1
|
Silberfeld A, Roe JM, Ellegood J, Lerch JP, Qiu L, Kim Y, Lee JG, Hopkins WD, Grandjean J, Ou Y, Pourquié O. Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain. Neuroimage 2025; 307:121017. [PMID: 39798830 DOI: 10.1016/j.neuroimage.2025.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left. Here, we ask whether neuroanatomical asymmetries can be observed in mice, leveraging 6 mouse neuroimaging cohorts from 5 different research groups (∼3,500 animals). We found an anterior-posterior pattern of volume asymmetry with anterior regions larger on the right and posterior regions larger on the left. This pattern appears driven by similar trends in surface area and positional asymmetries, with the results together indicating a small brain-wide twisting pattern, similar to the human cerebral petalia. Furthermore, the results show no apparent relationship to known functional asymmetries in mice, emphasizing the complexity of the structure-function relationship in brain asymmetry. Our results recapitulate and extend previous patterns of asymmetry from two published studies as well as capture well-established, bilateral male-female differences in the mouse brain as a positive control. By establishing a signature of anatomical brain asymmetry in mice, we aim to provide a foundation for future studies to probe the mechanistic underpinnings of brain asymmetry seen in humans - a feature of the brain with extremely limited understanding.
Collapse
Affiliation(s)
- Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Jacob Ellegood
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Department of Preclinical Imaging, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lily Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - William D Hopkins
- Department of Comparative Medicine & Michale E Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, Netherlands; Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, Netherlands
| | - Yangming Ou
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Rivera-Olvera A, Houwing DJ, Ellegood J, Masifi S, Martina SL, Silberfeld A, Pourquie O, Lerch JP, Francks C, Homberg JR, van Heukelum S, Grandjean J. The universe is asymmetric, the mouse brain too. Mol Psychiatry 2025; 30:489-496. [PMID: 39107583 DOI: 10.1038/s41380-024-02687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Hemispheric brain asymmetry is a basic organizational principle of the human brain and has been implicated in various psychiatric conditions, including autism spectrum disorder. Brain asymmetry is not a uniquely human feature and is observed in other species such as the mouse. Yet, asymmetry patterns are generally nuanced, and substantial sample sizes are required to detect these patterns. In this pre-registered study, we use a mouse dataset from the Province of Ontario Neurodevelopmental Network, which comprises structural MRI data from over 2000 mice, including genetic models for autism spectrum disorder, to reveal the scope and magnitude of hemispheric asymmetry in the mouse. Our findings demonstrate the presence of robust hemispheric asymmetry in the mouse brain, such as larger right hemispheric volumes towards the anterior pole and larger left hemispheric volumes toward the posterior pole, opposite to what has been shown in humans. This suggests the existence of species-specific traits. Further clustering analysis identified distinct asymmetry patterns in autism spectrum disorder models, a phenomenon that is also seen in atypically developing participants. Our study shows potential for the use of mouse models to understand the biological bases of typical and atypical brain asymmetry but also warrants caution as asymmetry patterns seem to differ between humans and mice.
Collapse
Affiliation(s)
| | - Danielle J Houwing
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Shang Masifi
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Stephany Ll Martina
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquie
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Clyde Francks
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Sabrina van Heukelum
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Nijmegen, The Netherlands.
- Department for Medical Imaging, Radboud University Medical Center, PO Box 9101, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Nishimaki K, Iyatomi H, Oishi K. A Neural Network Approach to Identify Left-Right Orientation of Anatomical Brain MRI. Brain Behav 2025; 15:e70299. [PMID: 39924951 PMCID: PMC11808181 DOI: 10.1002/brb3.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 02/11/2025] Open
Abstract
PURPOSE This study presents a novel application of deep learning to enhance the accuracy of left-right orientation identification in anatomical brain MRI scans. Left-right orientation misidentification in brain MRIs presents significant challenges due to several factors, including metadata loss or ambiguity, which often occurs during the de-identification of medical images for research, conversion between image formats, software operations that strip or overwrite metadata, and the use of older imaging systems that stored orientation differently. METHOD A three-dimensional convolutional neural network model was trained using 350 MRIs and evaluated on the basis of eight distinct brain MRI databases, totaling 3056 MRIs, to assess its performance across various conditions, including neurodegenerative diseases. FINDING The proposed deep-learning framework demonstrated a 99.8% accuracy in identifying the left-right orientation, thus, addressing challenges associated with the loss of orientation metadata. GradCAM was used to visualize areas of the brain where the model focused, demonstrating the importance of the right planum temporale and surrounding areas in judging left-right orientation. The planum temporale is known to exhibit notable left-right asymmetry related to language functions, underscoring the biological validity of the model. The half of the four left-right misidentified MRIs involved notable brain feature variations, such as a large arachnoidal cyst adjacent to the temporal lobe or ventricular asymmetry, indicating areas for further investigation. CONCLUSION This approach offers a potential solution to the persistent issue of left-right misorientation in brain MRIs and supports the reliability of neuroscientific research by ensuring accurate data interpretation.
Collapse
Affiliation(s)
- Kei Nishimaki
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Hitoshi Iyatomi
- Department of Applied Informatics, Graduate School of Science and EngineeringHosei UniversityTokyoJapan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
4
|
Vingerhoets G. The relationship between brain and visceral asymmetry: Evidence from situs inversus in humans. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:47-61. [PMID: 40074416 DOI: 10.1016/b978-0-443-15646-5.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This review examines the relationship between visceral and brain asymmetry and explores whether their alignment observed in some vertebrate species also exists in humans. While the development of visceral and brain asymmetry may have occurred for different reasons, it is possible that the basic mechanisms for left-right differentiation of the visceral system were duplicated in the brain. We describe the main phenotypical anomalies and the general mechanism of left-right differentiation in vertebrates, followed by a systematic review of available human studies on behavioral and brain asymmetry in individuals with reversed visceral organization. The available evidence shows no direct link between human visceral and brain laterality. Most individuals with situs inversus totalis (SIT) show typical population biases for handedness and brain functional asymmetry, although an increased prevalence of atypical hemispheric segregation may be present. Perisylvian brain structural asymmetries also reveal the expected population bias in participants with SIT. However, several independent studies indicate that SIT is associated with a general reversal of the gross morphologic asymmetry of brain torque. Potential differences in brain structural and functional asymmetries between subtypes of situs inversus with ciliary and nonciliary causes remain to be determined.
Collapse
Affiliation(s)
- Guy Vingerhoets
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Zhang C, Pu Y, Kong XZ. Latent dimensions of brain asymmetry. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:37-45. [PMID: 40074408 DOI: 10.1016/b978-0-443-15646-5.00027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Functional lateralization represents a fundamental aspect of brain organization, where certain cognitive functions are specialized in one hemisphere over the other. Deviations from typical patterns of lateralization often manifest in various brain disorders, such as autism spectrum disorder, schizophrenia, and dyslexia. However, despite its importance, uncovering the intrinsic properties of brain lateralization and its underlying structural basis remains challenging. On the one hand, functional lateralization has long been oversimplified, often reduced to a unidimensional perspective. For instance, individuals are sometimes labeled as left-brained or right-brained based on specific behavioral measures like handedness and language lateralization. Such a perspective disregards the nuanced subtypes of lateralization, each potentially attributed to distinct factors and associated with unique functional correlates. On the other hand, traditional studies of brain structural asymmetry have typically focused on localized analyses of homologous regions in the two hemispheres. This perspective fails to capture the inherent interplay between brain regions, resulting in an overly complex depiction of structural asymmetry. Such conceptual and methodological discrepancies between studies of functional lateralization and structural asymmetry pose significant obstacles to establishing meaningful links between them. To address this gap, a shift toward uncovering the dimensional structure of brain asymmetry has been proposed. This chapter introduces the concept of latent dimensions of brain asymmetry and provides an up-to-date overview of studies regarding dimensions of functional lateralization and structural asymmetry in the human brain. By transcending the traditional analysis and employing multivariate pattern techniques, these studies offer valuable insights into our understanding of the intricate organizational principles governing the human brain's lateralized functions.
Collapse
Affiliation(s)
- Chenghui Zhang
- Department of Psychology and Behavioral Sciences & The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Yi Pu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xiang-Zhen Kong
- Department of Psychology and Behavioral Sciences & The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Psychiatry of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Vingerhoets G, Gerrits R, Karlsson EM. Brain (Yakovlevian) torque direction is associated with volume asymmetry of the intracranial transverse sinuses: evidence from situs inversus totalis. Brain Struct Funct 2024; 229:1461-1470. [PMID: 38811411 DOI: 10.1007/s00429-024-02810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Previous research reported reversal of the prototypical brain torque in individuals with mirrored visceral topology (situs inversus totalis, SIT). Here, we investigate if typical asymmetry of the posterior intracranial venous system is also reversed in SIT and whether the direction and magnitude of this asymmetry is related to the direction and magnitude of the brain torque. Brain structural MRI images of 38 participants with SIT were compared with those of 38 matched control participants. Occipital and frontal petalia and bending were measured using a standardized procedure. In addition, representative sections of the left and right transverse sinuses were segmented, and their respective volumes determined. Participants with SIT showed general reversal of occipital and frontal petalia and occipital bending, as well as reversal of typical transverse sinus asymmetry. Transverse sinus volume was significantly correlated with several torque measures, such that the smaller transverse sinus was associated with a larger ipsilateral occipital petalia, contralateral occipital bending, and ipsilateral frontal bending. We propose an anatomical mechanism to explain occipital petalia and bending, and conclude that anatomical constraints imposed by the asymmetry of the posterior venous system provide and additional account to elucidate the formation of the human brain torque.
Collapse
Affiliation(s)
- Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium.
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium.
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Pittella JEH. The uniqueness of the human brain: a review. Dement Neuropsychol 2024; 18:e20230078. [PMID: 38628563 PMCID: PMC11019715 DOI: 10.1590/1980-5764-dn-2023-0078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 04/19/2024] Open
Abstract
The purpose of this review is to highlight the most important aspects of the anatomical and functional uniqueness of the human brain. For this, a comparison is made between our brains and those of our closest ancestors (chimpanzees and bonobos) and human ancestors. During human evolution, several changes occurred in the brain, such as an absolute increase in brain size and number of cortical neurons, in addition to a greater degree of functional lateralization and anatomical asymmetry. Also, the cortical cytoarchitecture became more diversified and there was an increase in the number of intracortical networks and networks extending from the cerebral cortex to subcortical structures, with more neural networks being invested in multisensory and sensory-motor-affective-cognitive integration. These changes permitted more complex, flexible and versatile cognitive abilities and social behavior, such as shared intentionality and symbolic articulated language, which, in turn, made possible the formation of larger social groups and cumulative cultural evolution that are characteristic of our species.
Collapse
Affiliation(s)
- José Eymard Homem Pittella
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Anatomia Patológica e Medicina Legal, Belo Horizonte MG, Brazil
| |
Collapse
|
8
|
Gerrits R, Vingerhoets G. Brain functional segregation, handedness and cognition in situs inversus totalis: A replication study. Neuropsychologia 2023; 191:108731. [PMID: 37949213 DOI: 10.1016/j.neuropsychologia.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Situs inversus totalis (SIT) is a rare congenital anomaly in which the arrangement of the visceral organs is completely left-right mirrored. A previous study by our lab suggests that SIT (N = 15) correlated with more heterogeneous asymmetrical brain organization and increased left-handedness. In addition, visceral reversal correlated with poorer cognitive performance, especially when hemisphere organization was atypical. The current study sought to replicate these findings in a larger sample. We scanned 23 volunteers with SIT as well as an equal number of controls with usual organ arrangement, and used fMRI to determine their hemisphere dominance for two left hemisphere functions (language and manual praxis) and two right hemisphere functions (spatial attention and face recognition). Effects of SIT etiology were explored by pooling data from the original cohort with the replication sample. Our results reveal that each of those four cognitive functions demonstrated the expected population dominance in SIT, albeit they were less pronounced - but not significantly so - compared to controls. Unusual patterns of hemispheric crowding and mirror-reversal of functional brain organization was observed more often in SIT (48%) than in the controls (30%), but this difference also did not reach statistical significance. However, left-handedness was found to be significantly more common in SIT (26%) than in the overall population (10.6%). Finally, cognitive ability, as assessed by a neuropsychological test battery, was not associated with organ situs or hemisphere organization. Taken together, our data adds to the growing evidence that the determinants of visceral and neural asymmetries are largely independent from one another and that complete situs inversus does not co-occur with an obligatory transposition of the brain's functional architecture. There nevertheless might be instances in which (genetic) mechanisms could simultaneously cause complete visceral reversal and atypical brain laterality.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Guy Vingerhoets
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Rockland KS. A brief sketch across multiscale and comparative neuroanatomical features. Front Neuroanat 2023; 17:1108363. [PMID: 36861111 PMCID: PMC9968756 DOI: 10.3389/fnana.2023.1108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
|
10
|
Saltoun K, Adolphs R, Paul LK, Sharma V, Diedrichsen J, Yeo BTT, Bzdok D. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 2023; 7:251-268. [PMID: 36344655 DOI: 10.1038/s41562-022-01461-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left-right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.
Collapse
Affiliation(s)
- Karin Saltoun
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Quebec, Canada
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA, USA.,Fuller Graduate School of Psychology, Travis Research Institute, Pasadena, CA, USA
| | - Vaibhav Sharma
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Joern Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada.,Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Asymmetry of Endocast Surface Shape in Modern Humans Based on Diffeomorphic Surface Matching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain asymmetry is associated with handedness and cognitive function, and is also reflected in the shape of endocasts. However, comprehensive quantification of the asymmetry in endocast shapes is limited. Here, we quantify and visualize the variation of endocast asymmetry in modern humans using diffeomorphic surface matching. Our results show that two types of lobar fluctuating asymmetry contribute most to global asymmetry variation. A dominant pattern of local directional asymmetry is shared in the majority of the population: (1) the left occipital pole protrudes more than the right frontal pole in the left-occipital and right-frontal petalial asymmetry; (2) the left Broca’s cap appears to be more globular and bulges laterally, anteriorly, and ventrally compared to the right side; and (3) the asymmetrical pattern of the parietal is complex and the posterior part of the right temporal lobes are more bulbous than the contralateral sides. This study confirms the validity of endocasts for obtaining valuable information on encephalic asymmetries and reveals a more complicated pattern of asymmetry of the cerebral lobes than previously reported. The endocast asymmetry pattern revealed here provides more shape information to explore the relationships between brain structure and function, to re-define the uniqueness of human brains related to other primates, and to trace the timing of the human asymmetry pattern within hominin lineages.
Collapse
|
12
|
Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals. Biol Psychiatry 2022; 91:753-768. [PMID: 35027165 PMCID: PMC8957509 DOI: 10.1016/j.biopsych.2021.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts. METHODS BT features, including petalia, bending, dorsoventral shift, brain tissue distribution asymmetries, and cortical surface positional asymmetries, were directly modeled using a set of automatic three-dimensional brain shape analysis approaches. Age-, sex-, and handedness-related effects on BT were assessed. The genetic architecture and phenomic associations of BT were investigated using genome- and phenome-wide association scans. RESULTS Our results confirmed the population-level predominance of the typical counterclockwise torque and suggested a first attenuating, then enlarging dynamic across the life span (3-81 years) primarily for frontal, occipital, and perisylvian BT features. Sex/handedness, BT, and cognitive function of verbal-numerical reasoning were found to be interrelated statistically. We observed differential heritability of up to 56% for BT, especially in temporal language areas. Individual variations of BT were also associated with various phenotypic variables of neuroanatomy, cognition, lifestyle, sociodemographics, anthropometry, physical health, and adult and child mental health. Our genomic analyses identified a number of genetic associations at lenient significance levels, which need to be further validated using larger samples in the future. CONCLUSIONS This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
13
|
Bhattacharjee S, Kashyap R, Goodwill AM, O'Brien BA, Rapp B, Oishi K, Desmond JE, Chen SHA. Sex difference in tDCS current mediated by changes in cortical anatomy: A study across young, middle and older adults. Brain Stimul 2022; 15:125-140. [PMID: 34826627 PMCID: PMC9041842 DOI: 10.1016/j.brs.2021.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The observed variability in the effects of transcranial direct current stimulation (tDCS) is influenced by the amount of current reaching the targeted region-of-interest (ROI). Age and sex might affect current density at target ROI due to their impact on cortical anatomy. The present tDCS simulation study investigates the effects of cortical anatomical parameters (volumes, dimension, and torque) on simulated tDCS current density in healthy young, middle-aged, and older males and females. METHODOLOGY Individualized head models from 240 subjects (120 males, 18-87 years of age) were used to identify the estimated current density (2 mA current intensity, 25 cm2 electrode) from two simulated tDCS montages (CP5_CZ and F3_FP2) targeting the inferior parietal lobule (IPL) and middle frontal gyrus (MFG), respectively. Cortical parameters including segmented brain volumes (cerebrospinal fluid [CSF], grey and white matter), cerebral-dimensions (length/width &length/height) and brain-torque (front and back shift, petalia, and bending) were measured using the magnetic resonance images (MRIs) from each subject. The present study estimated sex differences in current density at these target ROIs mediated by these cortical parameters within each age group. RESULTS For both tDCS montages, females in the older age group received higher current density than their male counterparts at the target ROIs. No sex differences were observed in the middle-aged group. Males in the younger age group had a higher current density than females, only for the parietal montage. Across all age groups, CSF, and grey matter volumes significantly predicted the current intensity estimated at the target sites. In the older age group only, brain-torque was a significant mediator of the sex difference. CONCLUSIONS Our findings demonstrate the presence of sex differences in the simulated tDCS current density, however this pattern differed across age groups and stimulation locations. Future studies should consider influence of age and sex on individual cortical anatomy and tailor tDCS stimulation parameters accordingly.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore.
| | - Alicia M Goodwill
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore.
| | - Beth Ann O'Brien
- Centre for Research in Child Development (CRCD), National Institute of Education, Singapore.
| | - Brenda Rapp
- The Johns Hopkins University, Krieger School of Arts and Sciences, Baltimore, United States.
| | - Kenichi Oishi
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - John E Desmond
- The Johns Hopkins University School of Medicine, Baltimore, United States.
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.
| |
Collapse
|
14
|
Kubicka AM, Charlier P, Balzeau A. The Internal Cranial Anatomy of a Female With Endocrine Disorders From a Mediaeval Population. Front Endocrinol (Lausanne) 2022; 13:862047. [PMID: 35498425 PMCID: PMC9048198 DOI: 10.3389/fendo.2022.862047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Gigantism and acromegaly have been observed in past populations; however, analyses usually focus on the morphological features of the post-cranial skeleton. The aim of this study is to characterize the internal anatomical features of the skull (brain endocast anatomy and asymmetry, frontal pneumatization, cranial thickness, sella turcica size) of an adult individual from the 11-14th centuries with these two diseases, in comparison with non-pathological individuals from the same population. The material consisted of 33 adult skulls from a mediaeval population, one of them belonging to an adult female with endocrine disorders (OL-23/77). Based on the CT scans, the internal cranial anatomy was analysed. The sella turcica of OL-23/77 is much larger than in the comparative sample. The endocast of the individual OL-23/77 shows a left frontal/left occipital petalia, while the comparative population mostly had right frontal/left occipital petalias. The asymmetry in petalia location in OL-23/77 comes within the range of variation observed in the comparative population. The individual has high values for cranial thickness. The frontal sinuses of the specimen analysed are similar in size and shape to the comparative sample only for data scaled to the skull length. Enlarged sella turcica is typical for individuals with acromegaly/gigantism. The pattern of the left frontal/left occipital petalia in the specimen OL-23/77 is quite rare. The position of the endocranial petalias has not influenced the degree of asymmetry in the specimen. Despite the large bone thickness values, skull of OL-23/77 does not show any abnormal features. The skull/endocast relationship in this individual shows some peculiarities in relation to its large size, while other internal anatomical features are within the normal range of variation of the comparative sample.
Collapse
Affiliation(s)
- Anna Maria Kubicka
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- *Correspondence: Anna Maria Kubicka,
| | - Philippe Charlier
- Laboratoire Anthropologie, Archéologie, Biologie (LAAB), Unité de Formation à la Recherche (UFR) des Sciences de la Santé, Université Paris-Saclay (UVSQ) & Musée du quai Branly - Jacques Chirac, Montigny-le-Bretonneux, France
- Direction, Département de la Recherche et de L’Enseignement Musée du quai Branly - Jacques Chirac, Paris, France
| | - Antoine Balzeau
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, Belgium
| |
Collapse
|
15
|
Abstract
We are interested here in the central organ of our thoughts: the brain. Advances in neuroscience have made it possible to obtain increasing information on the anatomy of this organ, at ever-higher resolutions, with different imaging techniques, on ever-larger samples. At the same time, paleoanthropology has to deal with partial reflections on the shape of the brain, on fragmentary specimens and small samples in an attempt to approach the morphology of the brain of past human species. It undeniably emerges from the perspective we propose here that paleoanthropology has much to gain from interacting more with the field of neuroimaging. Improving our understanding of the morphology of the endocast necessarily involves studying the external surface of the brain and the link it maintains with the internal surface of the skull. The contribution of neuroimaging will allow us to better define the relationship between brain and endocast. Models of intra- and inter-species variability in brain morphology inferred from large neuroimaging databases will help make the most of the rare endocasts of extinct species. We also conclude that exchanges between these two disciplines will also be beneficial to our knowledge of the Homo sapiens brain. Documenting the anatomy among other human species and including the variation over time within our own species are approaches that offer us a new perspective through which to appreciate what really characterizes the brain of humanity today.
Collapse
|
16
|
Abstract
Asymmetries in the functional and structural organization of the nervous system are widespread in the animal kingdom and especially characterize the human brain. Although there is little doubt that asymmetries arise through genetic and nongenetic factors, an overarching model to explain the development of functional lateralization patterns is still lacking. Current genetic psychology collects data on genes relevant to brain lateralizations, while animal research provides information on the cellular mechanisms mediating the effects of not only genetic but also environmental factors. This review combines data from human and animal research (especially on birds) and outlines a multi-level model for asymmetry formation. The relative impact of genetic and nongenetic factors varies between different developmental phases and neuronal structures. The basic lateralized organization of a brain is already established through genetically controlled embryonic events. During ongoing development, hemispheric specialization increases for specific functions and subsystems interact to shape the final functional organization of a brain. In particular, these developmental steps are influenced by environmental experiences, which regulate the fine-tuning of neural networks via processes that are referred to as ontogenetic plasticity. The plastic potential of the nervous system could be decisive for the evolutionary success of lateralized brains.
Collapse
|
17
|
Shivakumar V, Sreeraj VS, Kalmady SV, Gangadhar BN, Venkatasubramanian G. Pars Triangularis Volume Asymmetry and Schneiderian First Rank Symptoms in Antipsychotic-naïve Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:507-513. [PMID: 34294619 PMCID: PMC8316654 DOI: 10.9758/cpn.2021.19.3.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022]
Abstract
Objective Schizophrenia is a disorder of language and self, with first-rank symptoms (FRS) as one of the predominant features in a subset of patients. Abnormal language lateralization is hypothesized to underlie the neurobiology of FRS in schizophrenia. The role of Broca's area with its right-hemispheric counterpart, consisting of pars triangularis (PTr) and pars opercularis (POp) of the inferior frontal gyrus in FRS is undetermined. We compared the volumes and asymmetries of PTr & POp in anti-psychotic-naive schizophrenia patients with FRS (FRS[+]) with those without FRS (FRS[-]) and healthy-controls (HC) using three dimensional, interactive, semi-automated volumetric morphometry. Methods Antipsychotic naïve FRS(+) (n = 27), FRS(-) (n = 24) and HC (n = 51) were carefully assessed with structured and semi-structured clinical tools. T1-weighted images were acquired in a 3T scanner. Volumes of regions of interest were measured independently for both sides using slicer-3D software, and asymmetry indices were calculated. Results FRS(+) but not FRS(-) had a significant volume deficit in right PTr after controlling for the potential confounding effects of age, sex, and intracranial volume (p = 0.029). There was a significant leftward asymmetry of PTr in patients with FRS (i.e., leftward asymmetry in patients) (p = 0.026). No significant volume/asymmetry abnormalities were observed in POp. Conclusion Study findings suggest reduced right PTr volume with leftward asymmetry to be associated with FRS in schizophrenia. This is consistent with the loss of Yakovlevian torque in schizophrenia. Role of PTr in the neurobiology of schizophrenia as a disorder of self, speech, and social cognition needs further systematic evaluation in future research.
Collapse
Affiliation(s)
- Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health & NeuroSciences (NIMHANS), Bangalore, India
| | | | - Sunil Vasu Kalmady
- Alberta Machine Intelligence Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health & NeuroSciences (NIMHANS), Bangalore, India
| |
Collapse
|
18
|
Kong XZ, Postema M, Schijven D, Castillo AC, Pepe A, Crivello F, Joliot M, Mazoyer B, Fisher SE, Francks C. Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. Cereb Cortex 2021; 31:4151-4168. [PMID: 33836062 PMCID: PMC8328207 DOI: 10.1093/cercor/bhab075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
The human cerebral hemispheres show a left-right asymmetrical torque pattern, which has been claimed to be absent in chimpanzees. The functional significance and developmental mechanisms are unknown. Here, we carried out the largest-ever analysis of global brain shape asymmetry in magnetic resonance imaging data. Three population datasets were used, UK Biobank (N = 39 678), Human Connectome Project (N = 1113), and BIL&GIN (N = 453). At the population level, there was an anterior and dorsal skew of the right hemisphere, relative to the left. Both skews were associated independently with handedness, and various regional gray and white matter metrics oppositely in the two hemispheres, as well as other variables related to cognitive functions, sociodemographic factors, and physical and mental health. The two skews showed single nucleotide polymorphisms-based heritabilities of 4-13%, but also substantial polygenicity in causal mixture model analysis, and no individually significant loci were found in genome-wide association studies for either skew. There was evidence for a significant genetic correlation between horizontal brain skew and autism, which requires future replication. These results provide the first large-scale description of population-average brain skews and their inter-individual variations, their replicable associations with handedness, and insights into biological and other factors which associate with human brain asymmetry.
Collapse
Affiliation(s)
- Xiang-Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
| | - Merel Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Amaia Carrión Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
| | - Antonietta Pepe
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Fabrice Crivello
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Marc Joliot
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives, UMR5293, Groupe d’Imagerie Neurofonctionnelle, Commissariat à l'énergie atomique et aux énergies alternatives, CNRS, Université de Bordeaux, Bordeaux cedex 33076, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
19
|
Gibicar A, Moody AR, Khademi A. Automated Midline Estimation for Symmetry Analysis of Cerebral Hemispheres in FLAIR MRI. Front Aging Neurosci 2021; 13:644137. [PMID: 33994994 PMCID: PMC8118126 DOI: 10.3389/fnagi.2021.644137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 01/09/2023] Open
Abstract
To perform brain asymmetry studies in large neuroimaging archives, reliable and automatic detection of the interhemispheric fissure (IF) is needed to first extract the cerebral hemispheres. The detection of the IF is often referred to as mid-sagittal plane estimation, as this plane separates the two cerebral hemispheres. However, traditional planar estimation techniques fail when the IF presents a curvature caused by existing pathology or a natural phenomenon known as brain torque. As a result, midline estimates can be inaccurate. In this study, a fully unsupervised midline estimation technique is proposed that is comprised of three main stages: head angle correction, control point estimation and midline generation. The control points are estimated using a combination of intensity, texture, gradient, and symmetry-based features. As shown, the proposed method automatically adapts to IF curvature, is applied on a slice-to-slice basis for more accurate results and also provides accurate delineation of the midline in the septum pellucidum, which is a source of failure for traditional approaches. The method is compared to two state-of-the-art methods for midline estimation and is validated using 75 imaging volumes (~3,000 imaging slices) acquired from 38 centers of subjects with dementia and vascular disease. The proposed method yields the lowest average error across all metrics: Hausdorff distance (HD) was 0.32 ± 0.23, mean absolute difference (MAD) was 1.10 ± 0.38 mm and volume difference was 7.52 ± 5.40 and 5.35 ± 3.97 ml, for left and right hemispheres, respectively. Using the proposed method, the midline was extracted for 5,360 volumes (~275K images) from 83 centers worldwide, acquired by GE, Siemens and Philips scanners. An asymmetry index was proposed that automatically detected outlier segmentations (which were <1% of the total dataset). Using the extracted hemispheres, hemispheric asymmetry texture biomarkers of the normal-appearing brain matter (NABM) were analyzed in a dementia cohort, and significant differences in biomarker means were found across SCI and MCI and SCI and AD.
Collapse
Affiliation(s)
- Adam Gibicar
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON, Canada
| | - Alan R Moody
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - April Khademi
- Electrical, Computer and Biomedical Engineering Department, Ryerson University, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Network, Toronto, ON, Canada.,Institute for Biomedical Engineering, Science and Technology, A Partnership Between St. Michael's Hospital and Ryerson University, Toronto, ON, Canada
| |
Collapse
|
20
|
Abstract
The alignment of visceral and brain asymmetry observed in some vertebrate species raises the question of whether this association also exists in humans. While the visceral and brain systems may have developed asymmetry for different reasons, basic visceral left–right differentiation mechanisms could have been duplicated to establish brain asymmetry. We describe the main phenotypical anomalies and the general mechanism of left–right differentiation of vertebrate visceral and brain laterality. Next, we systematically review the available human studies that explored the prevalence of atypical behavioral and brain asymmetry in visceral situs anomalies, which almost exclusively involved participants with the mirrored visceral organization (situs inversus). The data show no direct link between human visceral and brain functional laterality as most participants with situs inversus show the typical population bias for handedness and brain functional asymmetry, although an increased prevalence of functional crowding may be present. At the same time, several independent studies present evidence for a possible relation between situs inversus and the gross morphological asymmetry of the brain torque with potential differences between subtypes of situs inversus with ciliary and non-ciliary etiologies.
Collapse
|
21
|
Mondanaro A, Melchionna M, Di Febbraro M, Castiglione S, Holden PB, Edwards NR, Carotenuto F, Maiorano L, Modafferi M, Serio C, Diniz-Filho JAF, Rangel T, Rook L, O'Higgins P, Spikins P, Profico A, Raia P. A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History. iScience 2020; 23:101693. [PMID: 33163945 PMCID: PMC7607486 DOI: 10.1016/j.isci.2020.101693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Homo sapiens is the only species alive able to take advantage of its cognitive abilities to inhabit almost all environments on Earth. Humans are able to culturally construct, rather than biologically inherit, their occupied climatic niche to a degree unparalleled within the animal kingdom. Precisely, when hominins acquired such an ability remains unknown, and scholars disagree on the extent to which our ancestors shared this same ability. Here, we settle this issue using fine-grained paleoclimatic data, extensive archaeological data, and phylogenetic comparative methods. Our results indicate that whereas early hominins were forced to live under physiologically suitable climatic conditions, with the emergence of H. heidelbergensis, the Homo climatic niche expanded beyond its natural limits, despite progressive harshening in global climates. This indicates that technological innovations providing effective exploitation of cold and seasonal habitats predated the emergence of Homo sapiens. Homo sapiens oversteps our ecological niche limits by means of culture The origin of Homo niche-construction ability is unknown We found Homo species other than H. sapiens were able to construct their own niche
Collapse
Affiliation(s)
- Alessandro Mondanaro
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy.,Department of Earth Science. University of Florence, Florence 50121, Italy
| | - Marina Melchionna
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Mirko Di Febbraro
- Department of Bioscience and Territory. University of Molise, Pesche, Isernia 86090, Italy
| | - Silvia Castiglione
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Philip B Holden
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6BJ, UK
| | - Neil R Edwards
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6BJ, UK
| | - Francesco Carotenuto
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies Charles Darwin, University of Rome La Sapienza, Rome 00185, Italy
| | - Maria Modafferi
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Carmela Serio
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Josè A F Diniz-Filho
- Department of Ecology, ICB, Universidade Federal de Goiás, Goiânia 74968-755, Brasil
| | - Thiago Rangel
- Department of Ecology, ICB, Universidade Federal de Goiás, Goiânia 74968-755, Brasil
| | - Lorenzo Rook
- Department of Earth Science. University of Florence, Florence 50121, Italy
| | - Paul O'Higgins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Penny Spikins
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Antonio Profico
- Department of Archaeology and Hull York Medical School, University of York, York YO10 5DD, UK
| | - Pasquale Raia
- Department of Earth, Environmental and Resources Sciences, University of Naples "Federico II", Naples 80126, Italy
| |
Collapse
|
22
|
Xiang L, Crow TJ, Hopkins WD, Roberts N. Comparison of Surface Area and Cortical Thickness Asymmetry in the Human and Chimpanzee Brain. Cereb Cortex 2020; 34:bhaa202. [PMID: 33026423 PMCID: PMC10859246 DOI: 10.1093/cercor/bhaa202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Comparative study of the structural asymmetry of the human and chimpanzee brain may shed light on the evolution of language and other cognitive abilities in humans. Here we report the results of vertex-wise and ROI-based analyses that compared surface area (SA) and cortical thickness (CT) asymmetries in 3D MR images obtained for 91 humans and 77 chimpanzees. The human brain is substantially more asymmetric than the chimpanzee brain. In particular, the human brain has 1) larger total SA in the right compared with the left cerebral hemisphere, 2) a global torque-like asymmetry pattern of widespread thicker cortex in the left compared with the right frontal and the right compared with the left temporo-parieto-occipital lobe, and 3) local asymmetries, most notably in medial occipital cortex and superior temporal gyrus, where rightward asymmetry is observed for both SA and CT. There is also 4) a prominent asymmetry specific to the chimpanzee brain, namely, rightward CT asymmetry of precentral cortex. These findings provide evidence of there being substantial differences in asymmetry between the human and chimpanzee brain. The unique asymmetries of the human brain are potential neural substrates for cognitive specializations, and the presence of significant CT asymmetry of precentral gyrus in the chimpanzee brain should be further investigated.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timothy J Crow
- POWIC, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - William D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
23
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
24
|
Graïc JM, Peruffo A, Corain L, Centelleghe C, Granato A, Zanellato E, Cozzi B. Asymmetry in the Cytoarchitecture of the Area 44 Homolog of the Brain of the Chimpanzee Pan troglodytes. Front Neuroanat 2020; 14:55. [PMID: 32973465 PMCID: PMC7471632 DOI: 10.3389/fnana.2020.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The evolution of the brain in apes and man followed a joint pathway stemming from common ancestors 5-10 million years ago. However, although apparently sharing similar organization and neurochemical properties, association areas of the isocortex remain one of the cornerstones of what sets humans aside from other primates. Brodmann's area 44, the area of Broca, is known for its implication in speech, and thus indirectly is a key mark of human uniqueness. This latero-caudal part of the frontal lobe shows a marked functional asymmetry in humans, and takes part in other complex functions, including learning and imitation, tool use, music and contains the mirror neuron system (MNS). Since the main features in the cytoarchitecture of Broca's area remains relatively constant in hominids, including in our closest relative, the chimpanzee Pan troglodytes, investigations on the finer structure, cellular organization, connectivity and eventual asymmetry of area 44 have a direct bearing on the understanding of the neural mechanisms at the base of our language. The semi-automated image analysis technology that we employed in the current study showed that the structure of the cortical layers of the chimpanzee contains elements of asymmetry that are discussed in relation to the corresponding human areas and the putative resulting disparity of function.
Collapse
Affiliation(s)
- Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Livio Corain
- Department of Management and Engineering, University of Padua, Padua, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Alberto Granato
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Emanuela Zanellato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Abstract
Until fairly late in the nineteenth century, it was held that the brain was bilaterally symmetrical. With the discovery of left-brain dominance for language, the so-called "laws of symmetry" were revoked, and asymmetry was then seen as critical to the human condition, with the left hemisphere, in particular, assuming superordinate properties. I trace this idea from the early discoveries of the late nineteenth century through the split-brain studies of the 1960s, and beyond. Although the idea has persisted, the evidence has revealed widespread cerebral asymmetries in nonhuman animals, and even language and its asymmetries are increasingly understood to have evolved gradually, rather than in a single speciation event. The left hemisphere nevertheless seemed to take over a role previously taken by other structures, such as the pineal gland and the hippocampus minor, in a determined effort to place humans on a pedestal above all other species.
Collapse
|
26
|
Damme KSF, Vargas T, Calhoun V, Turner J, Mittal VA. Global and Specific Cortical Volume Asymmetries in Individuals With Psychosis Risk Syndrome and Schizophrenia: A Mixed Cross-sectional and Longitudinal Perspective. Schizophr Bull 2020; 46:713-721. [PMID: 31682728 PMCID: PMC7147574 DOI: 10.1093/schbul/sbz096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cortical volumetric asymmetry (CVA) has been widely observed in individuals with psychosis, and is associated with etiological risk factors (e.g., genetics, neuromaturation) and treatment response. However, it is unclear whether CVA abnormalities emerge before psychotic illness onset. Understanding whether CVA manifests in clinical high-risk (CHR)-compared with healthy controls and schizophrenia patients (SCZ)-over time may inform our understanding of pathogenic factors. A total of 233 individuals: 73 CHR, 112 healthy controls, and 48 SCZ underwent an MRI and clinical interviews. Ninety-four individuals including healthy volunteers (HV) (n = 49) and CHR (n = 45), completed another scan at 12-months. CVA was compared by lobe in a repeated-measure design across groups, then nested by time in a longitudinal model. CHR and SCZ groups showed reduced global CVA compared with the healthy control groups but the CHR and SCZ group did not differ from each other. A group by lobe interaction indicated the presence of lobe specific reductions in frontal and cingulate CVA. Cingulate CVA was reduced in CHR and SCZ groups compared to HC groups but did not differ from each other. Frontal CVA was reduced in the older healthy controls compared with younger-HC and CHR, but did not differ from the similarly aged SZ group. CVA is similarly impacted in SCZ and CHR groups, potentially reflecting pathogenic processes. Longitudinal analyses provided further support for the neurodevelopmental hypothesis as CHR exhibited longitudinal changes in opposite directions from normative neuromaturation in HV, which was related to increasing risk for psychosis in the CHR.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL,To whom correspondence should be addressed; tel: 402-890-3606, fax: 847-467-5707, e-mail:
| | - Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, IL
| | - Vince Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM,Mind Research Network, Albuquerque, NM,Department of Psychology, Georgia State University, Atlanta, GA
| | - Jessica Turner
- Mind Research Network, Albuquerque, NM,Department of Psychology, Georgia State University, Atlanta, GA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL,Department of Psychiatry, Northwestern University, Chicago, IL,Medical Social Sciences, Northwestern University, Chicago, IL,Institute for Policy Research (IPR), Northwestern University, Chicago, IL,Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston, IL
| |
Collapse
|
27
|
Neubauer S, Gunz P, Scott NA, Hublin JJ, Mitteroecker P. Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. SCIENCE ADVANCES 2020; 6:eaax9935. [PMID: 32110727 PMCID: PMC7021492 DOI: 10.1126/sciadv.aax9935] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain.
Collapse
Affiliation(s)
- Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nadia A. Scott
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
28
|
Xiang L, Crow T, Roberts N. Automatic analysis of cross-sectional cerebral asymmetry on 3D in vivo MRI scans of human and chimpanzee. J Neurosci Res 2019; 97:673-682. [PMID: 30809847 DOI: 10.1002/jnr.24391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
Abstract
One prominent feature of human brain asymmetry is the cerebral torque. To investigate whether this characteristic is shared with chimpanzees who are our closest extant relative, we developed an automatic method to compute cerebral hemisphere width and perimeter length on consecutive 2D sections through 3D MR images obtained in vivo for 91 human and 78 chimpanzee brains. In brief, contiguous inter-hemispheric width and perimeter asymmetries were calculated on coronal sections, which in profile allow us to examine asymmetry in relation to speciation. The right frontal and left occipital asymmetry (greater posteriorly in females) distinguishes humans from chimpanzees. This result is consistent with a major saltational (discontinuity) event occurring at some point after the separation of humanity and the great apes in the last 6 million years.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy Crow
- University Department of Psychiatry, Warneford Hospital, Oxford, United Kingdom
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|