1
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
2
|
de Oliveira Pereira T, Groleau MC, Déziel E. Surface growth of Pseudomonas aeruginosa reveals a regulatory effect of 3-oxo-C 12-homoserine lactone in the absence of its cognate receptor, LasR. mBio 2023; 14:e0092223. [PMID: 37732738 PMCID: PMC10653899 DOI: 10.1128/mbio.00922-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE The bacterium Pseudomonas aeruginosa colonizes and thrives in many environments, in which it is typically found in surface-associated polymicrobial communities known as biofilms. Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular communication system pivotal in the expression of social traits. Regardless of its importance in QS regulation, the loss of function of the master regulator LasR is now considered a conserved adaptation of P. aeruginosa, irrespective of the origin of the strains. By investigating the QS circuitry in surface-grown cells, we found an accumulation of QS signal 3-oxo-C12-HSL in the absence of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-grown cells. This provides a new perspective on the beneficial aspects that underline the frequency of LasR-deficient isolates.
Collapse
Affiliation(s)
- Thays de Oliveira Pereira
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
3
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
4
|
Marzhoseyni Z, Mousavi MJ, Saffari M, Ghotloo S. Immune escape strategies of Pseudomonas aeruginosa to establish chronic infection. Cytokine 2023; 163:156135. [PMID: 36724716 DOI: 10.1016/j.cyto.2023.156135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The infection caused by P. aeruginosa still is dangerous throughout the world. This is partly due to its immune escape mechanisms considerably increasing the bacterial survival in the host. By escape from recognition by TLRs, interference with complement system activation, phagocytosis inhibition, production of ROS, inhibition of NET production, interference with the generation of cytokines, inflammasome inhibition, reduced antigen presentation, interference with cellular and humoral immunity, and induction of apoptotic cell death and MDSc, P. aeruginosa breaks down the barriers of the immune system and causes lethal infections in the host. Recognition of other immune escape mechanisms of P. aeruginosa may provide a basis for the future treatment of the infection. This manuscript may provide new insights and information for the development of new strategies to combat P. aeruginosa infection. In the present manuscript, the escape mechanisms of P. aeruginosa against immune response would be reviewed.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Laganenka L, Sourjik V. Bacterial Quorum Sensing Signals at the Interdomain Interface. Isr J Chem 2022. [DOI: 10.1002/ijch.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Marburg Germany
| |
Collapse
|
6
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
7
|
Gao T, Zhang Y, Shi J, Mohamed SR, Xu J, Liu X. The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum. Front Microbiol 2021; 12:762844. [PMID: 34867894 PMCID: PMC8634675 DOI: 10.3389/fmicb.2021.762844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
Collapse
Affiliation(s)
- Tao Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yao Zhang
- School of Food Science And Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza, Egypt
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Shin J, Ahn SH, Kim SH, Oh DJ. N-3-oxododecanoyl homoserine lactone exacerbates endothelial cell death by inducing receptor-interacting protein kinase 1-dependent apoptosis. Am J Physiol Cell Physiol 2021; 321:C644-C653. [PMID: 34432536 DOI: 10.1152/ajpcell.00094.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is associated with the initiation of sepsis-associated organ failure. Bacterial quorum-sensing molecules act as pathogen-associated molecular patterns; however, the effects of quorum-sensing molecules on endothelial cells remain less understood. This study investigated the molecular mechanisms of quorum-sensing molecule-induced cell death and their interaction with lipopolysaccharide (LPS) in human umbilical vein endothelial cells. Endothelial cells were treated with N-3-oxododecanoyl homoserine lactone (3OC12-HSL) and LPS derived from Pseudomonas aeruginosa. Treatment with 3OC12-HSL reduced cell viability in a dose-dependent manner, and cotreatment with 3OC12-HSL and LPS enhanced cell death. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay revealed an increase in apoptotic cell death following 3OC12-HSL treatment; furthermore, cotreatment with 3OC12-HSL and LPS enhanced apoptosis. Western blotting revealed that treatment with 3OC12-HSL activated the receptor-interacting protein kinase 1 (RIPK1) pathway, leading to an increase in the levels of cleaved caspase 8 and 3. In addition, we found that treatment with necrostatin-1, an RIPK1 inhibitor, reduced cell death and ameliorated the activation of the RIPK1-dependent apoptotic pathway in 3OC12-HSL-treated cells. In conclusion, 3OC12-HSL induced endothelial cell apoptosis via the activation of the RIPK1 pathway, independent of LPS toxicity. Inhibition of RIPK1 may act as a therapeutic option for preserving endothelial cell integrity in patients with sepsis by disrupting the mechanism by which quorum-sensing molecules mediate their toxicity.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Su Hyun Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| |
Collapse
|
9
|
Guo J, Yoshida K, Ikegame M, Okamura H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J Oral Biosci 2020; 62:16-29. [DOI: 10.1016/j.job.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
10
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
11
|
Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxo-dodecanoyl)-l-homoserine lactone triggers mitochondrial dysfunction and apoptosis in neutrophils through calcium signaling. Med Microbiol Immunol 2019; 208:855-868. [DOI: 10.1007/s00430-019-00631-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 01/29/2023]
|
12
|
Accelerated and scarless wound repair by a multicomponent hydrogel through simultaneous activation of multiple pathways. Drug Deliv Transl Res 2019; 9:1143-1158. [DOI: 10.1007/s13346-019-00660-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Bian X, Wu S, Yin X, Mu L, Yan F, Kong L, Guo Z, Wu L, Ye J. Lyn is involved in host defense against S. agalactiae infection and BCR signaling in Nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:1-8. [PMID: 30822451 DOI: 10.1016/j.dci.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Lyn, a member of Src protein kinase family, plays a crucial role in immune reactions against pathogenic infection. In this study, Lyn from Nile tilapia (Oreochromis niloticus) (OnLyn) was identified and characterized at expression pattern against bacterial infection, and regulation function in BCR signaling. The open reading frame of OnLyn contained 1536 bp of nucleotide sequence encoded a protein of 511 amino acids. The OnLyn protein was highly conversed to other species Lyn, including SH3, SH2 and a catalytic Tyr kinase (TyrKc) domain. Transcriptional expression analysis revealed that OnLyn was detected in all examined tissues and was highly expressed in the head kidney. The up-regulation OnLyn expression was observed in the head kidney and spleen following challenge with Streptococcus agalactiae (S. agalactiae) in vivo, and was also displayed in head kidney leukocytes challenge with S. agalactiae and LPS in vitro. In addition, after induction with mouse anti-OnIgM mAb in vitro, the OnLyn expression and phosphorylation of OnLyn (Y507) were significantly up-regulated in the head kidney leukocytes. Moreover, after treatment with AZD0530 and mouse anti-OnIgM monoclonal antibody, the down-regulation of cytoplasmic free-Ca2+ concentration was detected in the head kidney leukocytes in vitro. Taken together, the findings of this study revealed that OnLyn might play potential roles in BCR signaling and get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Siwei Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Fangfang Yan
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Linghe Kong
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Zheng Guo
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liting Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Nishimura-Danjobara Y, Oyama K, Oyama TM, Yokoigawa K, Oyama Y. Modification of cell vulnerability to oxidative stress by N-(3-oxododecanoyl)-L-homoserine-lactone, a quorum sensing molecule, in rat thymocytes. Chem Biol Interact 2019; 302:143-148. [PMID: 30779908 DOI: 10.1016/j.cbi.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 11/18/2022]
Abstract
N-(3-oxododecanoyl)-l-homoserine-lactone (ODHL), a quorum sensing molecule, affects intracellular Zn2+ concentration ([Zn2+]i) and cellular levels of nonprotein thiols ([NPT]i) of rat thymic lymphocytes, both of which are assumed to affect cell vulnerability to oxidative stress. Therefore, it is interesting to examine the effects of ODHL on the cells under oxidative stress. ODHL augmented the cytotoxicity of H2O2, but not calcium ionophore A23187. ODHL potentiated the H2O2-induced elevation of [Zn2+]i, wherein, it greatly attenuated the H2O2-induced increase in intracellular Ca2+ concentration. ODHL did not affect [NPT]i in the presence of H2O2. Therefore, we conclude that the elevation of [Zn2+]i is involved in the ODHL-induced potentiation of H2O2 cytotoxicity. Our findings suggest that ODHL modifies cell vulnerability to oxidative stress in host cells.
Collapse
Affiliation(s)
| | - Keisuke Oyama
- Sakai City Medical Center, Sakai, Osaka, 593-8304, Japan.
| | | | - Kumio Yokoigawa
- Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan.
| | - Yasuo Oyama
- Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan.
| |
Collapse
|
15
|
A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron 2018; 102:396-402. [DOI: 10.1016/j.bios.2017.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/23/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022]
|
16
|
Nishimura-Danjobara Y, Oyama K, Yokoigawa K, Oyama Y. Hyperpolarization by N-(3-oxododecanoyl)-l-homoserine-lactone, a quorum sensing molecule, in rat thymic lymphocytes. Chem Biol Interact 2018; 283:91-96. [PMID: 29427588 DOI: 10.1016/j.cbi.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 11/25/2022]
Abstract
To study the adverse effects of N-(3-oxododecanoyl)-l-homoserine-lactone (ODHL), a quorum sensing molecule, on mammalian host cells, its effect on membrane potential was examined in rat thymic lymphocytes using flow cytometric techniques with a voltage-sensitive fluorescent probe. As 3-300 μM ODHL elicited hyperpolarization, it is likely that it increases membrane K+ permeability because hyperpolarization is directly linked to changing K+ gradient across membranes, but not Na+ and Cl- gradients. ODHL did not increase intracellular Ca2+ concentration. ODHL also produced a response in the presence of an intracellular Zn2+ chelator. Thus, it is unlikely that intracellular Ca2+ and Zn2+ are attributed to the response. Quinine, a non-specific K+ channel blocker, greatly reduced hyperpolarization. However, because charybdotoxin, tetraethylammonium chloride, 4-aminopyridine, and glibenclamide did not affect it, it is pharmacologically hypothesized that Ca2+-activated K+ channels, voltage-gated K+ channels, and ATP-sensitive K+ channels are not involved in ODHL-induced hyperpolarization. Although the K+ channels responsible for ODHL-induced hyperpolarization have not been identified, it is suggested that ODHL can elicit hyperpolarization in mammalian host cells, disturbing cellular functions.
Collapse
Affiliation(s)
- Yumiko Nishimura-Danjobara
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kumio Yokoigawa
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
17
|
Nishimura-Danjobara Y, Oyama K, Kanemaru K, Takahashi K, Yokoigawa K, Oyama Y. N-(3-oxododecanoyl)-l-homoserine-lactone, a quorum sensing molecule, affects cellular content of nonprotein thiol content in rat lymphocytes: Its relation with intracellular Zn 2. Chem Biol Interact 2018; 280:28-32. [PMID: 29223568 DOI: 10.1016/j.cbi.2017.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Cellular actions of N-(3-oxododecanoyl)-l-homoserine-lactone (ODHL), a quorum sensing molecule of bacteria, were studied on rat thymocytes using a flow cytometer with appropriate fluorescent dyes to elucidate the effects of ODHL on host cells. A bell-shaped concentration-response relation was observed in the ODHL-induced changes in cellular glutathione content ([GSH]i). ODHL concentration-dependently increased intracellular Zn2+ levels ([Zn2+]i) and cellular O2- content ([O2-]i). The bell-shaped relation induced by ODHL can be explained as follows: a low concentration of ODHL is expected to induce moderate oxidative stress that intracellularly releases Zn2+ by converting thiols to disulfides. A slight elevation of [Zn2+]i may increase the [GSH]i. On the other hand, it is likely that a high concentration of ODHL causes severe oxidative stress that further causes both the decrease in [GSH]i and the increase in [Zn2+]i. Excessive increase in [Zn2+]i may augment oxidative stress that further decreases the [GSH]i. Other notable actions induced by ODHL included the elevation of [Zn2+]i by Zn2+ influx and the increase in [GSH]i under Zn2+-free conditions. Therefore, it is suggested that ODHL elicits diverse actions on host cells.
Collapse
Affiliation(s)
- Yumiko Nishimura-Danjobara
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kaori Kanemaru
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keiko Takahashi
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kumio Yokoigawa
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
18
|
Abstract
Antibiotics are undoubtedly a pillar of modern medicine; their discovery in 1929 revolutionized the fight against infectious disease, instigating a worldwide decline in infection-associated mortality. Throughout the 1930s, 1940s, and 1950s the golden age of antibiotic discovery was underway with numerous new classes of antibiotics identified and brought to market. By 1962 all of our currently known families of antibiotics had been discovered, and it was a widely held belief, that humanity had conquered infectious disease. Despite varying bacterial cellular targets, most antibiotics targeted exponentially multiplying bacteria by interfering with integral processes such as peptidoglycan synthesis or ribosomal activity. The very nature of this targeted approach has driven the emergence of antibiotic-resistant bacteria.Methods of antibiotic identification relied solely on scientific observation, and while chemical analogues such as amoxicillin, derived from penicillin, continued to be developed, they retained the same mechanisms of action and hence the same bacterial targets. This article describes and discusses some of the emerging novel targets for antimicrobial treatments, highlighting pivotal research on which our ability to continue to successfully treat bacterial infection relies.
Collapse
|
19
|
Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B. Peptides as Quorum Sensing Molecules: Measurement Techniques and Obtained Levels In vitro and In vivo. Front Neurosci 2017; 11:183. [PMID: 28446863 PMCID: PMC5388746 DOI: 10.3389/fnins.2017.00183] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Severine De Craemer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, AZ GroeningeKortrijk, Belgium.,Department of Nuclear Medicine and Radiology, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
20
|
The bacterial quorum-sensing molecule, N-3-oxo-dodecanoyl-L-homoserine lactone, inhibits mediator release and chemotaxis of murine mast cells. Inflamm Res 2016; 66:259-268. [PMID: 27896412 DOI: 10.1007/s00011-016-1013-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Bacterial colonization relies on communication between bacteria via so-called "quorum-sensing molecules", which include the acyl-homoserine lactone group. Certain acyl-homoserine lactones can modulate mammalian cell function and are thought to contribute to bacterial pathogenicity. Given the role of mast cells in host defense, we investigated the ability of acyl-homoserine lactones to modulate mast cell function. METHODS We utilized murine primary mast cell cultures to assess the effect of acyl-homoserine lactones on degranulation and cytokine release in response to different stimuli. We also assessed cell migration in response to chemoattractants. The effect of acyl-homoserine lactones in vivo was tested using a passive cutaneous anaphylaxis model. RESULTS Two of the tested quorum-sensing molecules, N-3-oxo-dodecanoyl-L-homoserine lactone and N-Dodecanoyl-L-homoserine lactone, inhibited IgE dependent and independent degranulation and mediator release from primary mast cells. Further testing of N-3-oxo-dodecanoyl-L-homoserine lactone, the most potent inhibitor and a product of Pseudomonas aeruginosa, revealed that it also attenuated chemotaxis and LPS induced cytokine production. In vivo, N-3-oxo-dodecanoyl-L-homoserine lactone inhibited the passive cutaneous anaphylaxis response in mice. CONCLUSION The ability of N-3-oxo-dodecanoyl-L-homoserine lactone to stabilize mast cells may contribute to the pathogenicity of P. aeruginosa but could potentially be exploited therapeutically in allergic disease.
Collapse
|
21
|
Watters C, Fleming D, Bishop D, Rumbaugh KP. Host Responses to Biofilm. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:193-239. [PMID: 27571696 DOI: 10.1016/bs.pmbts.2016.05.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand.
Collapse
Affiliation(s)
- C Watters
- Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - D Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - D Bishop
- Wound Infections Department, Naval Medical Research Center, Silver Spring, MD, United States
| | - K P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
22
|
Wang YW, Zhang JH, Yu Y, Yu J, Huang L. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis. Biomol Ther (Seoul) 2016; 24:371-9. [PMID: 27169819 PMCID: PMC4930280 DOI: 10.4062/biomolther.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury.
Collapse
Affiliation(s)
- Yan-Wei Wang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
23
|
Pseudomonas aeruginosa Quorum Sensing Molecule N-(3-Oxododecanoyl)-L-Homoserine-Lactone Induces HLA-G Expression in Human Immune Cells. Infect Immun 2015. [PMID: 26195547 DOI: 10.1128/iai.00803-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
HLA-G is a nonclassical class I human leukocyte antigen (HLA) involved in mechanisms of immune tolerance. The objective of this study was to determine whether N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL), a quorum sensing molecule produced by Pseudomonas aeruginosa, could modify HLA-G expression to control the host immune response. We evaluated the ability of 3O-C12-HSL to induce HLA-G expression in primary immune cells, monocytes (U937 and THP1), and T-cell lines (Jurkat) in vitro and analyzed the cellular pathway responsible for HLA-G expression. We studied the HLA-G promoter with a luciferase assay and interleukin-10 (IL-10) and p38/CREB signaling with enzyme-linked immunosorbent assay and immunofluorescence, respectively. We observed that 3O-C12-HSL is able to induce HLA-G expression in human monocytes and T cells. We showed that the induction of HLA-G by 3O-C12-HSL is p38/CREB and IL-10 dependent. 3O-C12-HSL treatment is able to arrest only the U937 cell cycle, possibly due to the peculiar expression of the ILT2 receptor in the U937 cell line. Our observations suggest HLA-G as a mechanism to create a protected niche for the bacterial reservoir, similar to the role of HLA-G molecules during viral infections.
Collapse
|
24
|
Forsythe P. Microbes taming mast cells: Implications for allergic inflammation and beyond. Eur J Pharmacol 2015; 778:169-75. [PMID: 26130124 DOI: 10.1016/j.ejphar.2015.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
There is increasing awareness of a relationship between our microbiota and the pathogenesis of allergy and other inflammatory diseases. In investigating the mechanisms underlying microbiota modulation of allergy the focus has been on the induction phase; alterations in the phenotype and function of antigen presenting cells, induction of regulatory T cells and shifts in Th1/Th2 balance. However there is evidence that microbes can influence the effector phase of disease, specifically that certain potentially beneficial bacteria can attenuate mast cell activation and degranulation. Furthermore, it appears that different non-pathogenic bacteria can utilize distinct mechanisms to stabilize mast cells, acting locally though direct interaction with the mast cell at mucosal sites or attenuating systemic mast cell dependent responses, likely through indirect signaling mechanisms. The position of mast cells on the frontline of defense against pathogens also suggests they may play an important role in fostering the host-microbiota relationship. Mast cells are also conduits of neuro-immuo-endocrine communication, suggesting the ability of microbes to modulate cell responses may have implications for host physiology beyond immunology. Further investigation of mast cell regulation by non-pathogenic or symbiotic bacteria will likely lead to a greater understanding of host microbiota interaction and the role of the microbiome in health and disease.
Collapse
Affiliation(s)
- Paul Forsythe
- McMaster Brain-Body Institute at St. Joseph's Healthcare, Hamilton, The Firestone Institute for Respiratory Health and Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
25
|
Guo M, Zheng Y, Starks R, Opoku-Temeng C, Ma X, Sintim HO. 3-Aminooxazolidinone AHL analogs as hydrolytically-stable quorum sensingagonists in Gram-negative bacteria. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrolytically stable 3-aminooxazolidinone analogs of acylhomoserine lactone quorum sensing autoinducers can modulate LuxR-type proteins and hence analogs thereof hold promise as quorum sensing modulators for diverse applications.
Collapse
Affiliation(s)
- Min Guo
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Yue Zheng
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Rusty Starks
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | | | - Xiaochu Ma
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| |
Collapse
|
26
|
Grabiner MA, Fu Z, Wu T, Barry KC, Schwarzer C, Machen TE. Pseudomonas aeruginosa quorum-sensing molecule homoserine lactone modulates inflammatory signaling through PERK and eI-F2α. THE JOURNAL OF IMMUNOLOGY 2014; 193:1459-67. [PMID: 24990083 DOI: 10.4049/jimmunol.1303437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.
Collapse
Affiliation(s)
- Mark A Grabiner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Zhu Fu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Tara Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kevin C Barry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
27
|
Bai Y, Zhao X, Qi C, Wang L, Cheng Z, Liu M, Liu J, Yang D, Wang S, Chai T. Effects of chromium picolinate on the viability of chick embryo fibroblast. Hum Exp Toxicol 2014; 33:403-413. [PMID: 23925942 DOI: 10.1177/0960327113499042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium picolinate (CrPic), which is used as a nutritional supplement and to treat type 2 diabetes, has gained much attention because of its cytotoxicity. This study evaluated the effects of CrPic on the viability of the chick embryo fibroblast (CEF) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, morphological detection, and flow cytometry. The results show that lower concentrations of CrPic (8 and 16 μM) did not damage CEF viability (p > 0.05). However, higher CrPic concentrations (400 and 600 μM) indicated a highly significant effect on the production of intracellular reactive oxygen species, alteration of mitochondrial membrane potential, intracellular calcium ion concentration, and the apoptosis rate (p < 0.01), contrary to lower CrPic concentrations (8 and 16 μM) and control group. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrPic was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress-induced mitochondrial dysfunction was apoptotic death.
Collapse
Affiliation(s)
- Y Bai
- 1College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schwarzer C, Ravishankar B, Patanwala M, Shuai S, Fu Z, Illek B, Fischer H, Machen TE. Thapsigargin blocks Pseudomonas aeruginosa homoserine lactone-induced apoptosis in airway epithelia. Am J Physiol Cell Physiol 2014; 306:C844-55. [PMID: 24598360 DOI: 10.1152/ajpcell.00002.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa secretes N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression. Micromolar concentrations are found in the airway surface liquid of infected lungs. Exposure of the airway surface to C12 caused a loss of transepithelial resistance within 1 h that was accompanied by disassembly of tight junctions, as indicated by relocation of the tight junction protein zonula occludens 1 from the apical to the basolateral pole and into the cytosol of polarized human airway epithelial cell cultures (Calu-3 and primary tracheal epithelial cells). These effects were blocked by carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone, a pan-caspase blocker, indicating that tight junction disassembly was an early event in C12-triggered apoptosis. Short-duration (10 min) pretreatment of airway epithelial (Calu-3 and JME) cells with 1 μM thapsigargin (Tg), an inhibitor of Ca(2+) uptake into the endoplasmic reticulum (ER), was found to be protective against the C12-induced airway epithelial barrier breakdown and also against other apoptosis-related effects, including shrinkage and fragmentation of nuclei, activation of caspase 3/7 (the executioner caspase in apoptosis), release of ER-targeted redox-sensitive green fluorescent protein into the cytosol, and depolarization of mitochondrial membrane potential. Pretreatment of Calu-3 airway cell monolayers with BAPTA-AM [to buffer cytosolic Ca(2+) concentration (Cacyto)] or Ca(2+)-free solution + BAPTA-AM reduced C12 activation of apoptotic events, suggesting that C12-triggered apoptosis may involve Ca(2+). Because C12 and Tg reduced Ca(2+) concentration in the ER and increased Cacyto, while Tg increased mitochondrial Ca(2+) concentration (Camito) and C12 reduced Camito, it is proposed that Tg may reduce C12-induced apoptosis in host cells not by raising Cacyto, but by preventing C12-induced decreases in Camito.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California; and
| | | | | | | | | | | | | | | |
Collapse
|
29
|
He T, Qi F, Jia L, Wang S, Song N, Guo L, Fu Y, Luo Y. MicroRNA-542-3p inhibits tumour angiogenesis by targeting angiopoietin-2. J Pathol 2014; 232:499-508. [PMID: 24403060 DOI: 10.1002/path.4324] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/15/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Angiopoietin-2 (Angpt2) plays a critical role in angiogenesis and tumour progression. Therapeutic targeting of Angpt2 has been implicated as a promising strategy for cancer treatment. Whereas miRNAs are emerging as important modulators of angiogenesis, regulation of Angpt2 by miRNAs has not been established. Here we firstly report that Ang2 is targeted by a microRNA, miRNA-542-3p, which inhibits tumour progression by impairing Ang2's pro-angiogenic activity. In cultured endothelial cells, miR-542-3p inhibited translation of Angpt2 mRNA by binding to its 3' UTR, and addition of miR-542-3p to cultured endothelial cells attenuated angiogenesis. Administration of miR-542-3p to tumour-bearing mice reduced tumour growth, angiogenesis and metastasis. Furthermore, the level of miR-542-3p in primary breast carcinomas correlated inversely with clinical progression in primary tumour samples from stage III and IV patients. Together, these findings uncover a novel regulatory pathway whereby an anti-angiogenic miR-542-3p directly targets the key angiogenesis-promoting protein Angpt2, suggesting that miR-542-3p may represent a promising target for anti-angiogenic therapy and a potential marker for monitoring disease progression.
Collapse
Affiliation(s)
- Ting He
- National Engineering Laboratory for Anti-tumour Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics and Cancer Biology Laboratory, and School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schwarzer C, Fu Z, Shuai S, Babbar S, Zhao G, Li C, Machen TE. Pseudomonas aeruginosa homoserine lactone triggers apoptosis and Bak/Bax-independent release of mitochondrial cytochrome C in fibroblasts. Cell Microbiol 2014; 16:1094-104. [PMID: 24438098 DOI: 10.1111/cmi.12263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/16/2013] [Accepted: 01/09/2014] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa use N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and underlying fibroblasts, capillary endothelia and white blood cells. Previous work showed that C12 has multiple effects in human host cells, including activation of apoptosis. The present work tested the involvement of Bak and Bax in C12-triggered apoptosis in mouse embryo fibroblasts (MEF) by comparing MEF isolated from embryos of wild-type (WT) and Bax(-/-) /Bak(-/-) (DKO) mice. In WT MEF C12 rapidly triggered (minutes to 2 h): activation of caspases 3/7 and 8, depolarization of mitochondrial membrane potential (Δψmito ), release of cytochrome C from mitochondria into the cytosol, blebbing of plasma membranes, shrinkage/condensation of cells and nuclei and, subsequently, cell killing. A DKO MEF line that was relatively unaffected by the Bak/Bax-dependent proapoptotic stimulants staurosporine and etoposide responded to C12 similarly to WT MEF: activation of caspase 3/7, depolarization of Δψmito and release of cytochrome C and cell death. Re-expression of Bax or Bak in DKO MEF did not alter the WT-like responses to C12 in DKO MEF. These data showed that C12 triggers novel, rapid proapoptotic Bak/Bax-independent responses that include events commonly associated with activation of both the intrinsic pathway (depolarization of Δψmito and release of cytochrome C from mitochondria into the cytosol) and the extrinsic pathway (activation of caspase 8). Unlike the proapoptotic agonists staurosporine and etoposide that release cytochrome C from mitochondria, C12's effects do not require participation of either Bak or Bax.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang J, Gong F, Li L, Zhao M, Song J. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response. Biomed Rep 2014; 2:233-238. [PMID: 24649102 DOI: 10.3892/br.2014.225] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022] Open
Abstract
N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a quorum-sensing signal molecule produced by Pseudomonas aeruginosa (P. aeruginosa), is involved in the expression of bacterial virulence factors and in the modulation of host immune responses by directly disrupting nuclear factor-κB (NF-κB) signaling and inducing cell apoptosis. The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress may suppress inflammatory responses in the later phase by blocking NF-κB activation. It was recently demonstrated that 3-oxo-C12-HSL may induce UPR in human aortic endothelial cells (HAECs). Therefore, 3-oxo-C12-HSL may also inhibit NF-κB activation and suppress inflammatory responses by activating UPR. However, the possible underlying mechanism has not been fully elucidated. Accordingly, we investigated the effects of 3-oxo-C12-HSL on cellular viability, UPR activation, lipopolysaccharide (LPS)-induced NF-κB activation and inflammatory response in the RAW264.7 mouse macrophage cell line. Treatment with 6.25 μM 3-oxo-C12-HSL was not found to affect the viability of RAW264.7 cells. However, pretreating RAW264.7 cells with 6.25 μM 3-oxo-C12-HSL effectively triggered UPR and increased the expression of UPR target genes, such as CCAAT/enhancer-binding protein β (C/EBP β) and CCAAT/enhancer-binding protein-homologous protein (CHOP). The expression of C/EBP β and CHOP was found to be inversely correlated with LPS-induced NF-κB activation. 3-Oxo-C12-HSL pretreatment was also shown to inhibit LPS-stimulated proinflammatory cytokine production. Hence, 3-oxo-C12-HSL may attenuate LPS-induced inflammation via UPR-mediated NF-κB inhibition without affecting cell viability. This may be another mechanism through which P. aeruginosa evades the host immune system and maintains a persistent infection.
Collapse
Affiliation(s)
- Jiangguo Zhang
- Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fengyun Gong
- Department of Infectious Diseases, Pu'ai Hospital of Wuhan, Wuhan, Hubei 430032, P.R. China
| | - Ling Li
- Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Manzhi Zhao
- Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jianxin Song
- Department of Infectious Diseases, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
32
|
Zhang Y, Huang L, Zuo Z, Chen Y, Wang C. Phenanthrene exposure causes cardiac arrhythmia in embryonic zebrafish via perturbing calcium handling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:26-32. [PMID: 23948075 DOI: 10.1016/j.aquatox.2013.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Phenanthrene (Phe) is one of the most abundant and ubiquitous polycyclic aromatic hydrocarbons in the aquatic environment. It is known that Phe has cardiotoxic effects, but knowledge concerning the mechanism of cardiac dysfunction caused by Phe is still limited. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of Phe, and an increase of an irregular rhythm was observed in Phe treated embryos. Disordered calcium (Ca(2+)) handling characterized by impaired sarcoplasmic reticulum Ca(2+) uptake, and obvious Ca(2+) accumulation in the cytoplasm was observed in rat embryonic cardiac myoblasts (H9C2) exposed to Phe. The mRNA level as well as protein expression of the SERCA2a Ca(2+) pump in zebrafish hearts or H9C2 cells was significantly decreased by Phe exposure. The activity of Ca(2+)-ATPase in H9C2 cells was inhibited by Phe. Both the mRNA and protein levels of TBX5, a direct regulator of SERCA2a, were significantly decreased by Phe exposure. These results suggested that exposure to Phe could lead to arrhythmia in zebrafish embryos via perturbing the calcium handling pathway.
Collapse
Affiliation(s)
- Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | | | | | | | | |
Collapse
|
33
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
34
|
Glucksam-Galnoy Y, Sananes R, Silberstein N, Krief P, Kravchenko VV, Meijler MM, Zor T. The bacterial quorum-sensing signal molecule N-3-oxo-dodecanoyl-L-homoserine lactone reciprocally modulates pro- and anti-inflammatory cytokines in activated macrophages. THE JOURNAL OF IMMUNOLOGY 2013; 191:337-44. [PMID: 23720811 DOI: 10.4049/jimmunol.1300368] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bacterial molecule N-3-oxo-dodecanoyl-l-homoserine lactone (C12) has critical roles in both interbacterial communication and interkingdom signaling. The ability of C12 to downregulate production of the key proinflammatory cytokine TNF-α in stimulated macrophages was suggested to contribute to the establishment of chronic infections by opportunistic Gram-negative bacteria, such as Pseudomonas aeruginosa. We show that, in contrast to TNF-α suppression, C12 amplifies production of the major anti-inflammatory cytokine IL-10 in LPS-stimulated murine RAW264.7 macrophages, as well as peritoneal macrophages. Furthermore, C12 increased IL-10 mRNA levels and IL-10 promoter reporter activity in LPS-stimulated RAW264.7 macrophages, indicating that C12 modulates IL-10 expression at the transcriptional level. Finally, C12 substantially potentiated LPS-stimulated NF-κB DNA-binding levels and prolonged p38 MAPK phosphorylation in RAW264.7 macrophages, suggesting that increased transcriptional activity of NF-κB and/or p38-activated transcription factors serves to upregulate IL-10 production in macrophages exposed to both LPS and C12. These findings reveal another part of the complex array of host transitions through which opportunistic bacteria downregulate immune responses to flourish and establish a chronic infection.
Collapse
Affiliation(s)
- Yifat Glucksam-Galnoy
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Kanno E, Kawakami K, Miyairi S, Tanno H, Otomaru H, Hatanaka A, Sato S, Ishii K, Hayashi D, Shibuya N, Imai Y, Gotoh N, Maruyama R, Tachi M. Neutrophil-derived tumor necrosis factor-α contributes to acute wound healing promoted by N-(3-oxododecanoyl)-l-homoserine lactone from Pseudomonas aeruginosa. J Dermatol Sci 2013; 70:130-8. [DOI: 10.1016/j.jdermsci.2013.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/29/2012] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
|
36
|
Kravchenko VV, Kaufmann GF. Bacterial inhibition of inflammatory responses via TLR-independent mechanisms. Cell Microbiol 2013; 15:527-36. [DOI: 10.1111/cmi.12109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir V. Kravchenko
- Department of Immunology & Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road; La Jolla; CA; 92037; USA
| | | |
Collapse
|
37
|
Freestone P. Communication between Bacteria and Their Hosts. SCIENTIFICA 2013; 2013:361073. [PMID: 24381789 PMCID: PMC3871906 DOI: 10.1155/2013/361073] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 05/17/2023]
Abstract
It is clear that a dialogue is occurring between microbes and their hosts and that chemical signals are the language of this interkingdom communication. Microbial endocrinology shows that, through their long coexistence with animals and plants, microorganisms have evolved sensors for detecting eukaryotic hormones, which the microbe uses to determine that they are within proximity of a suitable host and to optimally time the expression of genes needed for host colonisation. It has also been shown that some prokaryotic chemical communication signals are recognized by eukaryotes. Deciphering what is being said during the cross-talk between microbe and host is therefore important, as it could lead to new strategies for preventing or treating bacterial infections.
Collapse
Affiliation(s)
- Primrose Freestone
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester LE1 9HN, UK
- *Primrose Freestone:
| |
Collapse
|
38
|
LIU XIAOYU, WANG ZHE, WANG RUI, ZHAO FENG, SHI PING, JIANG YIDE, PANG XINING. Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds. Int J Mol Med 2012; 31:407-15. [DOI: 10.3892/ijmm.2012.1199] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/09/2012] [Indexed: 11/06/2022] Open
|
39
|
Bandyopadhaya A, Kesarwani M, Que YA, He J, Padfield K, Tompkins R, Rahme LG. The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests. PLoS Pathog 2012; 8:e1003024. [PMID: 23166496 PMCID: PMC3499575 DOI: 10.1371/journal.ppat.1003024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/26/2012] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence indicates that bacterial quorum sensing (QS) signals are important mediators of immunomodulation. However, whether microbes utilize these immunomodulatory signals to maintain infection remain unclear. Here, we show that the Pseudomonas aeruginosa QS-regulated molecule 2-amino acetophenone (2-AA) modulates host immune responses in a manner that increases host ability to cope with this pathogen. Mice treated with 2-AA prior to infection had a 90% survival compared to 10% survival rate observed in the non-pretreated infected mice. Whilst 2-AA stimulation activates key innate immune response pathways involving mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-κB, and pro-inflammatory cytokines, it attenuates immune response activation upon pretreatment, most likely by upregulating anti-inflammatory cytokines. 2-AA host pretreatment is characterized by a transcriptionally regulated block of c-JUN N-terminal kinase (JNK) and NF-κB activation, with relatively preserved activation of extracellular regulated kinase (ERK) 1/2. These kinase changes lead to CCAAT/enhancer-binding protein-β (c/EBPβ) activation and formation of the c/EBPβ-p65 complex that prevents NF-κB activation. 2-AA's aptitude for dampening the inflammatory processes while increasing host survival and pathogen persistence concurs with its ability to signal bacteria to switch to a chronic infection mode. Our results reveal a QS immunomodulatory signal that promotes original aspects of interkingdom communication. We propose that this communication facilitates pathogen persistence, while enabling host tolerance to infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Meenu Kesarwani
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Yok-Ai Que
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Katie Padfield
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Ronald Tompkins
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Laurence G. Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Paraoxonases-2 and -3 Are Important Defense Enzymes against Pseudomonas aeruginosa Virulence Factors due to Their Anti-Oxidative and Anti-Inflammatory Properties. J Lipids 2012; 2012:352857. [PMID: 22570791 PMCID: PMC3335252 DOI: 10.1155/2012/352857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/01/2012] [Indexed: 11/17/2022] Open
Abstract
The pathogen Pseudomonas aeruginosa causes serious damage in immunocompromised patients by secretion of various virulence factors, among them the quorum sensing N-(3-oxododecanoyl)-L-homoserine lactone (3OC12) and the redox-active pyocyanin (PCN). Paraoxonase-2 (PON2) may protect against P. aeruginosa infections, as it efficiently inactivates 3OC12 and diminishes PCN-induced oxidative stress. This defense could be circumvented because 3OC12 mediates intracellular Ca(2+)-rise in host cells, which causes rapid inactivation and degradation of PON2. Importantly, we recently found that the PON2 paralogue PON3 prevents mitochondrial radical formation. Here we investigated its role as additional potential defense mechanism against P. aeruginosa infections. Our studies demonstrate that PON3 diminished PCN-induced oxidative stress. Moreover, it showed clear anti-inflammatory potential by protecting against NF-κB activation and IL-8 release. The latter similarly applied to PON2. Furthermore, we observed a Ca(2+)-mediated inactivation and degradation of PON3, again in accordance with previous findings for PON2. Our results suggest that the anti-oxidative and anti-inflammatory functions of PON2 and PON3 are an important part of our innate defense system against P. aeruginosa infections. Furthermore, we conclude that P. aeruginosa circumvents PON3 protection by the same pathway as for PON2. This may help identifying underlying mechanisms in order to sustain the protection afforded by these enzymes.
Collapse
|
41
|
Schwarzer C, Fu Z, Patanwala M, Hum L, Lopez-Guzman M, Illek B, Kong W, Lynch SV, Machen TE. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol 2012; 14:698-709. [PMID: 22233488 DOI: 10.1111/j.1462-5822.2012.01753.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jadhav GP, Chhabra SR, Telford G, Hooi DSW, Righetti K, Williams P, Kellam B, Pritchard DI, Fischer PM. Immunosuppressive but non-LasR-inducing analogues of the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone. J Med Chem 2011; 54:3348-59. [PMID: 21488685 DOI: 10.1021/jm2001019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (1) is involved not only in bacterial activation but also in subversion of the host immune system, and this compound might thus be used as a template to design immunosuppressive agents, provided derivatives devoid of quorum-sensing activity could be discovered. By use of a leukocyte proliferation assay and a newly developed bioluminescent P. aeruginosa reporter assay, systematic modification of 1 allowed us to delineate the bacterial LasR-induction and host immunosuppressive activities. The main determinant is replacement of the methylene group proximal to the β-ketoamide in the acyl chain of 1 with functions containing heteroatoms, especially an NH group. This modification can be combined with replacement of the homoserine lactone system in 1 with stable cyclic groups. For example, we found the simple compound N(1)-(5-chloro-2-hydroxyphenyl)-N(3)-octylmalonamide (25d) to be over twice as potent as 1 as an immune suppressor while displaying LasR-induction antagonist activity.
Collapse
Affiliation(s)
- Gopal P Jadhav
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mayer ML, Sheridan JA, Blohmke CJ, Turvey SE, Hancock REW. The Pseudomonas aeruginosa autoinducer 3O-C12 homoserine lactone provokes hyperinflammatory responses from cystic fibrosis airway epithelial cells. PLoS One 2011; 6:e16246. [PMID: 21305014 PMCID: PMC3031552 DOI: 10.1371/journal.pone.0016246] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/07/2010] [Indexed: 12/02/2022] Open
Abstract
The discovery of novel antiinflammatory targets to treat inflammation in the cystic fibrosis (CF) lung stands to benefit patient populations suffering with this disease. The Pseudomonas aeruginosa quorum sensing autoinducer N-3-oxododecanoyl homoserine lactone (3O-C12) is an important bacterial virulence factor that has been reported to induce proinflammatory cytokine production from a variety of cell types. The goal of this study was to examine the ability of 3O-C12 to induce proinflammatory cytokine production in normal and CF bronchial epithelial cells, and better understand the cellular mechanisms by which this cytokine induction occurs. 3O-C12 was found to induce higher levels of IL-6 production in the CF cell lines IB3-1 and CuFi, compared to their corresponding control cell lines C38 and NuLi. Systems biology and network analysis revealed a high predominance of over-represented innate immune pathways bridged together by calcium-dependant transcription factors governing the transcriptional responses of A549 airway cells to stimulation with 3O-C12. Using calcium-flux assays, 3O-C12 was found to induce larger and more sustained increases in intracellular calcium in IB3-1 cells compared to C38, and blocking this calcium flux with BAPTA-AM reduced the production of IL-6 by IB3-1 to the levels produced by C38. These data suggest that 3O-C12 induces proinflammatory cytokine production in airway epithelial cells in a calcium-dependent manner, and that dysregulated calcium storage or signalling in CF cells results in an increased production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Matthew L. Mayer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Jared A. Sheridan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Christoph J. Blohmke
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
44
|
Crabbé A, Sarker SF, Van Houdt R, Ott CM, Leys N, Cornelis P, Nickerson CA. Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model. Cell Microbiol 2010; 13:469-81. [PMID: 21054742 DOI: 10.1111/j.1462-5822.2010.01548.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The quorum sensing signal N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C(12) HSL), produced by Pseudomonas aeruginosa, exerts cytotoxic effects in macrophages in vitro, which is believed to affect host innate immunity in vivo. However, the medical significance of this finding to pulmonary disease remains unclear since the multicellular complexity of the lung was not considered in the assessment of macrophage responses to 3-oxo-C(12) HSL. We developed a novel three-dimensional co-culture model of alveolar epithelium and macrophages using the rotating wall vessel (RWV) bioreactor, by adding undifferentiated monocytes to RWV-derived alveolar epithelium. Our three-dimensional model expressed important architectural/phenotypic hallmarks of the parental tissue, as evidenced by highly differentiated epithelium, spontaneous differentiation of monocytes to functional macrophage-like cells, localization of these cells on the alveolar surface and a macrophage-to-epithelial cell ratio relevant to the in vivo situation. Co-cultivation of macrophages with alveolar epithelium counteracted 3-oxo-C(12) HSL-induced cytotoxicity via removal of quorum sensing molecules by alveolar cells. Furthermore, 3-oxo-C(12) HSL induced the intercellular adhesion molecule ICAM-1 in both alveolar epithelium and macrophages. These data stress the importance of multicellular organotypic models to integrate the role of different cell types in overall lung homeostasis and disease development in response to external factors.
Collapse
Affiliation(s)
- Aurélie Crabbé
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, 85287, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Schwarzer C, Wong S, Shi J, Matthes E, Illek B, Ianowski JP, Arant RJ, Isacoff E, Vais H, Foskett JK, Maiellaro I, Hofer AM, Machen TE. Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia. J Biol Chem 2010; 285:34850-63. [PMID: 20739289 DOI: 10.1074/jbc.m110.167668] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The ubiquitous bacterium Pseudomonas aeruginosa frequently causes hospital-acquired infections. P. aeruginosa also infects the lungs of cystic fibrosis (CF) patients and secretes N-(3-oxo-dodecanoyl)-S-homoserine lactone (3O-C12) to regulate bacterial gene expression critical for P. aeruginosa persistence. In addition to its effects as a quorum-sensing gene regulator in P. aeruginosa, 3O-C12 elicits cross-kingdom effects on host cell signaling leading to both pro- or anti-inflammatory effects. We find that in addition to these slow effects mediated through changes in gene expression, 3O-C12 also rapidly increases Cl(-) and fluid secretion in the cystic fibrosis transmembrane regulator (CFTR)-expressing airway epithelia. 3O-C12 does not stimulate Cl(-) secretion in CF cells, suggesting that lactone activates the CFTR. 3O-C12 also appears to directly activate the inositol trisphosphate receptor and release Ca(2+) from the endoplasmic reticulum (ER), lowering [Ca(2+)] in the ER and thereby activating the Ca(2+)-sensitive ER signaling protein STIM1. 3O-C12 increases cytosolic [Ca(2+)] and, strikingly, also cytosolic [cAMP], the known activator of CFTR. Activation of Cl(-) current by 3O-C12 was inhibited by a cAMP antagonist and increased by a phosphodiesterase inhibitor. Finally, a Ca(2+) buffer that lowers [Ca(2+)] in the ER similar to the effect of 3O-C12 also increased cAMP and I(Cl). The results suggest that 3O-C12 stimulates CFTR-dependent Cl(-) and fluid secretion in airway epithelial cells by activating the inositol trisphosphate receptor, thus lowering [Ca(2+)] in the ER and activating STIM1 and store-operated cAMP production. In CF airways, where CFTR is absent, the adaptive ability to rapidly flush the bacteria away is compromised because the lactone cannot affect Cl(-) and fluid secretion.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bryan A, Watters C, Koenig L, Youn E, Olmos A, Li G, Williams SC, Rumbaugh KP. Human transcriptome analysis reveals a potential role for active transport in the metabolism of Pseudomonas aeruginosa autoinducers. Microbes Infect 2010; 12:1042-50. [PMID: 20659582 DOI: 10.1016/j.micinf.2010.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/17/2010] [Accepted: 07/08/2010] [Indexed: 11/19/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs acyl homoserine lactones (AHL) as signaling compounds to regulate virulence gene expression via quorum sensing. The AHL N-3-oxo-dodecanoyl-l-homoserine lactone (3OC(12)-HSL) also induces mammalian cell responses, including apoptosis and immune modulation. In certain cell types the apoptotic effects of 3OC(12)-HSL are mediated via a calcium-dependent signaling pathway, while some pro-inflammatory effects involve intracellular transcriptional regulators. However, the mechanisms by which mammalian cells perceive and respond to 3OC(12)-HSL are still not completely understood. Here we used microarray analysis to investigate the transcriptional response of human lung epithelial cells after exposure to 3OC(12)-HSL. These data revealed that mRNA levels for several genes involved in xenobiotic sensing and drug transport were increased in cells exposed to 3OC(12)-HSL, which led us to examine the intracellular fate of 3OC(12)-HSL. Using radiolabeled autoinducer uptake assays, we discovered that intracellular 3OC(12)-HSL levels increased after exposure and achieved maximal levels after 20-30 min. Intracellular 3OC(12)-HSL decreased to background levels over the next 90 min and this process was blocked by pre-treatment with an inhibitor of the ABC transporter ABCA1. Taken together, these data suggest that mammalian cells detect 3OC(12)-HSL and activate protective mechanisms to expel it from the cell.
Collapse
Affiliation(s)
- Amanda Bryan
- Dept. of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Teplitski M, Mathesius U, Rumbaugh KP. Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 2010; 111:100-16. [PMID: 20536120 DOI: 10.1021/cr100045m] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
48
|
Kämpf MM, Weber W. Synthetic biology in the analysis and engineering of signaling processes. Integr Biol (Camb) 2010; 2:12-24. [DOI: 10.1039/b913490e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|