1
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding cortical chronotopy-Comparing the influence of different cortical organizational schemes. Neuroimage 2024; 303:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
2
|
Pronold J, van Meegen A, Shimoura RO, Vollenbröker H, Senden M, Hilgetag CC, Bakker R, van Albada SJ. Multi-scale spiking network model of human cerebral cortex. Cereb Cortex 2024; 34:bhae409. [PMID: 39428578 PMCID: PMC11491286 DOI: 10.1093/cercor/bhae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Although the structure of cortical networks provides the necessary substrate for their neuronal activity, the structure alone does not suffice to understand the activity. Leveraging the increasing availability of human data, we developed a multi-scale, spiking network model of human cortex to investigate the relationship between structure and dynamics. In this model, each area in one hemisphere of the Desikan-Killiany parcellation is represented by a $1\,\mathrm{mm^{2}}$ column with a layered structure. The model aggregates data across multiple modalities, including electron microscopy, electrophysiology, morphological reconstructions, and diffusion tensor imaging, into a coherent framework. It predicts activity on all scales from the single-neuron spiking activity to the area-level functional connectivity. We compared the model activity with human electrophysiological data and human resting-state functional magnetic resonance imaging (fMRI) data. This comparison reveals that the model can reproduce aspects of both spiking statistics and fMRI correlations if the inter-areal connections are sufficiently strong. Furthermore, we study the propagation of a single-spike perturbation and macroscopic fluctuations through the network. The open-source model serves as an integrative platform for further refinements and future in silico studies of human cortical structure, dynamics, and function.
Collapse
Affiliation(s)
- Jari Pronold
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- RWTH Aachen University, D-52062 Aachen, Germany
| | - Alexander van Meegen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| | - Renan O Shimoura
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
| | - Hannah Vollenbröker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mario Senden
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, NL-6229 ER Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Maastricht Brain Imaging Centre, Maastricht University, NL-6229 ER Maastricht, The Netherlands
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, D-20246 Hamburg, Germany
| | - Rembrandt Bakker
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, NL-6525 EN Nijmegen, The Netherlands
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, D-52428 Jülich, Germany
- Institute of Zoology, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
3
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
4
|
Kobayashi R, Shinomoto S. Inference of monosynaptic connections from parallel spike trains: A review. Neurosci Res 2024:S0168-0102(24)00097-X. [PMID: 39098768 DOI: 10.1016/j.neures.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
This article presents a mini-review about the progress in inferring monosynaptic connections from spike trains of multiple neurons over the past twenty years. First, we explain a variety of meanings of "neuronal connectivity" in different research areas of neuroscience, such as structural connectivity, monosynaptic connectivity, and functional connectivity. Among these, we focus on the methods used to infer the monosynaptic connectivity from spike data. We then summarize the inference methods based on two main approaches, i.e., correlation-based and model-based approaches. Finally, we describe available source codes for connectivity inference and future challenges. Although inference will never be perfect, the accuracy of identifying the monosynaptic connections has improved dramatically in recent years due to continuous efforts.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan; Mathematics and Informatics Center, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Shigeru Shinomoto
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Research Organization of Open Innovation and Collaboration, Ritsumeikan University, Osaka 567-8570, Japan
| |
Collapse
|
5
|
Verhellen J, Beshkov K, Amundsen S, Ness TV, Einevoll GT. Multitask learning of a biophysically-detailed neuron model. PLoS Comput Biol 2024; 20:e1011728. [PMID: 39083546 PMCID: PMC11318869 DOI: 10.1371/journal.pcbi.1011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/12/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The human brain operates at multiple levels, from molecules to circuits, and understanding these complex processes requires integrated research efforts. Simulating biophysically-detailed neuron models is a computationally expensive but effective method for studying local neural circuits. Recent innovations have shown that artificial neural networks (ANNs) can accurately predict the behavior of these detailed models in terms of spikes, electrical potentials, and optical readouts. While these methods have the potential to accelerate large network simulations by several orders of magnitude compared to conventional differential equation based modelling, they currently only predict voltage outputs for the soma or a select few neuron compartments. Our novel approach, based on enhanced state-of-the-art architectures for multitask learning (MTL), allows for the simultaneous prediction of membrane potentials in each compartment of a neuron model, at a speed of up to two orders of magnitude faster than classical simulation methods. By predicting all membrane potentials together, our approach not only allows for comparison of model output with a wider range of experimental recordings (patch-electrode, voltage-sensitive dye imaging), it also provides the first stepping stone towards predicting local field potentials (LFPs), electroencephalogram (EEG) signals, and magnetoencephalography (MEG) signals from ANN-based simulations. While LFP and EEG are an important downstream application, the main focus of this paper lies in predicting dendritic voltages within each compartment to capture the entire electrophysiology of a biophysically-detailed neuron model. It further presents a challenging benchmark for MTL architectures due to the large amount of data involved, the presence of correlations between neighbouring compartments, and the non-Gaussian distribution of membrane potentials.
Collapse
Affiliation(s)
| | - Kosio Beshkov
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Torbjørn V. Ness
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Gaute T. Einevoll
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Robens M, Kleijnen R, Schiek M, van Waasen S. NoC simulation steered by NEST: McAERsim and a Noxim patch. Front Neurosci 2024; 18:1371103. [PMID: 38966759 PMCID: PMC11222605 DOI: 10.3389/fnins.2024.1371103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Great knowledge was gained about the computational substrate of the brain, but the way in which components and entities interact to perform information processing still remains a secret. Complex and large-scale network models have been developed to unveil processes at the ensemble level taking place over a large range of timescales. They challenge any kind of simulation platform, so that efficient implementations need to be developed that gain from focusing on a set of relevant models. With increasing network sizes imposed by these models, low latency inter-node communication becomes a critical aspect. This situation is even accentuated, if slow processes like learning should be covered, that require faster than real-time simulation. Methods Therefore, this article presents two simulation frameworks, in which network-on-chip simulators are interfaced with the neuroscientific development environment NEST. This combination yields network traffic that is directly defined by the relevant neural network models and used to steer the network-on-chip simulations. As one of the outcomes, instructive statistics on network latencies are obtained. Since time stamps of different granularity are used by the simulators, a conversion is required that can be exploited to emulate an intended acceleration factor. Results By application of the frameworks to scaled versions of the cortical microcircuit model-selected because of its unique properties as well as challenging demands-performance curves, latency, and traffic distributions could be determined. Discussion The distinct characteristic of the second framework is its tree-based source-address driven multicast support, which, in connection with the torus topology, always led to the best results. Although currently biased by some inherent assumptions of the network-on-chip simulators, the results suit well to those of previous work dealing with node internals and suggesting accelerated simulations to be in reach.
Collapse
Affiliation(s)
- Markus Robens
- Central Institute of Engineering, Electronics and Analytics: Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Robert Kleijnen
- Central Institute of Engineering, Electronics and Analytics: Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Schiek
- Peter Grünberg Institute: Neuromorphic Compute Nodes (PGI-14), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan van Waasen
- Central Institute of Engineering, Electronics and Analytics: Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Engineering, Communication Systems, Duisburg-Essen University, Duisburg, Germany
| |
Collapse
|
7
|
Skaar JEW, Haug N, Stasik AJ, Einevoll GT, Tøndel K. Metamodelling of a two-population spiking neural network. PLoS Comput Biol 2023; 19:e1011625. [PMID: 38032904 PMCID: PMC10688753 DOI: 10.1371/journal.pcbi.1011625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.
Collapse
Affiliation(s)
- Jan-Eirik W. Skaar
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Nicolai Haug
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander J. Stasik
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Gaute T. Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Kristin Tøndel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
8
|
Zhao T, Li J, Wang Y, Guo X, Sun Y. Integrative metabolome and lipidome analyses of plasma in neovascular macular degeneration. Heliyon 2023; 9:e20329. [PMID: 37780745 PMCID: PMC10539639 DOI: 10.1016/j.heliyon.2023.e20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Age-related macular degeneration (AMD) causes irreversible vision-loss among the elderly in industrial countries. Neovascular AMD (nAMD), which refers to late-stage AMD, is characterized by severe vision-threatening choroidal neovascularization (CNV). Herein, we constructed a global metabolic network of nAMD, based on untargeted metabolomic and lipidomic analysis of plasma samples collected from sixty subjects (30 nAMD patients and 30 age-matched controls). Among the nAMD and control groups, 62 and 44 significantly different metabolites were detected in the positive and negative ion modes, respectively. Grouping analysis further showed that lipid and lipid-like molecule-based superclasses contained the highest number of significantly different metabolites. Lipidomic analysis revealed that 53 lipids among the nAMD and control groups differed significantly; these belonged to four major lipid categories (glycerophospholipids, sphingolipids, glycerolipids, and fatty acids). A discriminative biomarker panel comprising 16 metabolites and lipids, which was constructed using multivariate statistical machine learning methods, could effectively identify nAMD cases. Among these 16 compounds, eight were lipids that belonged to three lipid categories (glycerophospholipids, sphingolipids, and prenol lipids). The top three biomarkers with the highest importance scores were all lipids (a glycerophospholipid and two sphingolipids), highlighting the crucial role played by glycerophospholipid and sphingolipid pathways in nAMD. These differences between the metabolic and lipid profiles of nAMD patients and elderly individuals without AMD provide a readout of the overall metabolic status of nAMD. Further insights into the identified discriminative biomarkers may pave the way for future diagnostic and therapeutic interventions for nAMD.
Collapse
Affiliation(s)
- Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yanbin Wang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaojian Guo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
9
|
Shamir I, Assaf Y. Expanding connectomics to the laminar level: A perspective. Netw Neurosci 2023; 7:377-388. [PMID: 37397881 PMCID: PMC10312257 DOI: 10.1162/netn_a_00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 11/10/2023] Open
Abstract
Despite great progress in uncovering the complex connectivity patterns of the human brain over the last two decades, the field of connectomics still experiences a bias in its viewpoint of the cerebral cortex. Due to a lack of information regarding exact end points of fiber tracts inside cortical gray matter, the cortex is commonly reduced to a single homogenous unit. Concurrently, substantial developments have been made over the past decade in the use of relaxometry and particularly inversion recovery imaging for exploring the laminar microstructure of cortical gray matter. In recent years, these developments have culminated in an automated framework for cortical laminar composition analysis and visualization, followed by studies of cortical dyslamination in epilepsy patients and age-related differences in laminar composition in healthy subjects. This perspective summarizes the developments and remaining challenges of multi-T1 weighted imaging of cortical laminar substructure, the current limitations in structural connectomics, and the recent progress in integrating these fields into a new model-based subfield termed 'laminar connectomics'. In the coming years, we predict an increased use of similar generalizable, data-driven models in connectomics with the purpose of integrating multimodal MRI datasets and providing a more nuanced and detailed characterization of brain connectivity.
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Wang J, Xu J, Wu J, Xu Q. Geometric characterization of dynamical structure for neural firing activities induced by inhibitory pulse. Cogn Neurodyn 2022; 16:1505-1524. [PMID: 36408077 PMCID: PMC9666638 DOI: 10.1007/s11571-022-09799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
In general, inhibitory stimuli are thought to inhibit neuronal firing, but they may actually enhance firing sometimes, such as post-inhibitory rebound spike (PIR spike) and post-inhibitory facilitation (PIF) phenomena, which play an important role in human neuronal activities. We study responses to inhibitory pulse in a classical neuron model (Quartic adaptive Integrate-and-fire model) well known to reproduce a number of biologically realistic behaviors. The three phenomena that we study are PIR, in which a neuron fires after an inhibitory pulse, and PIF, in which a subthreshold excitatory input can induce a spike if it is applied with proper timing after an inhibitory pulse, as well as period firing after inhibitory pulse. When the system features focus and saddle two equilibriums, the three phenomena will be occurred under the inhibitory pulse, while all three phenomena will not be induced when the system features node and saddle two equilibriums. Using dynamical systems theory, we explain the threshold mechanism of enhancement of neural firing response induced by inhibitory pulse and analyze the origin of these phenomena from several factors. We also describe the geometric characterization of dynamical structures of these three phenomena. This study therefore enrich the paradoxical phenomena that induced by inhibitory input and advance our understanding of its role.
Collapse
Affiliation(s)
- Junjie Wang
- School of Mathematics and Information Science, Guangxi University, Nanning, 530004 China
| | - Jieqiong Xu
- School of Mathematics and Information Science, Guangxi University, Nanning, 530004 China
- Scientific Research Center of Engineering Mechanics, Guangxi University, Nanning, 530004 China
| | - Jianmei Wu
- School of Mathematics and Information Science, Guangxi University, Nanning, 530004 China
| | - Qixiang Xu
- School of Mathematics and Information Science, Guangxi University, Nanning, 530004 China
| |
Collapse
|
11
|
Oláh VJ, Pedersen NP, Rowan MJM. Ultrafast simulation of large-scale neocortical microcircuitry with biophysically realistic neurons. eLife 2022; 11:e79535. [PMID: 36341568 PMCID: PMC9640191 DOI: 10.7554/elife.79535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the activity of the mammalian brain requires an integrative knowledge of circuits at distinct scales, ranging from ion channel gating to circuit connectomics. Computational models are regularly employed to understand how multiple parameters contribute synergistically to circuit behavior. However, traditional models of anatomically and biophysically realistic neurons are computationally demanding, especially when scaled to model local circuits. To overcome this limitation, we trained several artificial neural network (ANN) architectures to model the activity of realistic multicompartmental cortical neurons. We identified an ANN architecture that accurately predicted subthreshold activity and action potential firing. The ANN could correctly generalize to previously unobserved synaptic input, including in models containing nonlinear dendritic properties. When scaled, processing times were orders of magnitude faster compared with traditional approaches, allowing for rapid parameter-space mapping in a circuit model of Rett syndrome. Thus, we present a novel ANN approach allowing for rapid, detailed network experiments using inexpensive and commonly available computational resources.
Collapse
Affiliation(s)
- Viktor J Oláh
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
| | - Matthew JM Rowan
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
12
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
13
|
D'Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends Neurosci 2022; 45:777-790. [PMID: 35906100 DOI: 10.1016/j.tins.2022.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023]
Abstract
Addressing the multiscale organization of the brain, which is fundamental to the dynamic repertoire of the organ, remains challenging. In principle, it should be possible to model neurons and synapses in detail and then connect them into large neuronal assemblies to explain the relationship between microscopic phenomena, large-scale brain functions, and behavior. It is more difficult to infer neuronal functions from ensemble measurements such as those currently obtained with brain activity recordings. In this article we consider theories and strategies for combining bottom-up models, generated from principles of neuronal biophysics, with top-down models based on ensemble representations of network activity and on functional principles. These integrative approaches are hoped to provide effective multiscale simulations in virtual brains and neurorobots, and pave the way to future applications in medicine and information technologies.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, and Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy.
| | - Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1106, Centre National de la Recherche Scientifique (CNRS), and University of Aix-Marseille, Marseille, France
| |
Collapse
|
14
|
Tiddia G, Golosio B, Albers J, Senk J, Simula F, Pronold J, Fanti V, Pastorelli E, Paolucci PS, van Albada SJ. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster. Front Neuroinform 2022; 16:883333. [PMID: 35859800 PMCID: PMC9289599 DOI: 10.3389/fninf.2022.883333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Spiking neural network models are increasingly establishing themselves as an effective tool for simulating the dynamics of neuronal populations and for understanding the relationship between these dynamics and brain function. Furthermore, the continuous development of parallel computing technologies and the growing availability of computational resources are leading to an era of large-scale simulations capable of describing regions of the brain of ever larger dimensions at increasing detail. Recently, the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such complex simulations has emerged, opening up novel paths to further speed-ups. NEST GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking neural networks, which was recently extended with a novel algorithm for remote spike communication through MPI on a GPU cluster. In this work we evaluate its performance on the simulation of a multi-area model of macaque vision-related cortex, made up of about 4 million neurons and 24 billion synapses and representing 32 mm2 surface area of the macaque cortex. The outcome of the simulations is compared against that obtained using the well-known CPU-based spiking neural network simulator NEST on a high-performance computing cluster. The results show not only an optimal match with the NEST statistical measures of the neural activity in terms of three informative distributions, but also remarkable achievements in terms of simulation time per second of biological activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-scale macaque cortex model in its metastable state 3.1× faster than NEST using 32 compute nodes equipped with an NVIDIA V100 GPU each. Using the same configuration, the ground state of the full-scale macaque cortex model was simulated 2.4× faster than NEST.
Collapse
Affiliation(s)
- Gianmarco Tiddia
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Bruno Golosio
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Jasper Albers
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Francesco Simula
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | - Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Viviana Fanti
- Department of Physics, University of Cagliari, Monserrato, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Monserrato, Italy
| | - Elena Pastorelli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy
| | | | - Sacha J. van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Layer M, Senk J, Essink S, van Meegen A, Bos H, Helias M. NNMT: Mean-Field Based Analysis Tools for Neuronal Network Models. Front Neuroinform 2022; 16:835657. [PMID: 35712677 PMCID: PMC9196133 DOI: 10.3389/fninf.2022.835657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mean-field theory of neuronal networks has led to numerous advances in our analytical and intuitive understanding of their dynamics during the past decades. In order to make mean-field based analysis tools more accessible, we implemented an extensible, easy-to-use open-source Python toolbox that collects a variety of mean-field methods for the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox (NNMT) in its current state allows for estimating properties of large neuronal networks, such as firing rates, power spectra, and dynamical stability in mean-field and linear response approximation, without running simulations. In this article, we describe how the toolbox is implemented, show how it is used to reproduce results of previous studies, and discuss different use-cases, such as parameter space explorations, or mapping different network models. Although the initial version of the toolbox focuses on methods for leaky integrate-and-fire neurons, its structure is designed to be open and extensible. It aims to provide a platform for collecting analytical methods for neuronal network model analysis, such that the neuroscientific community can take maximal advantage of them.
Collapse
Affiliation(s)
- Moritz Layer
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Simon Essink
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Alexander van Meegen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Institute of Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hannah Bos
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Albers J, Pronold J, Kurth AC, Vennemo SB, Haghighi Mood K, Patronis A, Terhorst D, Jordan J, Kunkel S, Tetzlaff T, Diesmann M, Senk J. A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Front Neuroinform 2022; 16:837549. [PMID: 35645755 PMCID: PMC9131021 DOI: 10.3389/fninf.2022.837549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Modern computational neuroscience strives to develop complex network models to explain dynamics and function of brains in health and disease. This process goes hand in hand with advancements in the theory of neuronal networks and increasing availability of detailed anatomical data on brain connectivity. Large-scale models that study interactions between multiple brain areas with intricate connectivity and investigate phenomena on long time scales such as system-level learning require progress in simulation speed. The corresponding development of state-of-the-art simulation engines relies on information provided by benchmark simulations which assess the time-to-solution for scientifically relevant, complementary network models using various combinations of hardware and software revisions. However, maintaining comparability of benchmark results is difficult due to a lack of standardized specifications for measuring the scaling performance of simulators on high-performance computing (HPC) systems. Motivated by the challenging complexity of benchmarking, we define a generic workflow that decomposes the endeavor into unique segments consisting of separate modules. As a reference implementation for the conceptual workflow, we develop beNNch: an open-source software framework for the configuration, execution, and analysis of benchmarks for neuronal network simulations. The framework records benchmarking data and metadata in a unified way to foster reproducibility. For illustration, we measure the performance of various versions of the NEST simulator across network models with different levels of complexity on a contemporary HPC system, demonstrating how performance bottlenecks can be identified, ultimately guiding the development toward more efficient simulation technology.
Collapse
Affiliation(s)
- Jasper Albers
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
- *Correspondence: Jasper Albers
| | - Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Anno Christopher Kurth
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Stine Brekke Vennemo
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Alexander Patronis
- Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
| | - Dennis Terhorst
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Susanne Kunkel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Johanna Senk
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
17
|
A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Networks. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS 2022. [DOI: 10.3390/jlpea12020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accelerated simulations of biological neural networks are in demand to discover the principals of biological learning. Novel many-core simulation platforms, e.g., SpiNNaker, BrainScaleS and Neurogrid, allow one to study neuron behavior in the brain at an accelerated rate, with a high level of detail. However, they do not come anywhere near simulating the human brain. The massive amount of spike communication has turned out to be a bottleneck. We specifically developed a network simulator to analyze in high detail the network loads and latencies caused by different network topologies and communication protocols in neuromorphic computing communication networks. This simulator allows simulating the impacts of heterogeneous neural networks and evaluating neuron mapping algorithms, which is a unique feature among state-of-the-art network models and simulators. The simulator was cross-checked by comparing the results of a homogeneous neural network-based run with corresponding bandwidth load results from comparable works. Additionally, the increased level of detail achieved by the new simulator is presented. Then, we show the impact heterogeneous connectivity can have on the network load, first for a small-scale test case, and later for a large-scale test case, and how different neuron mapping algorithms can influence this effect. Finally, we look at the latency estimations performed by the simulator for different mapping algorithms, and the impact of the node size.
Collapse
|
18
|
Pronold J, Jordan J, Wylie BJN, Kitayama I, Diesmann M, Kunkel S. Routing Brain Traffic Through the Von Neumann Bottleneck: Parallel Sorting and Refactoring. Front Neuroinform 2022; 15:785068. [PMID: 35300490 PMCID: PMC8921864 DOI: 10.3389/fninf.2021.785068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
Generic simulation code for spiking neuronal networks spends the major part of the time in the phase where spikes have arrived at a compute node and need to be delivered to their target neurons. These spikes were emitted over the last interval between communication steps by source neurons distributed across many compute nodes and are inherently irregular and unsorted with respect to their targets. For finding those targets, the spikes need to be dispatched to a three-dimensional data structure with decisions on target thread and synapse type to be made on the way. With growing network size, a compute node receives spikes from an increasing number of different source neurons until in the limit each synapse on the compute node has a unique source. Here, we show analytically how this sparsity emerges over the practically relevant range of network sizes from a hundred thousand to a billion neurons. By profiling a production code we investigate opportunities for algorithmic changes to avoid indirections and branching. Every thread hosts an equal share of the neurons on a compute node. In the original algorithm, all threads search through all spikes to pick out the relevant ones. With increasing network size, the fraction of hits remains invariant but the absolute number of rejections grows. Our new alternative algorithm equally divides the spikes among the threads and immediately sorts them in parallel according to target thread and synapse type. After this, every thread completes delivery solely of the section of spikes for its own neurons. Independent of the number of threads, all spikes are looked at only two times. The new algorithm halves the number of instructions in spike delivery which leads to a reduction of simulation time of up to 40 %. Thus, spike delivery is a fully parallelizable process with a single synchronization point and thereby well suited for many-core systems. Our analysis indicates that further progress requires a reduction of the latency that the instructions experience in accessing memory. The study provides the foundation for the exploration of methods of latency hiding like software pipelining and software-induced prefetching.
Collapse
Affiliation(s)
- Jari Pronold
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- RWTH Aachen University, Aachen, Germany
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Brian J. N. Wylie
- Jülich Supercomputing Centre, Jülich Research Centre, Jülich, Germany
| | | | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne Kunkel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Abstract
Activity patterns and complex functions of the brain rely on the characteristic communication network formed by axonal fiber networks, but how many axons actually connect different brain regions? This Primer explores a study in PLOS Biology which finds that most areas of the human cerebral cortex are linked by an astoundingly small number of fibers.
Collapse
Affiliation(s)
- Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Basilis Zikopoulos
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Li HY, Cheng GM, Ching ESC. Heterogeneous Responses to Changes in Inhibitory Synaptic Strength in Networks of Spiking Neurons. Front Cell Neurosci 2022; 16:785207. [PMID: 35281294 PMCID: PMC8908097 DOI: 10.3389/fncel.2022.785207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
How does the dynamics of neurons in a network respond to changes in synaptic weights? Answer to this question would be important for a full understanding of synaptic plasticity. In this article, we report our numerical study of the effects of changes in inhibitory synaptic weights on the spontaneous activity of networks of spiking neurons with conductance-based synapses. Networks with biologically realistic features, which were reconstructed from multi-electrode array recordings taken in a cortical neuronal culture, and their modifications were used in the simulations. The magnitudes of the synaptic weights of all the inhibitory connections are decreased by a uniform amount subjecting to the condition that inhibitory connections would not be turned into excitatory ones. Our simulation results reveal that the responses of the neurons are heterogeneous: while the firing rate of some neurons increases as expected, the firing rate of other neurons decreases or remains unchanged. The same results show that heterogeneous responses also occur for an enhancement of inhibition. This heterogeneity in the responses of neurons to changes in inhibitory synaptic strength suggests that activity-induced modification of synaptic strength does not necessarily generate a positive feedback loop on the dynamics of neurons connected in a network. Our results could be used to understand the effects of bicuculline on spiking and bursting activities of neuronal cultures. Using reconstructed networks with biologically realistic features enables us to identify a long-tailed distribution of average synaptic weights for outgoing links as a crucial feature in giving rise to bursting in neuronal networks and in determining the overall response of the whole network to changes in synaptic strength. For networks whose average synaptic weights for outgoing links have a long-tailed distribution, bursting is observed and the average firing rate of the whole network increases upon inhibition suppression or decreases upon inhibition enhancement. For networks whose average synaptic weights for outgoing links are approximately normally distributed, bursting is not found and the average firing rate of the whole network remains approximately constant upon changes in inhibitory synaptic strength.
Collapse
Affiliation(s)
| | | | - Emily S. C. Ching
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
21
|
van Albada SJ, Morales-Gregorio A, Dickscheid T, Goulas A, Bakker R, Bludau S, Palm G, Hilgetag CC, Diesmann M. Bringing Anatomical Information into Neuronal Network Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:201-234. [DOI: 10.1007/978-3-030-89439-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Huang C, Zeldenrust F, Celikel T. Cortical Representation of Touch in Silico. Neuroinformatics 2022; 20:1013-1039. [PMID: 35486347 PMCID: PMC9588483 DOI: 10.1007/s12021-022-09576-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
Abstract
With its six layers and ~ 12,000 neurons, a cortical column is a complex network whose function is plausibly greater than the sum of its constituents'. Functional characterization of its network components will require going beyond the brute-force modulation of the neural activity of a small group of neurons. Here we introduce an open-source, biologically inspired, computationally efficient network model of the somatosensory cortex's granular and supragranular layers after reconstructing the barrel cortex in soma resolution. Comparisons of the network activity to empirical observations showed that the in silico network replicates the known properties of touch representations and whisker deprivation-induced changes in synaptic strength induced in vivo. Simulations show that the history of the membrane potential acts as a spatial filter that determines the presynaptic population of neurons contributing to a post-synaptic action potential; this spatial filtering might be critical for synaptic integration of top-down and bottom-up information.
Collapse
Affiliation(s)
- Chao Huang
- grid.9647.c0000 0004 7669 9786Department of Biology, University of Leipzig, Leipzig, Germany
| | - Fleur Zeldenrust
- grid.5590.90000000122931605Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tansu Celikel
- grid.5590.90000000122931605Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands ,grid.213917.f0000 0001 2097 4943School of Psychology, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
23
|
Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021; 245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.
Collapse
|
24
|
Santos-Mayo A, Moratti S, de Echegaray J, Susi G. A Model of the Early Visual System Based on Parallel Spike-Sequence Detection, Showing Orientation Selectivity. BIOLOGY 2021; 10:biology10080801. [PMID: 34440033 PMCID: PMC8389551 DOI: 10.3390/biology10080801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary A computational model of primates’ early visual processing, showing orientation selectivity, is presented. The system importantly integrates two key elements: (1) a neuromorphic spike-decoding structure that considerably resembles the circuitry between layers IV and II/III of the primary visual cortex, both in topology and operation; (2) the plasticity of intrinsic excitability, to embed recent findings about the operation of the same area. The model is proposed as a tool for the analysis and reproduction of the orientation selectivity phenomenon, whose underlying neuronal-level computational mechanisms are today the subject of intense scrutiny. In response to rotated Gabor patches the model is able to exhibit realistic orientation tuning curves and to reproduce responses similar to those found in neurophysiological recordings from the primary visual cortex obtained under the same task, considering different stages of the network. This demonstrates its aptness to capture the mechanisms underlying the evoked response in the primary visual cortex. Our tool is available online, and can be expanded to other experiments using a dedicated software library developed by the authors, to elucidate the computational mechanisms underlying orientation selectivity. Abstract Since the first half of the twentieth century, numerous studies have been conducted on how the visual cortex encodes basic image features. One of the hallmarks of basic feature extraction is the phenomenon of orientation selectivity, of which the underlying neuronal-level computational mechanisms remain partially unclear despite being intensively investigated. In this work we present a reduced visual system model (RVSM) of the first level of scene analysis, involving the retina, the lateral geniculate nucleus and the primary visual cortex (V1), showing orientation selectivity. The detection core of the RVSM is the neuromorphic spike-decoding structure MNSD, which is able to learn and recognize parallel spike sequences and considerably resembles the neuronal microcircuits of V1 in both topology and operation. This structure is equipped with plasticity of intrinsic excitability to embed recent findings about V1 operation. The RVSM, which embeds 81 groups of MNSD arranged in 4 oriented columns, is tested using sets of rotated Gabor patches as input. Finally, synthetic visual evoked activity generated by the RVSM is compared with real neurophysiological signal from V1 area: (1) postsynaptic activity of human subjects obtained by magnetoencephalography and (2) spiking activity of macaques obtained by multi-tetrode arrays. The system is implemented using the NEST simulator. The results attest to a good level of resemblance between the model response and real neurophysiological recordings. As the RVSM is available online, and the model parameters can be customized by the user, we propose it as a tool to elucidate the computational mechanisms underlying orientation selectivity.
Collapse
Affiliation(s)
- Alejandro Santos-Mayo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stephan Moratti
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Laboratory of Clinical Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain
| | - Javier de Echegaray
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gianluca Susi
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Civil Engineering and Computer Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +34-(61)-86893399-79317
| |
Collapse
|
25
|
Pulvermüller F, Tomasello R, Henningsen-Schomers MR, Wennekers T. Biological constraints on neural network models of cognitive function. Nat Rev Neurosci 2021; 22:488-502. [PMID: 34183826 PMCID: PMC7612527 DOI: 10.1038/s41583-021-00473-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Neural network models are potential tools for improving our understanding of complex brain functions. To address this goal, these models need to be neurobiologically realistic. However, although neural networks have advanced dramatically in recent years and even achieve human-like performance on complex perceptual and cognitive tasks, their similarity to aspects of brain anatomy and physiology is imperfect. Here, we discuss different types of neural models, including localist, auto-associative, hetero-associative, deep and whole-brain networks, and identify aspects under which their biological plausibility can be improved. These aspects range from the choice of model neurons and of mechanisms of synaptic plasticity and learning to implementation of inhibition and control, along with neuroanatomical properties including areal structure and local and long-range connectivity. We highlight recent advances in developing biologically grounded cognitive theories and in mechanistically explaining, on the basis of these brain-constrained neural models, hitherto unaddressed issues regarding the nature, localization and ontogenetic and phylogenetic development of higher brain functions. In closing, we point to possible future clinical applications of brain-constrained modelling.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany
| | - Malte R Henningsen-Schomers
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Wennekers
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| |
Collapse
|
26
|
Romaro C, Najman FA, Lytton WW, Roque AC, Dura-Bernal S. NetPyNE Implementation and Scaling of the Potjans-Diesmann Cortical Microcircuit Model. Neural Comput 2021; 33:1993-2032. [PMID: 34411272 PMCID: PMC8382011 DOI: 10.1162/neco_a_01400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/16/2021] [Indexed: 11/04/2022]
Abstract
The Potjans-Diesmann cortical microcircuit model is a widely used model originally implemented in NEST. Here, we reimplemented the model using NetPyNE, a high-level Python interface to the NEURON simulator, and reproduced the findings of the original publication. We also implemented a method for scaling the network size that preserves first- and second-order statistics, building on existing work on network theory. Our new implementation enabled the use of more detailed neuron models with multicompartmental morphologies and multiple biophysically realistic ion channels. This opens the model to new research, including the study of dendritic processing, the influence of individual channel parameters, the relation to local field potentials, and other multiscale interactions. The scaling method we used provides flexibility to increase or decrease the network size as needed when running these CPU-intensive detailed simulations. Finally, NetPyNE facilitates modifying or extending the model using its declarative language; optimizing model parameters; running efficient, large-scale parallelized simulations; and analyzing the model through built-in methods, including local field potential calculation and information flow measures.
Collapse
Affiliation(s)
- Cecilia Romaro
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049, Brazil
| | - Fernando Araujo Najman
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP 05508, Brazil
| | - William W Lytton
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, U.S.A.
| | - Antonio C Roque
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, U.S.A., and Nathan Kline Institute for Psychiatric Research, New York, NY 10962, U.S.A.
| |
Collapse
|
27
|
Dąbrowska PA, Voges N, von Papen M, Ito J, Dahmen D, Riehle A, Brochier T, Grün S. On the Complexity of Resting State Spiking Activity in Monkey Motor Cortex. Cereb Cortex Commun 2021; 2:tgab033. [PMID: 34296183 PMCID: PMC8271144 DOI: 10.1093/texcom/tgab033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Resting state has been established as a classical paradigm of brain activity studies, mostly based on large-scale measurements such as functional magnetic resonance imaging or magneto- and electroencephalography. This term typically refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare their results with task- or stimulus-driven experiments, or to results from experiments with anesthetized subjects. Both approaches might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking activity in monkey motor cortex at rest and show the differences from spontaneous and task- or stimulus-induced movement conditions. We also distinguish between rest with open eyes and sleepy rest with eyes closed. The resting state with open eyes shows a significantly higher dimensionality, reduced firing rates, and less balance between population level excitation and inhibition than behavior-related states.
Collapse
Affiliation(s)
- Paulina Anna Dąbrowska
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - Nicole Voges
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany.,RWTH Aachen University, Aachen 52062, Germany
| | - Michael von Papen
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - Junji Ito
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - David Dahmen
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - Alexa Riehle
- Institut de Neurosciences de la Timone, CNRS-AMU, Marseille 13005, France.,Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany
| | - Thomas Brochier
- Institut de Neurosciences de la Timone, CNRS-AMU, Marseille 13005, France
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich 52425, Germany.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
28
|
Gao Y, Li JT, Li X, Li X, Yang SW, Chen NH, Li L, Zhang L. Tetrahydroxy stilbene glycoside attenuates acetaminophen-induced hepatotoxicity by UHPLC-Q-TOF/MS-based metabolomics and multivariate data analysis. J Cell Physiol 2021; 236:3832-3862. [PMID: 33111343 DOI: 10.1002/jcp.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Tetrahydroxy stilbene glycoside (TSG) is a main active compound in Polygonum multiflorum. Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe within a therapeutic range, in case of acute intoxication hepatotoxicity occurs. This present study aims to observe TSG-provided alleviation on APAP-induced hepatoxicity in C57BL/6 mice. APAP performs extensive necrosis and dissolves nucleus suggesting liver damage from hepatic histopathology. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase analysis and liver histological evaluation showed that TSG reduced the hepatotoxicity induced by a toxic dose of APAP. Moreover, TSG alone had no hepatotoxicity. TSG eliminated hepatic glutathione depletion and cysteine adducts formation. It also reduced the expression of interleukin-10 and lowered the production of reactive oxygen species in liver tissues. Luminex was used to detect cytokine production in different groups. Herein, we used an untargeted metabolomics approach by performing ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry on treated mice to identify metabolic disruptions under APAP and TSG. Major alterations were observed for purine metabolism, amino acid metabolism, and fatty acid metabolism. These data provide metabolic evidence and biomarkers in the liver that the ABC transporters, Glycine serine and threonine metabolism, and Choline metabolism in cancer changed the most. These targets of metabolites have the potential to improve our understanding of homeostatic. Meanwhile, these metabolites revealed that TSG can alleviate inflammation caused by APAP and promote the activity of intrinsic antioxidants. In summary, TSG can regulate lipid metabolism, promote the production of antioxidant enzymes, and decrease the inflammatory response.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Song-Wei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
29
|
Multiscale modeling of cortical gradients: The role of mesoscale circuits for linking macro- and microscale gradients of cortical organization and hierarchical information processing. Neuroimage 2021; 232:117846. [PMID: 33636345 DOI: 10.1016/j.neuroimage.2021.117846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
The gradient concept in neuroscience describes systematic and continuous progressions of features of cortical organization across the entire cortex. Recent multimodal studies revealed a macroscale gradient from primary sensory to transmodal association areas which is linked to increasing representational abstraction along the cortical hierarchy, and which is paralleled by microscale gradients of cytoarchitecture and gene expression profiles. Convergent or divergent evidence from these multimodal studies is then used to support inferences about the existence of one common or multiple scale-specific gradients of hierarchical information processing. This paper evaluates the validity of such inferences within the framework of multiscale modeling. In branches of physics and biology where multiscale modeling techniques are used, the simple averaging of microscale details can introduce errors in macroscale modeling if it ignores structures at the intermediate mesoscales of organization which affect system behavior. Conversely, information about mesoscale structures can be used to determine which microscale details are actually relevant to macroscale behavior. In this paper, I similarly argue that multiscale modeling of cortical gradients needs to take organization of mesoscale circuits into account if it affects the structure-function relation that the models describe. Information about these circuits provides crucial evidence for evaluating inferences from micro- and macroscale data to the role of cortical gradients in hierarchical information processing. My application of the multiscale modeling framework reveals that the gradient concept tracks multiple overlapping progressions of cortical properties, rather than one overall gradient of hierarchical information processing. I support this argument by proposing a mesoscale gradient of connectivity which describes architectural differences between granular and agranular circuits, and which helps us better understand the relation between neural connectivity and hierarchical information processing.
Collapse
|
30
|
Knight JC, Nowotny T. Larger GPU-accelerated brain simulations with procedural connectivity. NATURE COMPUTATIONAL SCIENCE 2021; 1:136-142. [PMID: 38217218 DOI: 10.1038/s43588-020-00022-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2024]
Abstract
Simulations are an important tool for investigating brain function but large models are needed to faithfully reproduce the statistics and dynamics of brain activity. Simulating large spiking neural network models has, until now, needed so much memory for storing synaptic connections that it required high performance computer systems. Here, we present an alternative simulation method we call 'procedural connectivity' where connectivity and synaptic weights are generated 'on the fly' instead of stored and retrieved from memory. This method is particularly well suited for use on graphical processing units (GPUs)-which are a common fixture in many workstations. Using procedural connectivity and an additional GPU code generation optimization, we can simulate a recent model of the macaque visual cortex with 4.13 × 106 neurons and 24.2 × 109 synapses on a single GPU-a significant step forward in making large-scale brain modeling accessible to more researchers.
Collapse
Affiliation(s)
- James C Knight
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK.
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| |
Collapse
|
31
|
Srivastava P, Nozari E, Kim JZ, Ju H, Zhou D, Becker C, Pasqualetti F, Pappas GJ, Bassett DS. Models of communication and control for brain networks: distinctions, convergence, and future outlook. Netw Neurosci 2020; 4:1122-1159. [PMID: 33195951 PMCID: PMC7655113 DOI: 10.1162/netn_a_00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Erfan Nozari
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Jason Z. Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Harang Ju
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Dale Zhou
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Cassiano Becker
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA USA
| | - George J. Pappas
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
32
|
Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020; 16:e1007991. [PMID: 33048930 PMCID: PMC7553356 DOI: 10.1371/journal.pcbi.1007991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
The architectonic type principle conceptualizes structural connections between brain areas in terms of the relative architectonic differentiation of connected areas. It has previously been shown that spatio-temporal interactions between the time and place of neurogenesis could underlie multiple features of empirical mammalian connectomes, such as projection existence and the distribution of projection strengths. However, so far no mechanistic explanation for the emergence of typically observed laminar patterns of projection origins and terminations has been tested. Here, we expand an in silico model of the developing cortical sheet to explore which factors could potentially constrain the development of laminar projection patterns. We show that manipulations which rely solely on spatio-temporal interactions, namely the relative density of laminar compartments, a delay in the neurogenesis of infragranular layers relative to layer 1, and a delay in the neurogenesis of supragranular layers relative to infragranular layers, do not result in the striking correlation between supragranular contribution to projections and the relative differentiation of areas that is typically observed in the mammalian cortex. In contrast, we find that if we introduce systematic variation in cell-intrinsic properties, coupling them with architectonic differentiation, the resulting laminar projection patterns closely mirror the empirically observed patterns. We also find that the spatio-temporal interactions posited to occur during neurogenesis are necessary for the formation of the characteristic laminar patterns. Hence, our results indicate that the specification of the laminar patterns of projection origins may result from systematic variation in a number of cell-intrinsic properties, superimposed on the previously identified spatio-temporal interactions which are sufficient for the emergence of the architectonic type principle on the level of inter-areal connectivity in silico.
Collapse
Affiliation(s)
- Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Shamir I, Assaf Y. An MRI-Based, Data-Driven Model of Cortical Laminar Connectivity. Neuroinformatics 2020; 19:205-218. [PMID: 32949346 DOI: 10.1007/s12021-020-09491-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
Over the past two centuries, great scientific efforts have been spent on deciphering the structure and function of the cerebral cortex using a wide variety of methods. Since the advent of MRI neuroimaging, significant progress has been made in imaging of global white matter connectivity (connectomics), followed by promising new studies regarding imaging of grey matter laminar compartments. Despite progress in both fields, there still lacks mesoscale information regarding cortical laminar connectivity that could potentially bridge the gap between the current resolution of connectomics and the relatively higher resolution of cortical laminar imaging. Here, we systematically review a sample of prominent published articles regarding cortical laminar connectivity, in order to offer a simplified data-driven model that integrates white and grey matter MRI datasets into a novel way of exploring whole-brain tissue-level connectivity. Although it has been widely accepted that the cortex is exceptionally organized and interconnected, studies on the subject display a variety of approaches towards its structural building blocks. Our model addresses three principal cortical building blocks: cortical layer definitions (laminar grouping), vertical connections (intraregional, within the cortical microcircuit and subcortex) and horizontal connections (interregional, including connections within and between the hemispheres). While cortical partitioning into layers is more widely accepted as common knowledge, certain aspects of others such as cortical columns or microcircuits are still being debated. This study offers a broad and simplified view of histological and microscopical knowledge in laminar research that is applicable to the limitations of MRI methodologies, primarily regarding specificity and resolution.
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Papadopoulos L, Lynn CW, Battaglia D, Bassett DS. Relations between large-scale brain connectivity and effects of regional stimulation depend on collective dynamical state. PLoS Comput Biol 2020; 16:e1008144. [PMID: 32886673 PMCID: PMC7537889 DOI: 10.1371/journal.pcbi.1008144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 10/06/2020] [Accepted: 07/12/2020] [Indexed: 01/09/2023] Open
Abstract
At the macroscale, the brain operates as a network of interconnected neuronal populations, which display coordinated rhythmic dynamics that support interareal communication. Understanding how stimulation of different brain areas impacts such activity is important for gaining basic insights into brain function and for further developing therapeutic neurmodulation. However, the complexity of brain structure and dynamics hinders predictions regarding the downstream effects of focal stimulation. More specifically, little is known about how the collective oscillatory regime of brain network activity—in concert with network structure—affects the outcomes of perturbations. Here, we combine human connectome data and biophysical modeling to begin filling these gaps. By tuning parameters that control collective system dynamics, we identify distinct states of simulated brain activity and investigate how the distributed effects of stimulation manifest at different dynamical working points. When baseline oscillations are weak, the stimulated area exhibits enhanced power and frequency, and due to network interactions, activity in this excited frequency band propagates to nearby regions. Notably, beyond these linear effects, we further find that focal stimulation causes more distributed modifications to interareal coherence in a band containing regions’ baseline oscillation frequencies. Importantly, depending on the dynamical state of the system, these broadband effects can be better predicted by functional rather than structural connectivity, emphasizing a complex interplay between anatomical organization, dynamics, and response to perturbation. In contrast, when the network operates in a regime of strong regional oscillations, stimulation causes only slight shifts in power and frequency, and structural connectivity becomes most predictive of stimulation-induced changes in network activity patterns. In sum, this work builds upon and extends previous computational studies investigating the impacts of stimulation, and underscores the fact that both the stimulation site, and, crucially, the regime of brain network dynamics, can influence the network-wide responses to local perturbations. Stimulation can be used to alter brain activity and is a therapeutic option for certain neurological conditions. However, predicting the distributed effects of local perturbations is difficult. Previous studies show that responses to stimulation depend on anatomical (or structural) coupling. In addition to structure, here we consider how stimulation effects also depend on the brain’s collective dynamical (or functional) state, arising from the coordination of rhythmic activity across large-scale networks. In a whole-brain computational model, we show that global responses to regional stimulation can indeed be contingent upon and differ across various dynamical working points. Notably, depending on the network’s oscillatory regime, stimulation can accelerate the activity of the stimulated site, and lead to widespread effects at both the new, excited frequency, as well as in a much broader frequency range including areas’ baseline frequencies. While structural connectivity is a good predictor of “excited band” changes, in some states “baseline band” effects can be better predicted by functional connectivity, which depends upon the system’s oscillatory regime. By integrating and extending past efforts, our results thus indicate that dynamical—in additional to structural—brain organization plays a role in governing how focal stimulation modulates interactions between distributed network elements.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher W. Lynn
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Demian Battaglia
- Université Aix-Marseille, INSERM UMR 1106, Institut de Neurosciences des Systèmes, F-13005, Marseille, France
| | - Danielle S. Bassett
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rezaei H, Aertsen A, Kumar A, Valizadeh A. Facilitating the propagation of spiking activity in feedforward networks by including feedback. PLoS Comput Biol 2020; 16:e1008033. [PMID: 32776924 PMCID: PMC7444537 DOI: 10.1371/journal.pcbi.1008033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Transient oscillations in network activity upon sensory stimulation have been reported in different sensory areas of the brain. These evoked oscillations are the generic response of networks of excitatory and inhibitory neurons (EI-networks) to a transient external input. Recently, it has been shown that this resonance property of EI-networks can be exploited for communication in modular neuronal networks by enabling the transmission of sequences of synchronous spike volleys (’pulse packets’), despite the sparse and weak connectivity between the modules. The condition for successful transmission is that the pulse packet (PP) intervals match the period of the modules’ resonance frequency. Hence, the mechanism was termed communication through resonance (CTR). This mechanism has three severe constraints, though. First, it needs periodic trains of PPs, whereas single PPs fail to propagate. Second, the inter-PP interval needs to match the network resonance. Third, transmission is very slow, because in each module, the network resonance needs to build up over multiple oscillation cycles. Here, we show that, by adding appropriate feedback connections to the network, the CTR mechanism can be improved and the aforementioned constraints relaxed. Specifically, we show that adding feedback connections between two upstream modules, called the resonance pair, in an otherwise feedforward modular network can support successful propagation of a single PP throughout the entire network. The key condition for successful transmission is that the sum of the forward and backward delays in the resonance pair matches the resonance frequency of the network modules. The transmission is much faster, by more than a factor of two, than in the original CTR mechanism. Moreover, it distinctly lowers the threshold for successful communication by synchronous spiking in modular networks of weakly coupled networks. Thus, our results suggest a new functional role of bidirectional connectivity for the communication in cortical area networks. The cortex is organized as a modular system, with the modules (cortical areas) communicating via weak long-range connections. It has been suggested that the intrinsic resonance properties of population activities in these areas might contribute to enabling successful communication. A module’s intrinsic resonance appears in the damped oscillatory response to an incoming spike volley, enabling successful communication during the peaks of the oscillation. Such communication can be exploited in feedforward networks, provided the participating networks have similar resonance frequencies. This, however, is not necessarily true for cortical networks. Moreover, the communication is slow, as it takes several oscillation cycles to build up the response in the downstream network. Also, only periodic trains of spikes volleys (and not single volleys) with matching intervals can propagate. Here, we present a novel mechanism that alleviates these shortcomings and enables propagation of synchronous spiking across weakly connected networks with not necessarily identical resonance frequencies. In this framework, an individual spike volley can propagate by local amplification through reverberation in a loop between two successive networks, connected by feedforward and feedback connections: the resonance pair. This overcomes the need for activity build-up in downstream networks, causing the volley to propagate distinctly faster and more reliably.
Collapse
Affiliation(s)
- Hedyeh Rezaei
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ad Aertsen
- Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Arvind Kumar
- Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Dept. of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail: (AK); (AV)
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran, Tehran, Iran
- * E-mail: (AK); (AV)
| |
Collapse
|
36
|
Vanni S, Hokkanen H, Werner F, Angelucci A. Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT: Bases for Biologically Realistic Models. Cereb Cortex 2020; 30:3483-3517. [PMID: 31897474 PMCID: PMC7233004 DOI: 10.1093/cercor/bhz322] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and V5/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and V5, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, V5 neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.
Collapse
Affiliation(s)
- Simo Vanni
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Henri Hokkanen
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Francesca Werner
- HUS Neurocenter, Department of Neurology, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Neurosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
37
|
Systematic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron 2020; 106:388-403.e18. [DOI: 10.1016/j.neuron.2020.01.040] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023]
|
38
|
An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity. eNeuro 2020; 7:ENEURO.0374-19.2020. [PMID: 32127347 PMCID: PMC7189483 DOI: 10.1523/eneuro.0374-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Working memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short-term memory (STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC could associate, maintain, and update multimodal LTM representations. Our simulations demonstrate how simultaneous, brief multimodal memory cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index can then reactivate spontaneously and thereby also the associated LTM representations. Cueing one LTM item rapidly pattern completes the associated uncued item via PFC. The PFC–STM network updates flexibly as new stimuli arrive, thereby gradually overwriting older representations.
Collapse
|
39
|
Gilson M, Zamora-López G, Pallarés V, Adhikari MH, Senden M, Campo AT, Mantini D, Corbetta M, Deco G, Insabato A. Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Netw Neurosci 2020; 4:338-373. [PMID: 32537531 PMCID: PMC7286310 DOI: 10.1162/netn_a_00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroimaging techniques are now widely used to study human cognition. The functional associations between brain areas have become a standard proxy to describe how cognitive processes are distributed across the brain network. Among the many analysis tools available, dynamic models of brain activity have been developed to overcome the limitations of original connectivity measures such as functional connectivity. This goes in line with the many efforts devoted to the assessment of directional interactions between brain areas from the observed neuroimaging activity. This opinion article provides an overview of our model-based whole-brain effective connectivity to analyze fMRI data, while discussing the pros and cons of our approach with respect to other established approaches. Our framework relies on the multivariate Ornstein-Uhlenbeck (MOU) process and is thus referred to as MOU-EC. Once tuned, the model provides a directed connectivity estimate that reflects the dynamical state of BOLD activity, which can be used to explore cognition. We illustrate this approach using two applications on task-evoked fMRI data. First, as a connectivity measure, MOU-EC can be used to extract biomarkers for task-specific brain coordination, understood as the patterns of areas exchanging information. The multivariate nature of connectivity measures raises several challenges for whole-brain analysis, for which machine-learning tools present some advantages over statistical testing. Second, we show how to interpret changes in MOU-EC connections in a collective and model-based manner, bridging with network analysis. Our framework provides a comprehensive set of tools that open exciting perspectives to study distributed cognition, as well as neuropathologies.
Collapse
Affiliation(s)
- Matthieu Gilson
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gorka Zamora-López
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicente Pallarés
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mohit H. Adhikari
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mario Senden
- Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | | - Dante Mantini
- Neuroplasticity and Motor Control Research Group, KU Leuven, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, Venetian Institute of Molecular Medicine (VIMM) and Padova Neuroscience Center (PNC), University of Padua, Italy
- Department of Neurology, Radiology, and Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustavo Deco
- Center for Brain and Cognition and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Andrea Insabato
- Institut de Neurosciences de la Timone, CNRS, Marseille, France
| |
Collapse
|
40
|
Abstract
Concepts shape the interpretation of facts. One of the most popular concepts in systems neuroscience is that of ‘hierarchy’. However, this concept has been interpreted in many different ways, which are not well aligned. This observation suggests that the concept is ill defined. Using the example of the organization of the primate visual cortical system, we explore several contexts in which ‘hierarchy’ is currently used in the description of brain networks. We distinguish at least four different uses, specifically, ‘hierarchy’ as a topological sequence of projections, as a gradient of features, as a progression of scales, or as a sorting of laminar projection patterns. We discuss the interpretation and functional implications of the different notions of ‘hierarchy’ in these contexts and suggest that more specific terms than ‘hierarchy’ should be used for a deeper understanding of the different dimensions of the organization of brain networks. This article is part of the theme issue ‘Unifying the essential concepts of biological networks: biological insights and philosophical foundations’.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
41
|
Hilgetag CC, Beul SF, van Albada SJ, Goulas A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw Neurosci 2019; 3:905-923. [PMID: 31637331 PMCID: PMC6777964 DOI: 10.1162/netn_a_00100] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
The connections linking neurons within and between cerebral cortical areas form a multiscale network for communication. We review recent work relating essential features of cortico-cortical connections, such as their existence and laminar origins and terminations, to fundamental structural parameters of cortical areas, such as their distance, similarity in cytoarchitecture, defined by lamination or neuronal density, and other macroscopic and microscopic structural features. These analyses demonstrate the presence of an architectonic type principle. Across species and cortices, the essential features of cortico-cortical connections vary consistently and strongly with the cytoarchitectonic similarity of cortical areas. By contrast, in multivariate analyses such relations were not found consistently for distance, similarity of cortical thickness, or cellular morphology. Gradients of laminar cortical differentiation, as reflected in overall neuronal density, also correspond to regional variations of cellular features, forming a spatially ordered natural axis of concerted architectonic and connectional changes across the cortical sheet. The robustness of findings across mammalian brains allows cross-species predictions of the existence and laminar patterns of projections, including estimates for the human brain that are not yet available experimentally. The architectonic type principle integrates cortical connectivity and architecture across scales, with implications for computational explorations of cortical physiology and developmental mechanisms.
Collapse
Affiliation(s)
- Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sarah F Beul
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), and JARA-Institute of Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Germany
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| |
Collapse
|
42
|
Gleeson P, Cantarelli M, Marin B, Quintana A, Earnshaw M, Sadeh S, Piasini E, Birgiolas J, Cannon RC, Cayco-Gajic NA, Crook S, Davison AP, Dura-Bernal S, Ecker A, Hines ML, Idili G, Lanore F, Larson SD, Lytton WW, Majumdar A, McDougal RA, Sivagnanam S, Solinas S, Stanislovas R, van Albada SJ, van Geit W, Silver RA. Open Source Brain: A Collaborative Resource for Visualizing, Analyzing, Simulating, and Developing Standardized Models of Neurons and Circuits. Neuron 2019; 103:395-411.e5. [PMID: 31201122 PMCID: PMC6693896 DOI: 10.1016/j.neuron.2019.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.
Collapse
Affiliation(s)
- Padraig Gleeson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matteo Cantarelli
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; MetaCell Limited, Oxford, UK
| | - Boris Marin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brazil
| | - Adrian Quintana
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Matt Earnshaw
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sadra Sadeh
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Eugenio Piasini
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Computational Neuroscience Initiative and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Justas Birgiolas
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - N Alex Cayco-Gajic
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sharon Crook
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Andrew P Davison
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, Paris, France
| | | | - András Ecker
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK; Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael L Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | - Frederic Lanore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - William W Lytton
- SUNY Downstate Medical Center and Kings County Hospital, Brooklyn, NY, USA
| | | | - Robert A McDougal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Center for Medical Informatics, Yale University, New Haven, CT, USA
| | | | - Sergio Solinas
- Department of Biomedical Science, University of Sassari, Sassari, Italy; Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Rokas Stanislovas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Sacha J van Albada
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Werner van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
43
|
Gilson M, Kouvaris NE, Deco G, Mangin JF, Poupon C, Lefranc S, Rivière D, Zamora-López G. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability. Neuroimage 2019; 201:116007. [PMID: 31306771 DOI: 10.1016/j.neuroimage.2019.116007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging techniques such as MRI have been widely used to explore the associations between brain areas. Structural connectivity (SC) captures the anatomical pathways across the brain and functional connectivity (FC) measures the correlation between the activity of brain regions. These connectivity measures have been much studied using network theory in order to uncover the distributed organization of brain structures, in particular FC for task-specific brain communication. However, the application of network theory to study FC matrices is often "static" despite the dynamic nature of time series obtained from fMRI. The present study aims to overcome this limitation by introducing a network-oriented analysis applied to whole-brain effective connectivity (EC) useful to interpret the brain dynamics. Technically, we tune a multivariate Ornstein-Uhlenbeck (MOU) process to reproduce the statistics of the whole-brain resting-state fMRI signals, which provides estimates for MOU-EC as well as input properties (similar to local excitabilities). The network analysis is then based on the Green function (or network impulse response) that describes the interactions between nodes across time for the estimated dynamics. This model-based approach provides time-dependent graph-like descriptor, named communicability, that characterize the roles that either nodes or connections play in the propagation of activity within the network. They can be used at both global and local levels, and also enables the comparison of estimates from real data with surrogates (e.g. random network or ring lattice). In contrast to classical graph approaches to study SC or FC, our framework stresses the importance of taking the temporal aspect of fMRI signals into account. Our results show a merging of functional communities over time, moving from segregated to global integration of the network activity. Our formalism sets a solid ground for the analysis and interpretation of fMRI data, including task-evoked activity.
Collapse
Affiliation(s)
- Matthieu Gilson
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain.
| | - Nikos E Kouvaris
- Namur Institute for Complex Systems (naXys), Department of Mathematics, University of Namur, Rempart de la Vierge 8, B 5000, Namur, Belgium; DRIBIA Data Research S.L., Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | | | - Cyril Poupon
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Sandrine Lefranc
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Denis Rivière
- Neurospin, CEA, Paris Saclay University, Gif-sur-Yvette, 91191, France
| | - Gorka Zamora-López
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas 25-27, Barcelona, 08005, Spain
| |
Collapse
|
44
|
Tripp B. Approximating the Architecture of Visual Cortex in a Convolutional Network. Neural Comput 2019; 31:1551-1591. [PMID: 31260392 DOI: 10.1162/neco_a_01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Deep convolutional neural networks (CNNs) have certain structural, mechanistic, representational, and functional parallels with primate visual cortex and also many differences. However, perhaps some of the differences can be reconciled. This study develops a cortex-like CNN architecture, via (1) a loss function that quantifies the consistency of a CNN architecture with neural data from tract tracing, cell reconstruction, and electrophysiology studies; (2) a hyperparameter-optimization approach for reducing this loss, and (3) heuristics for organizing units into convolutional-layer grids. The optimized hyperparameters are consistent with neural data. The cortex-like architecture differs from typical CNN architectures. In particular, it has longer skip connections, larger kernels and strides, and qualitatively different connection sparsity. Importantly, layers of the cortex-like network have one-to-one correspondences with cortical neuron populations. This should allow unambiguous comparison of model and brain representations in the future and, consequently, more precise measurement of progress toward more biologically realistic deep networks.
Collapse
Affiliation(s)
- Bryan Tripp
- Department of Systems Design Engineering and Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1
| |
Collapse
|
45
|
Bridge H, Bell AH, Ainsworth M, Sallet J, Premereur E, Ahmed B, Mitchell AS, Schüffelgen U, Buckley M, Tendler BC, Miller KL, Mars RB, Parker AJ, Krug K. Preserved extrastriate visual network in a monkey with substantial, naturally occurring damage to primary visual cortex. eLife 2019; 8:e42325. [PMID: 31120417 PMCID: PMC6533062 DOI: 10.7554/elife.42325] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Lesions of primary visual cortex (V1) lead to loss of conscious visual perception with significant impact on human patients. Understanding the neural consequences of such damage may aid the development of rehabilitation methods. In this rare case of a Rhesus macaque (monkey S), likely born without V1, the animal's in-group behaviour was unremarkable, but visual task training was impaired. With multi-modal magnetic resonance imaging, visual structures outside of the lesion appeared normal. Visual stimulation under anaesthesia with checkerboards activated lateral geniculate nucleus of monkey S, while full-field moving dots activated pulvinar. Visual cortical activation was sparse but included face patches. Consistently across lesion and control monkeys, functional connectivity analysis revealed an intact network of bilateral dorsal visual areas temporally correlated with V5/MT activation, even without V1. Despite robust subcortical responses to visual stimulation, we found little evidence for strengthened subcortical input to V5/MT supporting residual visual function or blindsight-like phenomena.
Collapse
Affiliation(s)
- Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Andrew H Bell
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
- MRC Cognition and Brain Sciences UnitCambridgeUnited Kingdom
| | - Matthew Ainsworth
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
- MRC Cognition and Brain Sciences UnitCambridgeUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Elsie Premereur
- Laboratory for Neuro- and PsychophysiologyKU LeuvenLeuvenBelgium
| | - Bashir Ahmed
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| | - Anna S Mitchell
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Mark Buckley
- Department of Experimental PsychologyOxford UniversityOxfordUnited Kingdom
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIBOxford UniversityOxfordUnited Kingdom
- Nuffield Department of Clinical NeurosciencesOxford UniversityOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Andrew J Parker
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| | - Kristine Krug
- Department of Physiology, Anatomy and GeneticsOxford UniversityOxfordUnited Kingdom
| |
Collapse
|
46
|
Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV, Plesser HE, Schürmann F. The Scientific Case for Brain Simulations. Neuron 2019; 102:735-744. [DOI: 10.1016/j.neuron.2019.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/06/2019] [Accepted: 03/18/2019] [Indexed: 01/30/2023]
|
47
|
Synchronization dependent on spatial structures of a mesoscopic whole-brain network. PLoS Comput Biol 2019; 15:e1006978. [PMID: 31013267 PMCID: PMC6499430 DOI: 10.1371/journal.pcbi.1006978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/03/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Complex structural connectivity of the mammalian brain is believed to underlie the versatility of neural computations. Many previous studies have investigated properties of small subsystems or coarse connectivity among large brain regions that are often binarized and lack spatial information. Yet little is known about spatial embedding of the detailed whole-brain connectivity and its functional implications. We focus on closing this gap by analyzing how spatially-constrained neural connectivity shapes synchronization of the brain dynamics based on a system of coupled phase oscillators on a mammalian whole-brain network at the mesoscopic level. This was made possible by the recent development of the Allen Mouse Brain Connectivity Atlas constructed from viral tracing experiments together with a new mapping algorithm. We investigated whether the network can be compactly represented based on the spatial dependence of the network topology. We found that the connectivity has a significant spatial dependence, with spatially close brain regions strongly connected and distal regions weakly connected, following a power law. However, there are a number of residuals above the power-law fit, indicating connections between brain regions that are stronger than predicted by the power-law relationship. By measuring the sensitivity of the network order parameter, we show how these strong connections dispersed across multiple spatial scales of the network promote rapid transitions between partial synchronization and more global synchronization as the global coupling coefficient changes. We further demonstrate the significance of the locations of the residual connections, suggesting a possible link between the network complexity and the brain’s exceptional ability to swiftly switch computational states depending on stimulus and behavioral context. In a previous study, a data-driven large-scale model of mouse brain connectivity was constructed. This mouse brain connectivity model is estimated by a simplified model which only takes in account anatomy and distance dependence of connection strength which is best fit by a power law. The distance dependence model captures the connection strengths of the mouse whole-brain network well. But can it capture the dynamics? In this study, we show that a small number of connections which are missed by the simple spatial model lead to significant differences in dynamics. The presence of a small number of strong connections over longer distances increases sensitivity of synchronization to perturbations. Unlike the data-driven network, the network without these long-range connections, as well as the network in which these long range connections are shuffled, lose global synchronization while maintaining localized synchrony, underlining the significance of the exact topology of these distal connections in the data-driven brain network.
Collapse
|
48
|
Fernandez-Musoles C, Coca D, Richmond P. Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability. Front Neuroinform 2019; 13:19. [PMID: 31001102 PMCID: PMC6454199 DOI: 10.3389/fninf.2019.00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/11/2019] [Indexed: 11/30/2022] Open
Abstract
In the last decade there has been a surge in the number of big science projects interested in achieving a comprehensive understanding of the functions of the brain, using Spiking Neuronal Network (SNN) simulations to aid discovery and experimentation. Such an approach increases the computational demands on SNN simulators: if natural scale brain-size simulations are to be realized, it is necessary to use parallel and distributed models of computing. Communication is recognized as the dominant part of distributed SNN simulations. As the number of computational nodes increases, the proportion of time the simulation spends in useful computing (computational efficiency) is reduced and therefore applies a limit to scalability. This work targets the three phases of communication to improve overall computational efficiency in distributed simulations: implicit synchronization, process handshake and data exchange. We introduce a connectivity-aware allocation of neurons to compute nodes by modeling the SNN as a hypergraph. Partitioning the hypergraph to reduce interprocess communication increases the sparsity of the communication graph. We propose dynamic sparse exchange as an improvement over simple point-to-point exchange on sparse communications. Results show a combined gain when using hypergraph-based allocation and dynamic sparse communication, increasing computational efficiency by up to 40.8 percentage points and reducing simulation time by up to 73%. The findings are applicable to other distributed complex system simulations in which communication is modeled as a graph network.
Collapse
Affiliation(s)
| | - Daniel Coca
- Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Paul Richmond
- Computer Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
49
|
Gutzen R, von Papen M, Trensch G, Quaglio P, Grün S, Denker M. Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data. Front Neuroinform 2018; 12:90. [PMID: 30618696 PMCID: PMC6305903 DOI: 10.3389/fninf.2018.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Computational neuroscience relies on simulations of neural network models to bridge the gap between the theory of neural networks and the experimentally observed activity dynamics in the brain. The rigorous validation of simulation results against reference data is thus an indispensable part of any simulation workflow. Moreover, the availability of different simulation environments and levels of model description require also validation of model implementations against each other to evaluate their equivalence. Despite rapid advances in the formalized description of models, data, and analysis workflows, there is no accepted consensus regarding the terminology and practical implementation of validation workflows in the context of neural simulations. This situation prevents the generic, unbiased comparison between published models, which is a key element of enhancing reproducibility of computational research in neuroscience. In this study, we argue for the establishment of standardized statistical test metrics that enable the quantitative validation of network models on the level of the population dynamics. Despite the importance of validating the elementary components of a simulation, such as single cell dynamics, building networks from validated building blocks does not entail the validity of the simulation on the network scale. Therefore, we introduce a corresponding set of validation tests and present an example workflow that practically demonstrates the iterative model validation of a spiking neural network model against its reproduction on the SpiNNaker neuromorphic hardware system. We formally implement the workflow using a generic Python library that we introduce for validation tests on neural network activity data. Together with the companion study (Trensch et al., 2018), the work presents a consistent definition, formalization, and implementation of the verification and validation process for neural network simulations.
Collapse
Affiliation(s)
- Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Michael von Papen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Guido Trensch
- Simulation Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA, Jülich Research Centre, Jülich, Germany
| | - Pietro Quaglio
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| |
Collapse
|
50
|
Senk J, Carde C, Hagen E, Kuhlen TW, Diesmann M, Weyers B. VIOLA-A Multi-Purpose and Web-Based Visualization Tool for Neuronal-Network Simulation Output. Front Neuroinform 2018; 12:75. [PMID: 30467469 PMCID: PMC6236002 DOI: 10.3389/fninf.2018.00075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Neuronal network models and corresponding computer simulations are invaluable tools to aid the interpretation of the relationship between neuron properties, connectivity, and measured activity in cortical tissue. Spatiotemporal patterns of activity propagating across the cortical surface as observed experimentally can for example be described by neuronal network models with layered geometry and distance-dependent connectivity. In order to cover the surface area captured by today's experimental techniques and to achieve sufficient self-consistency, such models contain millions of nerve cells. The interpretation of the resulting stream of multi-modal and multi-dimensional simulation data calls for integrating interactive visualization steps into existing simulation-analysis workflows. Here, we present a set of interactive visualization concepts called views for the visual analysis of activity data in topological network models, and a corresponding reference implementation VIOLA (VIsualization Of Layer Activity). The software is a lightweight, open-source, web-based, and platform-independent application combining and adapting modern interactive visualization paradigms, such as coordinated multiple views, for massively parallel neurophysiological data. For a use-case demonstration we consider spiking activity data of a two-population, layered point-neuron network model incorporating distance-dependent connectivity subject to a spatially confined excitation originating from an external population. With the multiple coordinated views, an explorative and qualitative assessment of the spatiotemporal features of neuronal activity can be performed upfront of a detailed quantitative data analysis of specific aspects of the data. Interactive multi-view analysis therefore assists existing data analysis workflows. Furthermore, ongoing efforts including the European Human Brain Project aim at providing online user portals for integrated model development, simulation, analysis, and provenance tracking, wherein interactive visual analysis tools are one component. Browser-compatible, web-technology based solutions are therefore required. Within this scope, with VIOLA we provide a first prototype.
Collapse
Affiliation(s)
- Johanna Senk
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Corto Carde
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
- JARA - High-Performance Computing, Aachen, Germany
- IMT Atlantique Bretagne-Pays de la Loire, Brest, France
| | - Espen Hagen
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Physics, University of Oslo, Oslo, Norway
| | - Torsten W. Kuhlen
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
- JARA - High-Performance Computing, Aachen, Germany
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany
| | - Benjamin Weyers
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
- JARA - High-Performance Computing, Aachen, Germany
| |
Collapse
|