-based errors and rewards of peers in adolescents aged 9-16 years (N = 80). In the scanner, participants observed either their best friend or an unfamiliar peer play a shooting game resulting in performance-dependent rewards (based on hits) or losses (based on misses, i. e, errors), where outcomes affected both the player and the observing participant. Findings showed higher activation in the bilateral striatum and bilateral anterior insula when adolescents observed peers (i.e., best friend and unfamiliar peer) receive performance-based rewards compared to losses. This might reflect the heightened salience of observed reward processing in the peer context in adolescence. Our results further revealed lower activation in the left temporoparietal junction (TPJ) while adolescents observed the performance-based outcomes (rewards and losses) for their best friend than for an unfamiliar peer. Considering that observation of others' performance-based errors and rewards forms the basis of observational learning, this study provides a crucial first step in understanding and potentially improving adolescent observational learning in the peer context.
Collapse
Affiliation(s)
- Iris J Koele
- Department of Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, the Netherlands
| | - Jorien van Hoorn
- Department of Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, the Netherlands
| | - Ellen R A de Bruijn
- Leiden Institute for Brain and Cognition (LIBC), Leiden University, the Netherlands; Department of Clinical Psychology, Leiden University, the Netherlands
| | - Berna Güroğlu
- Department of Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden University, the Netherlands.
| |
Collapse
|
29
|
Yang AHX, Kasabov NK, Cakmak YO. Prediction and detection of virtual reality induced cybersickness: a spiking neural network approach using spatiotemporal EEG brain data and heart rate variability. Brain Inform 2023; 10:15. [PMID: 37438494 DOI: 10.1186/s40708-023-00192-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/06/2023] [Indexed: 07/14/2023] Open
Abstract
Virtual Reality (VR) allows users to interact with 3D immersive environments and has the potential to be a key technology across many domain applications, including access to a future metaverse. Yet, consumer adoption of VR technology is limited by cybersickness (CS)-a debilitating sensation accompanied by a cluster of symptoms, including nausea, oculomotor issues and dizziness. A leading problem is the lack of automated objective tools to predict or detect CS in individuals, which can then be used for resistance training, timely warning systems or clinical intervention. This paper explores the spatiotemporal brain dynamics and heart rate variability involved in cybersickness and uses this information to both predict and detect CS episodes. The present study applies deep learning of EEG in a spiking neural network (SNN) architecture to predict CS prior to using VR (85.9%, F7) and detect it (76.6%, FP1, Cz). ECG-derived sympathetic heart rate variability (HRV) parameters can be used for both prediction (74.2%) and detection (72.6%) but at a lower accuracy than EEG. Multimodal data fusion of EEG and sympathetic HRV does not change this accuracy compared to ECG alone. The study found that Cz (premotor and supplementary motor cortex) and O2 (primary visual cortex) are key hubs in functionally connected networks associated with both CS events and susceptibility to CS. F7 is also suggested as a key area involved in integrating information and implementing responses to incongruent environments that induce cybersickness. Consequently, Cz, O2 and F7 are presented here as promising targets for intervention.
Collapse
Affiliation(s)
| | - Nikola Kirilov Kasabov
- School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, St Paul street, AUT, Auckland, 1010, New Zealand
- George Moore Chair of Data Analytics, Ulster University, Londonderry, UK
- Institute for Information & Communication Technologies, Bulgarian Academy of Sciences, ul. Acad Bonchev, 2, Sofia, 1113, Bulgaria
| | - Yusuf Ozgur Cakmak
- Cakmak Lab, Department of Anatomy, University of Otago, Dunedin, New Zealand.
- Medtech Core NZ, Auckland, New Zealand.
- Brain Health Research Centre, Dunedin, New Zealand.
- Centre for Health Systems and Technology, Dunedin, New Zealand.
| |
Collapse
|
30
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: meta-analytic evidence from neuroimaging studies on error processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540136. [PMID: 37214978 PMCID: PMC10197606 DOI: 10.1101/2023.05.10.540136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C. Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
31
|
Benuzzi F, Ballotta D, Casadio C, Zanelli V, Porro CA, Nichelli PF, Lui F. "When You're Smiling": How Posed Facial Expressions Affect Visual Recognition of Emotions. Brain Sci 2023; 13:brainsci13040668. [PMID: 37190633 DOI: 10.3390/brainsci13040668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Facial imitation occurs automatically during the perception of an emotional facial expression, and preventing it may interfere with the accuracy of emotion recognition. In the present fMRI study, we evaluated the effect of posing a facial expression on the recognition of ambiguous facial expressions. Since facial activity is affected by various factors, such as empathic aptitudes, the Interpersonal Reactivity Index (IRI) questionnaire was administered and scores were correlated with brain activity. Twenty-six healthy female subjects took part in the experiment. The volunteers were asked to pose a facial expression (happy, disgusted, neutral), then to watch an ambiguous emotional face, finally to indicate whether the emotion perceived was happiness or disgust. As stimuli, blends of happy and disgusted faces were used. Behavioral results showed that posing an emotional face increased the percentage of congruence with the perceived emotion. When participants posed a facial expression and perceived a non-congruent emotion, a neural network comprising bilateral anterior insula was activated. Brain activity was also correlated with empathic traits, particularly with empathic concern, fantasy and personal distress. Our findings support the idea that facial mimicry plays a crucial role in identifying emotions, and that empathic emotional abilities can modulate the brain circuits involved in this process.
Collapse
Affiliation(s)
- Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Claudia Casadio
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Vanessa Zanelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
32
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
33
|
Zhao H, Turel O, Bechara A, He Q. How distinct functional insular subdivisions mediate interacting neurocognitive systems. Cereb Cortex 2023; 33:1739-1751. [PMID: 35511695 PMCID: PMC9977390 DOI: 10.1093/cercor/bhac169] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/12/2022] Open
Abstract
Recent neurocognitive models propose that the insula serves as a hub of interoceptive awareness system, modulating 2 interplaying neurocognitive systems: The posterior insula (PI) receives and integrates various interoceptive signals; these signals are then transmitted to the anterior insula for processing higher-order representations into awareness, where the dorsal anterior insula (dAI) modulates the prefrontal self-control system and the ventral anterior insula (vAI) modulates the amygdala (AMG)-striatal reward-seeking circuit. We sought to test this view using a multimodal approach. We first used a resting-state functional magnetic resonance imaging (fMRI) approach with a sample of 120 undergraduate students. Then, we unpacked the neuro-cognitive association between insular connectivity and cognitive performance during an Iowa gambling fMRI task. Lastly, an independent Open Southwest University Longitudinal Imaging Multimodal dataset was used to validate the results. Findings suggested that the dAI was predominantly connected to the prefrontal regions; the vAI was primarily connected to the AMG-ventral-striatum system; and the PI was mainly connected to the visceral-sensorimotor system. Moreover, cognitive scores were positively correlated with FC between dAI and the self-control process of ventrolateral prefrontal cortex and were negatively correlated with FC between vAI and the reward-seeking process of orbitofrontal cortex and subgenual anterior cingulate cortex. The findings highlight the roles of our theorized subinsular functionality in the overall operation of the neural cognitive systems.
Collapse
Affiliation(s)
- Haichao Zhao
- Faculty of Psychology and MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ofir Turel
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
- Computing Information Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Bechara
- Department of Psychology, and Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Qinghua He
- Corresponding author: Faculty of Psychology, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China.
| |
Collapse
|
34
|
Combined EEG and immersive virtual reality unveil dopaminergic modulation of error monitoring in Parkinson's Disease. NPJ Parkinsons Dis 2023; 9:3. [PMID: 36639384 PMCID: PMC9839679 DOI: 10.1038/s41531-022-00441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Detecting errors in your own and others' actions is associated with discrepancies between intended and expected outcomes. The processing of salient events is associated with dopamine release, the balance of which is altered in Parkinson's disease (PD). Errors in observed actions trigger various electrocortical indices (e.g. mid-frontal theta, error-related delta, and error positivity [oPe]). However, the impact of dopamine depletion to observed errors in the same individual remains unclear. Healthy controls (HCs) and PD patients observed ecological reach-to-grasp-a-glass actions performed by a virtual arm from a first-person perspective. PD patients were tested under their dopaminergic medication (on-condition) and after dopaminergic withdrawal (off-condition). Analyses of oPe, delta, and theta-power increases indicate that while the formers were elicited after incorrect vs. correct actions in all groups, the latter were observed in on-condition but altered in off-condition PD. Therefore, different EEG error signatures may index the activity of distinct mechanisms, and error-related theta power is selectively modulated by dopamine depletion. Our findings may facilitate discovering dopamine-related biomarkers for error-monitoring dysfunctions that may have crucial theoretical and clinical implications.
Collapse
|
35
|
Vynohradov VE, Pastukhova VA, Lukyantseva HV, Buka GY, Fedoniuk LY, Chervatiuk AM. MAINTAINING COMPETITIVE ACTIVITY IN ELITE SPORTS WITH ACUTE PLANTAR FASCIITIS. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:288-294. [PMID: 37589118 DOI: 10.36740/merkur202303118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Competition in the modern pentathlon in the new 2024 Olympic program are tense and high intensity. Before reaching the final the athlete must go through 8 types of events in 4 days performs before 5 events in final competitions. It's quit difficult to restore the function of damaged link of the musculoskeletal system during competition in a short time. The time of breaks for rest and recovery in the competitive activity of an all-around athlete in the modern pentathlon is limited. The presented rehabilitation program after an acute injury was implemented at modern pentathlon competitions. A distinctive feature of the effects is the practice of rehabilitation and recovery after physical exertion. The peculiarity was in short periods of rest during intense multi-day competitive activity. There was a clear organization in the procedures, a strict sequence of methods and techniques. The presented material rather as an exception confirms the possibilities of the applied systemic rehabilitation techniques. This made it possible to continue competitive activity in modern pentathlon after an acute injury without compromising the athlete's health.
Collapse
Affiliation(s)
- Valerii E Vynohradov
- UNIVERSITY OF GOTHENBURG, GOTHENBURG, SWEDEN; BORIS GRINCHENKO KYIV UNIVERSITY, KYIV, UKRAINE
| | | | | | - Gennadii Yu Buka
- NATIONAL MEDICAL UNIVERSITY NAMED AFTER A. BOGOMOLETS, KYIV, UKRAINE
| | | | | |
Collapse
|
36
|
Choo Y, Matzke D, Bowren MD, Tranel D, Wessel JR. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 2022; 11:e79667. [PMID: 36583378 PMCID: PMC9803357 DOI: 10.7554/elife.79667] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Inhibitory control is one of the most important control functions in the human brain. Much of our understanding of its neural basis comes from seminal work showing that lesions to the right inferior frontal gyrus (rIFG) increase stop-signal reaction time (SSRT), a latent variable that expresses the speed of inhibitory control. However, recent work has identified substantial limitations of the SSRT method. Notably, SSRT is confounded by trigger failures: stop-signal trials in which inhibitory control was never initiated. Such trials inflate SSRT, but are typically indicative of attentional, rather than inhibitory deficits. Here, we used hierarchical Bayesian modeling to identify stop-signal trigger failures in human rIFG lesion patients, non-rIFG lesion patients, and healthy comparisons. Furthermore, we measured scalp-EEG to detect β-bursts, a neurophysiological index of inhibitory control. rIFG lesion patients showed a more than fivefold increase in trigger failure trials and did not exhibit the typical increase of stop-related frontal β-bursts. However, on trials in which such β-bursts did occur, rIFG patients showed the typical subsequent upregulation of β over sensorimotor areas, indicating that their ability to implement inhibitory control, once triggered, remains intact. These findings suggest that the role of rIFG in inhibitory control has to be fundamentally reinterpreted.
Collapse
Affiliation(s)
- Yoojeong Choo
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| | - Dora Matzke
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
| | - Mark D Bowren
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| |
Collapse
|
37
|
Kaiser J, Gentsch A, Rodriguez-Manrique D, Schütz-Bosbach S. Function without feeling: neural reactivity and intercommunication during flexible motor adjustments evoked by emotional and neutral stimuli. Cereb Cortex 2022; 33:6000-6012. [PMID: 36513350 DOI: 10.1093/cercor/bhac478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Motor conflicts arise when we need to quickly overwrite prepotent behavior. It has been proposed that affective stimuli modulate the neural processing of motor conflicts. However, previous studies have come to inconsistent conclusions regarding the neural impact of affective information on conflict processing. We employed functional magnetic resonance imaging during a Go/Change-Go task, where motor conflicts were either evoked by neutral or emotionally negative stimuli. Dynamic causal modeling was used to investigate how motor conflicts modulate the intercommunication between the anterior cingulate cortex (ACC) and the anterior insula (AI) as 2 central regions for cognitive control. Conflicts compared to standard actions were associated with increased BOLD activation in several brain areas, including the dorsal ACC and anterior insula. There were no differences in neural activity between emotional and non-emotional conflict stimuli. Conflicts compared to standard actions lowered neural self-inhibition of the ACC and AI and led to increased effective connectivity from the ACC to AI contralateral to the acting hand. Thus, our study indicates that neural conflict processing is primarily driven by the functional relevance of action-related stimuli, not their inherent affective meaning. Furthermore, it sheds light on the role of interconnectivity between ACC and AI for the implementation of flexible behavioral change.
Collapse
Affiliation(s)
- Jakob Kaiser
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | - Antje Gentsch
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| | | | - Simone Schütz-Bosbach
- LMU Munich, Department of Psychology, General and Experimental Psychology, Leopoldstr. 13, D-80802 Munich, Germany
| |
Collapse
|
38
|
Volfart A, McMahon KL, Howard D, de Zubicaray GI. Neural Correlates of Naturally Occurring Speech Errors during Picture Naming in Healthy Participants. J Cogn Neurosci 2022; 35:111-127. [PMID: 36306259 DOI: 10.1162/jocn_a_01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Most of our knowledge about the neuroanatomy of speech errors comes from lesion-symptom mapping studies in people with aphasia and laboratory paradigms designed to elicit primarily phonological errors in healthy adults, with comparatively little evidence from naturally occurring speech errors. In this study, we analyzed perfusion fMRI data from 24 healthy participants during a picture naming task, classifying their responses into correct and different speech error types (e.g., semantic, phonological, omission errors). Total speech errors engaged a wide set of left-lateralized frontal, parietal, and temporal regions that were almost identical to those involved during the production of correct responses. We observed significant perfusion signal decreases in the left posterior middle temporal gyrus and inferior parietal lobule (angular gyrus) for semantic errors compared to correct trials matched on various psycholinguistic variables. In addition, the left dorsal caudate nucleus showed a significant perfusion signal decrease for omission (i.e., anomic) errors compared with matched correct trials. Surprisingly, we did not observe any significant perfusion signal changes in brain regions proposed to be associated with monitoring mechanisms during speech production (e.g., ACC, superior temporal gyrus). Overall, our findings provide evidence for distinct neural correlates of semantic and omission error types, with anomic speech errors likely resulting from failures to initiate articulatory-motor processes rather than semantic knowledge impairments as often reported for people with aphasia.
Collapse
Affiliation(s)
| | - Katie L McMahon
- Queensland University of Technology.,Royal Brisbane & Women's Hospital
| | | | | |
Collapse
|
39
|
Burton BK, Petersen A, Eichele H, Hemager N, Spang KS, Ellersgaard D, Christiani CJ, Greve A, Gantriis D, Jepsen JRM, Mors O, Nordentoft M, Thorup AA, Plessen KJ, Vangkilde S. Post-error adjustment among children aged 7 years with a familial high risk of schizophrenia or bipolar disorder: A population-based cohort study. Dev Psychopathol 2022; 34:2023-2033. [PMID: 33993894 DOI: 10.1017/s0954579421000444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cognitive control system matures gradually with age and shows age-related sex differences. To gain knowledge concerning error adaptation in familial high-risk groups, investigating error adaptation among the offspring of parents with severe mental disorders is important and may contribute to the understanding of cognitive functioning in at-risk individuals. We identified an observational cohort through Danish registries and measured error adaptation using an Eriksen flanker paradigm. We tested 497 7-year-old children with a familial high risk of schizophrenia (N = 192) or bipolar disorder (N = 116) for deficits in error adaptation compared with a control group (N = 189). We investigated whether error adaptation differed between high-risk groups compared with controls and sex differences in the adaptation to errors, irrespective of high-risk status. Overall, children exhibited post-error slowing (PES), but the slowing of responses did not translate to significant improvements in accuracy. No differences were detected between either high-risk group compared with the controls. Boys showed less PES and PES after incongruent trials than girls. Our results suggest that familial high risk of severe mental disorders does not influence error adaptation at this early stage of cognitive control development. Error adaptation behavior at age 7 years shows specific sex differences.
Collapse
Affiliation(s)
- Birgitte Klee Burton
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Anders Petersen
- Centre for Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Nicoline Hemager
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
| | - Katrine S Spang
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Ditte Ellersgaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
| | - Camilla Jerlang Christiani
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
| | - Aja Greve
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Ditte Gantriis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Jens Richardt M Jepsen
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
- Centre for Neuropsychiatric Schizophrenia Research & Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Hospital Centre Glostrup, Glostrup, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Copenhagen Research Center for Mental Health - CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Mental Health Services Capital Region, Hellerup, Denmark
| | - Anne Ae Thorup
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
| | - Kerstin Jessica Plessen
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Medical Center, University of Lausanne, Lausanne, Switzerland
| | - Signe Vangkilde
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- Centre for Visual Cognition, Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Seo J, Kim DJ, Choi SH, Kim H, Min BK. The thalamocortical inhibitory network controls human conscious perception. Neuroimage 2022; 264:119748. [PMID: 36370957 DOI: 10.1016/j.neuroimage.2022.119748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Although conscious perception is a fundamental cognitive function, its neural correlates remain unclear. It remains debatable whether thalamocortical interactions play a decisive role in conscious perception. To clarify this, we used functional magnetic resonance imaging (fMRI) where flickering red and green visual cues could be perceived either as a non-fused colour or fused colour. Here we show significantly differentiated fMRI neurodynamics only in higher-order thalamocortical regions, compared with first-order thalamocortical regions. Anticorrelated neurodynamic behaviours were observed between the visual stream network and default-mode network. Its dynamic causal modelling consistently provided compelling evidence for the involvement of higher-order thalamocortical iterative integration during conscious perception of fused colour, while inhibitory control was revealed during the non-fusion condition. Taken together with our recent magnetoencephalography study, our fMRI findings corroborate a thalamocortical inhibitory model for consciousness, where both thalamic inhibitory regulation and integrative signal iterations across higher-order thalamocortical regions are essential for conscious perception.
Collapse
Affiliation(s)
- Jeehye Seo
- Institute for Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States of America
| | - Sang-Han Choi
- Institute for Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Hyoungkyu Kim
- Institute for Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea
| | - Byoung-Kyong Min
- Institute for Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
41
|
Kotler S, Mannino M, Kelso S, Huskey R. First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset. Neurosci Biobehav Rev 2022; 143:104956. [PMID: 36368525 DOI: 10.1016/j.neubiorev.2022.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Flow is a cognitive state that manifests when there is complete attentional absorption while performing a task. Flow occurs when certain internal as well as external conditions are present, including intense concentration, a sense of control, feedback, and a balance between the challenge of the task and the relevant skillset. Phenomenologically, flow is accompanied by a loss of self-consciousness, seamless integration of action and awareness, and acute changes in time perception. Research has begun to uncover some of the neurophysiological correlates of flow, as well as some of the state's neuromodulatory processes. We comprehensively review this work and consider the neurodynamics of the onset of the state, considering large-scale brain networks, as well as dopaminergic, noradrenergic, and endocannabinoid systems. To accomplish this, we outline an evidence-based hypothetical situation, and consider the flow state in a broader context including other profound alterations in consciousness, such as the psychedelic state and the state of traumatic stress that can induce PTSD. We present a broad theoretical framework which may motivate future testable hypotheses.
Collapse
Affiliation(s)
| | | | - Scott Kelso
- Human Brain & Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, United States; Intelligent Systems Research Centre, Ulster University, Derry∼Londonderry, North Ireland
| | - Richard Huskey
- Cognitive Communication Science Lab, Department of Communication, University of California Davis, United States; Cognitive Science Program, University of California Davis, United States; Center for Mind and Brain, University of California Davis, United States.
| |
Collapse
|
42
|
Gomez-Andres A, Cunillera T, Rico I, Naval-Baudin P, Camins A, Fernandez-Coello A, Gabarrós A, Rodriguez-Fornells A. The role of the anterior insular cortex in self-monitoring: A novel study protocol with electrical stimulation mapping and functional magnetic resonance imaging. Cortex 2022; 157:231-244. [PMID: 36347086 DOI: 10.1016/j.cortex.2022.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Becoming aware of one's own states is a fundamental aspect for self-monitoring, allowing us to adjust our beliefs of the world to the changing context. Previous evidence points out to the key role of the anterior insular cortex (aIC) in evaluating the consequences of our own actions, especially whenever an error has occurred. In the present study, we propose a new multimodal protocol combining electrical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI) to explore the functional role of the aIC for self-monitoring in patients undergoing awake brain surgery. Our results using a modified version of the Stroop task tackling metacognitive abilities revealed new direct evidence of the involvement of the aIC in monitoring our performance, showing increased difficulties in detecting action-outcome mismatches when stimulating a cortical site located at the most posterior part of the aIC as well as significant BOLD activations at this region during outcome incongruences for self-made actions. Based on these preliminary results, we highlight the importance of assessing the aIC's functioning during tumor resection involving this region to evaluate metacognitive awareness of the self in patients undergoing awake brain surgery. In a similar vein, a better understanding of the aIC's role during self-monitoring may help shed light on action/outcome processing abnormalities reported in several neuropsychiatric disorders such as schizophrenia, anosognosia for hemiplegia or major depression.
Collapse
Affiliation(s)
- Alba Gomez-Andres
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
| | - Toni Cunillera
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Imma Rico
- Hospital Universitari de Bellvitge (HUB), Neurology Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Pablo Naval-Baudin
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Angels Camins
- Institut de Diagnòstic per la Imatge, Centre Bellvitge, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Alejandro Fernandez-Coello
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Andreu Gabarrós
- Hospital Universitari de Bellvitge (HUB), Neurosurgery Section, Campus Bellvitge, University of Barcelona - IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-IDIBELL], L'Hospitalet de Llobregat, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain.
| |
Collapse
|
43
|
Müller-Pinzler L, Czekalla N, Mayer AV, Schröder A, Stolz DS, Paulus FM, Krach S. Neurocomputational mechanisms of affected beliefs. Commun Biol 2022; 5:1241. [PMCID: PMC9663730 DOI: 10.1038/s42003-022-04165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThe feedback people receive on their behavior shapes the process of belief formation and self-efficacy in mastering a particular task. However, the neural and computational mechanisms of how the subjective value of self-efficacy beliefs, and the corresponding affect, influence the learning process remain unclear. We investigated these mechanisms during self-efficacy belief formation using fMRI, pupillometry, and computational modeling, and by analyzing individual differences in affective experience. Biases in the formation of self-efficacy beliefs were associated with affect, pupil dilation, and neural activity within the anterior insula, amygdala, ventral tegmental area/ substantia nigra, and mPFC. Specifically, neural and pupil responses mapped the valence of the prediction errors in correspondence with individuals’ experienced affective states and learning biases during self-efficacy belief formation. Together with the functional connectivity dynamics of the anterior insula within this network, our results provide evidence for neural and computational mechanisms of how we arrive at affected beliefs.
Collapse
|
44
|
Allen M, Levy A, Parr T, Friston KJ. In the Body’s Eye: The computational anatomy of interoceptive inference. PLoS Comput Biol 2022; 18:e1010490. [PMID: 36099315 PMCID: PMC9506608 DOI: 10.1371/journal.pcbi.1010490] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/23/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022] Open
Abstract
A growing body of evidence highlights the intricate linkage of exteroceptive perception to the rhythmic activity of the visceral body. In parallel, interoceptive inference theories of affective perception and self-consciousness are on the rise in cognitive science. However, thus far no formal theory has emerged to integrate these twin domains; instead, most extant work is conceptual in nature. Here, we introduce a formal model of cardiac active inference, which explains how ascending cardiac signals entrain exteroceptive sensory perception and uncertainty. Through simulated psychophysics, we reproduce the defensive startle reflex and commonly reported effects linking the cardiac cycle to affective behaviour. We further show that simulated ‘interoceptive lesions’ blunt affective expectations, induce psychosomatic hallucinations, and exacerbate biases in perceptual uncertainty. Through synthetic heart-rate variability analyses, we illustrate how the balance of arousal-priors and visceral prediction errors produces idiosyncratic patterns of physiological reactivity. Our model thus offers a roadmap for computationally phenotyping disordered brain-body interaction. Understanding interactions between the brain and the body has become a topic of increased interest in computational neuroscience and psychiatry. A particular question here concerns how visceral, homeostatic rhythms such as the heart beat influence sensory, affective, and cognitive processing. To better understand these and other oscillatory brain-body interactions, we here introduce a novel computational model of interoceptive inference in which a synthetic agent’s perceptual beliefs are coupled to the rhythm of the heart. Our model both helps to explain emerging empirical data indicating that perceptual inference depends upon beat-to-beat heart rhythms, and can be used to better quantify intra- and inter-individual differences in heart-brain coupling. Using proof-of-principle simulations, we demonstrate how future empirical works could utilize our model to better understand and stratify disorders of interoception and brain-body interaction.
Collapse
Affiliation(s)
- Micah Allen
- Centre of Functionally Integrative Neuroscience, Aarhus University Hospital, Denmark
- Cambridge Psychiatry, Cambridge University, Cambridge, United Kingdom
- * E-mail:
| | - Andrew Levy
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
45
|
Pacella V, Moro V. Motor awareness: a model based on neurological syndromes. Brain Struct Funct 2022; 227:3145-3160. [PMID: 36064864 DOI: 10.1007/s00429-022-02558-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/24/2022] [Indexed: 12/20/2022]
Abstract
Motor awareness is a complex, multifaceted construct involving the awareness of both (i) one's motor state while executing a movement or remaining still and (ii) one's motor abilities. The analysis of neurological syndromes associated with motor disorders suggests the existence of various different components which are, however, integrated into a model of motor awareness. These components are: (i) motor intention, namely, a conscious desire to perform an action; (ii) motor monitoring and error recognition, that is, the capacity to check the execution of the action and identify motor errors; and (iii) a general awareness of one's own motor abilities and deficits, that is, the capacity to recognize the general state of one's motor abilities about the performance of specific actions and the potential consequences of motor impairment. Neuroanatomical correlates involving the parietal and insular cortices, the medial and lateral frontal regions, and subcortical structures (basal ganglia and limbic system) support this multi-component model. Specific damage (or disconnections) to these structures results in a number of different disorders in motor awareness, such as anosognosia for hemiplegia and apraxia, and a number of symptoms which are specific to motor intention disorders (e.g., the Anarchic Hand Syndrome and Tourette's Syndrome) or motor monitoring (e.g., Parkinson's and Huntington's diseases). All of these clinical conditions are discussed in the light of a motor awareness model.
Collapse
Affiliation(s)
- Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, 33076, Bordeaux, CS, France. .,Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.
| | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Lungadige Porta Vittoria 17, 37129, Verona, Italy.
| |
Collapse
|
46
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
47
|
Preisig BC, Riecke L, Hervais-Adelman A. Speech sound categorization: The contribution of non-auditory and auditory cortical regions. Neuroimage 2022; 258:119375. [PMID: 35700949 DOI: 10.1016/j.neuroimage.2022.119375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Which processes in the human brain lead to the categorical perception of speech sounds? Investigation of this question is hampered by the fact that categorical speech perception is normally confounded by acoustic differences in the stimulus. By using ambiguous sounds, however, it is possible to dissociate acoustic from perceptual stimulus representations. Twenty-seven normally hearing individuals took part in an fMRI study in which they were presented with an ambiguous syllable (intermediate between /da/ and /ga/) in one ear and with disambiguating acoustic feature (third formant, F3) in the other ear. Multi-voxel pattern searchlight analysis was used to identify brain areas that consistently differentiated between response patterns associated with different syllable reports. By comparing responses to different stimuli with identical syllable reports and identical stimuli with different syllable reports, we disambiguated whether these regions primarily differentiated the acoustics of the stimuli or the syllable report. We found that BOLD activity patterns in left perisylvian regions (STG, SMG), left inferior frontal regions (vMC, IFG, AI), left supplementary motor cortex (SMA/pre-SMA), and right motor and somatosensory regions (M1/S1) represent listeners' syllable report irrespective of stimulus acoustics. Most of these regions are outside of what is traditionally regarded as auditory or phonological processing areas. Our results indicate that the process of speech sound categorization implicates decision-making mechanisms and auditory-motor transformations.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands; Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Department of Comparative Language Science, Evolutionary Neuroscience of Language, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
48
|
Kral TRA, Lapate RC, Imhoff-Smith T, Patsenko E, Grupe DW, Goldman R, Rosenkranz MA, Davidson RJ. Long-term Meditation Training Is Associated with Enhanced Subjective Attention and Stronger Posterior Cingulate-Rostrolateral Prefrontal Cortex Resting Connectivity. J Cogn Neurosci 2022; 34:1576-1589. [PMID: 35704552 DOI: 10.1162/jocn_a_01881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mindfulness meditation has been shown to increase resting-state functional connectivity (rsFC) between the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC), which is thought to reflect improvements in shifting attention to the present moment. However, prior research in long-term meditation practitioners lacked quantitative measures of attention that would provide a more direct behavioral correlate and interpretational anchor for PCC-DLPFC connectivity and was inherently limited by small sample sizes. Moreover, whether mindfulness meditation primarily impacts brain function locally, or impacts the dynamics of large-scale brain networks, remained unclear. Here, we sought to replicate and extend prior findings of increased PCC-DLPFC rsFC in a sample of 40 long-term meditators (average practice = 3759 hr) who also completed a behavioral assay of attention. In addition, we tested a network-based framework of changes in interregional connectivity by examining network-level connectivity. We found that meditators had stronger PCC-rostrolateral pFC rsFC, lower connector hub strength across the default mode network, and better subjective attention, compared with 124 meditation-naive controls. Orienting attention positively correlated with PCC-rostrolateral pFC connectivity and negatively correlated with default mode network connector hub strength. These findings provide novel evidence that PCC-rostrolateral pFC rsFC may support attention orienting, consistent with a role for rostrolateral pFC in the attention shifting component of metacognitive awareness that is a core component of mindfulness meditation training. Our results further demonstrate that long-term mindfulness meditation may improve attention and strengthen the underlying brain networks.
Collapse
Affiliation(s)
| | - Regina C Lapate
- University of Wisconsin-Madison.,University of California, Los Angeles
| | | | | | | | | | | | | |
Collapse
|
49
|
Ritz H, Wild CJ, Johnsrude IS. Parametric Cognitive Load Reveals Hidden Costs in the Neural Processing of Perfectly Intelligible Degraded Speech. J Neurosci 2022; 42:4619-4628. [PMID: 35508382 PMCID: PMC9186799 DOI: 10.1523/jneurosci.1777-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Speech is often degraded by environmental noise or hearing impairment. People can compensate for degradation, but this requires cognitive effort. Previous research has identified frontotemporal networks involved in effortful perception, but materials in these works were also less intelligible, and so it is not clear whether activity reflected effort or intelligibility differences. We used functional magnetic resonance imaging to assess the degree to which spoken sentences were processed under distraction and whether this depended on speech quality even when intelligibility of degraded speech was matched to that of clear speech (close to 100%). On each trial, male and female human participants either attended to a sentence or to a concurrent multiple object tracking (MOT) task that imposed parametric cognitive load. Activity in bilateral anterior insula reflected task demands; during the MOT task, activity increased as cognitive load increased, and during speech listening, activity increased as speech became more degraded. In marked contrast, activity in bilateral anterior temporal cortex was speech selective and gated by attention when speech was degraded. In this region, performance of the MOT task with a trivial load blocked processing of degraded speech, whereas processing of clear speech was unaffected. As load increased, responses to clear speech in these areas declined, consistent with reduced capacity to process it. This result dissociates cognitive control from speech processing; substantially less cognitive control is required to process clear speech than is required to understand even very mildly degraded, 100% intelligible speech. Perceptual and control systems clearly interact dynamically during real-world speech comprehension.SIGNIFICANCE STATEMENT Speech is often perfectly intelligible even when degraded, for example, by background sound, phone transmission, or hearing loss. How does degradation alter cognitive demands? Here, we use fMRI to demonstrate a novel and critical role for cognitive control in the processing of mildly degraded but perfectly intelligible speech. We compare speech that is matched for intelligibility but differs in putative control demands, dissociating cognitive control from speech processing. We also impose a parametric cognitive load during perception, dissociating processes that depend on tasks from those that depend on available capacity. Our findings distinguish between frontal and temporal contributions to speech perception and reveal a hidden cost to processing mildly degraded speech, underscoring the importance of cognitive control for everyday speech comprehension.
Collapse
Affiliation(s)
- Harrison Ritz
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| | - Conor J Wild
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ingrid S Johnsrude
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Departments of Psychology and Communication Sciences and Disorders, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
50
|
Unsworth N, Miller AL, Robison MK. The influence of working memory capacity and lapses of attention for variation in error monitoring. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:450-466. [PMID: 35426070 DOI: 10.3758/s13415-022-01003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In two experiments, individual differences in working memory capacity (WMC), lapses of attention, and error monitoring were examined. Participants completed multiple WMC tasks along with a version of the Stroop task. During the Stroop, pupil diameter was continuously monitored. In both experiments, error phasic pupillary responses were larger than phasic pupillary responses associated with correct incongruent and correct congruent trials. WMC and indicators of lapses of attention were correlated with error pupillary response, suggesting that high WMC and low lapse individuals had enhanced error monitoring abilities compared with low WMC and high lapse individuals. Furthermore, in Experiment 2 error awareness abilities were associated with WMC, lapses of attention, and the error phasic pupillary responses. Importantly, individual differences in the susceptibility to lapses of attention largely accounted for the relationship between WMC and error monitoring in both experiments. Collectively, these results suggest that WMC is related to error monitoring abilities, but this association is largely due to individual differences in the ability to consistently maintain task engagement and avoid lapses of attention.
Collapse
Affiliation(s)
- Nash Unsworth
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
| | - Ashley L Miller
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
| | - Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|