1
|
Li T, Wang Q, Rui C, Ren L, Dai M, Bi Y, Yang Y. Targeted isolation and AI-based analysis of edible fungal polysaccharides: Emphasizing tumor immunological mechanisms and future prospects as mycomedicines. Int J Biol Macromol 2025; 284:138089. [PMID: 39603293 DOI: 10.1016/j.ijbiomac.2024.138089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Edible fungal polysaccharides have emerged as significant bioactive compounds with diverse therapeutic potentials, including notable anti-tumor effects. Derived from various fungal sources, these polysaccharides exhibit complex biological activities such as antioxidant, immune-modulatory, anti-inflammatory, and anti-obesity properties. In cancer therapy, members of this family show promise in inhibiting tumor growth and metastasis through mechanisms like apoptosis induction and modulation of the immune system. This review provides a detailed examination of contemporary techniques for the targeted isolation and structural elucidation of edible fungal polysaccharides. Additionally, the review highlights the application of advanced artificial intelligence (AI) methodologies to facilitate efficient and accurate structural analysis of these polysaccharides. It also explores their interactions with immune cells within the tumor microenvironment and their role in modulating gut microbiota, which can enhance overall immune function and potentially reduce cancer risks. Clinical studies further demonstrate their efficacy in various cancer treatments. Overall, edible fungal polysaccharides represent a promising frontier in cancer therapy, leveraging their natural origins and minimal toxicity to offer novel strategies for comprehensive cancer management.
Collapse
Affiliation(s)
- Tingting Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China; College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qin Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chuang Rui
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lu Ren
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mingcheng Dai
- Clinical Medical Institute, Harbin Medical University, Harbin, China
| | - Yong Bi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu hospital, Shanghai, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences; National Engineering Research Center of Edible Fungi; Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
2
|
Li J, Ahmed HH, Hussein AM, Kaur M, Jameel MK, Kaur H, Tillaeva U, Al-Hussainy AF, Sameer HN, Hameed HG, Idan AH, Alsaikhan F, Narmani A, Farhood B. Advances in polysaccharide-based materials for biomedical and pharmaceutical applications: A comprehensive review. Arch Pharm (Weinheim) 2025; 358:e2400854. [PMID: 39651831 DOI: 10.1002/ardp.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Polysaccharides, the most abundant biopolymers in nature, have attracted the attention of researchers and clinicians due to its practicality in biomedical and pharmaceutical sciences. These biomaterials have high bioavailability and play structural and functional roles in living organisms. Polysaccharides are classified into several groups based on their origin, including plant polysaccharides and marine polysaccharides (like chitosan, hyaluronic acid, dextran, alginates, etc.) with specific applications. These biopolymers possess unique physicochemical (such as surface functional groups, solubility, and stability), mechanical (like mechanical strength and tensile), and biomedical (such as antioxidant activity, biocompatibility, biodegradability, renewability, and non-immunogenicity) characteristics which have made them excellent platforms for a wide variety of biomedical and pharmaceutical applications. Ease of extraction and different preparation approaches are mentioned as other potential properties of polysaccharides that further improved their practicality in biomedical sciences. They have high drug/bioactive encapsulation capacity and sustained/controlled release manner in in vivo microenvironments. The anti-inflammatory and immunomodulation, stimuli-responsive drug/bioactive release, and passive and active drug/bioactive delivery are considered the potential features of these biopolymers in pharmaceutical sciences. Polysaccharides have indicated practical applications in biomedical sciences, including biosensors, tissue engineering, implantation, wound healing, vascular grafting, and vaccines. This review highlights the advances of polysaccharide-based materials in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Cognitive Neuroscience and Philosophy, University of Skovde, Skovde, Sweden
| | | | - Ali M Hussein
- Department of Biomedical Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Mohammed Khaleel Jameel
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Wang XY, Chen AQ, Huang J, Luo JH, Zou Q. A review on structure, bioactivity, mechanism, structure-activity relationship and application of anti-breast cancer polysaccharides. Int J Biol Macromol 2024; 282:137043. [PMID: 39476909 DOI: 10.1016/j.ijbiomac.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is one of the most common female malignant tumors. BC treatment depends on the use of chemotherapeutic drugs, causing various adverse effects. Increasing evidence has shown that natural polysaccharides (NPs) are potential adjuvants or substitutes for anti-BC drugs. However, the information regarding anti-BC NPs remains scattered. Thus, the recent progress in the structure, bioactivity, mechanism and application of anti-BC NPs is comprehensively summarized in this review. Moreover, the structure-activity relationship is discussed. Additionally, the prospects for future work are proposed. Recent studies have shown that anti-BC NPs have diverse structural features, which are affected by the extraction and purification methods. NPs show anti-BC activities in cell and animal experiments as well as in clinical researches, and enhance anti-BC effects of chemotherapeutic drugs in cell and animal experiments. The anti-BC mechanisms of NPs include anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, immunoenhancement, gut microbiota regulation and others. The anti-BC activities of NPs are influenced by molecular weight, monosaccharide composition, functional groups, glycosidic bond types, backbone and side chains. NPs-based nanoparticles, nanocarriers, drug delivery systems, nanocomposites and other materials can also be used in anti-BC. This review provides theoretical bases for future research and functional application of NPs in anti-BC.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jing Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
4
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Yang Q, Chang SL, Tian YM, Li W, Ren JL. Glucan polysaccharides isolated from Lactarius hatsudake Tanaka mushroom: Structural characterization and in vitro bioactivities. Carbohydr Polym 2024; 337:122171. [PMID: 38710561 DOI: 10.1016/j.carbpol.2024.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with β-(1,3)-Glcp as the main chain and β-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Song-Lin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yi-Ming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jia-Li Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
6
|
De Luca F, Roda E, Rossi P, Bottone MG. Medicinal Mushrooms in Metastatic Breast Cancer: What Is Their Therapeutic Potential as Adjuvant in Clinical Settings? Curr Issues Mol Biol 2024; 46:7577-7591. [PMID: 39057091 PMCID: PMC11276109 DOI: 10.3390/cimb46070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed tumor, remaining one of the leading causes of morbidity and mortality in females worldwide, with the highest rates in Western countries. Among metastatic BC (MBC), triple-negative breast cancer (TNBC) is characterized by the lack of expression of specific receptors, and differs from other subgroups of BC for its increased growth and fast spreading, with reduced treatment possibilities and a worse outcome. Actually, MBC patients are extremely prone to metastasis and consequent relapses, which affect distant target organs (e.g., brain, lung, bone and liver). Hence, the comprehension of biological mechanisms underlying the BC metastatization process is a key requirement to conceive/set up innovative medicinal strategies, with the goal to achieve long-lasting therapeutic efficacy, reducing adverse effects, and also ameliorating Quality of Life (QoL). Bioactive metabolites isolated from medicinal mushrooms (MMs) used as a supportive treatment, combined with conventional oncology, have recently gained wide interest. In fact, mounting evidence has revealed their peculiar promising immunomodulatory, anti-inflammatory and anticancer activities, even though these effects have to be further clarified. Among the group of most promising MMs are Lentinula edodes, Grifola frondosa, Ganoderma lucidum, Ophiocordyceps sinensis and Agaricus blazei, which are already employed in conventional cancer protocols in Asia and China. Recently, a growing number of studies have focused on the pharmacology and feasibility of MM-derived bioactive compounds as a novel valuable approach to propose an effective adjuvant therapy for MBC patients' management. In this review, we summarized the current state of knowledge on the abovementioned MM-derived bioactive compounds and their therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, 27100 Pavia, Italy;
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| |
Collapse
|
7
|
Jen CI, Ng LT. Physicochemical Properties of Different Sulfated Polysaccharide Components from Laetiporus sulphureus and Their Anti-Proliferative Effects on MDA-MB-231 Breast Cancer Cells. J Fungi (Basel) 2024; 10:457. [PMID: 39057342 PMCID: PMC11278346 DOI: 10.3390/jof10070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Laetiporus sulphureus is an edible and medicinal mushroom widely used in folk medicine for treating cancer and gastric diseases. This study aimed to investigate the physicochemical properties of different sulfated polysaccharide (SPS) components (F1, F2, and F3) isolated from L. sulphureus and evaluate their activity against MDA-MB-231 breast cancer cell proliferation. Compared with F1 and F3, the results showed that F2 exhibited the most potent anti-proliferative activity on MDA-MB-231 cells, which could be attributed to the sulfate and protein contents, molecular weight, and monosaccharide composition. F2 inhibited breast cancer cell proliferation by blocking the cell cycle at the G0/G1 phase but not triggering cell apoptosis. In addition, F2 also showed selective cytotoxicity on breast cancer cells. It modulated the expression of proteins involved in G0/G1 phase progression, cell cycle checkpoints, DNA replication, and the TGFβ signaling pathway in MDA-MB-231 cells. This study demonstrated that F2, the medium-molecular-weight SPS component of L. sulphureus, possessed the most potent inhibitory effect on MDA-MB-231 cell proliferation by arresting the cell cycle at the G0/G1 phase. The main factors contributing to the differences in the potency of anti-breast cancer activity between F1, F2, and F3 could be the sulfate and protein contents, molecular weight, and monosaccharide composition of SPS.
Collapse
Affiliation(s)
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;
| |
Collapse
|
8
|
Fonseca J, Vaz JA, Ricardo S. The Potential of Mushroom Extracts to Improve Chemotherapy Efficacy in Cancer Cells: A Systematic Review. Cells 2024; 13:510. [PMID: 38534354 PMCID: PMC10969097 DOI: 10.3390/cells13060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Chemoresistance is a challenge in cancer treatment, limiting the effectiveness of chemotherapy. Mushroom extracts have shown potential as treatments for cancer therapies, offering a possible solution to overcome chemoresistance. This systematic review aimed to explore the role of mushroom extracts in enhancing chemotherapy and reversing chemoresistance in cancer cells. We searched the PubMed, Web of Science and Scopus databases, following the PRISMA guidelines, and registered on PROSPERO. The extracts acted by inhibiting the proliferation of cancer cells, as well as enhancing the effect of chemotherapy. The mechanisms by which they acted included regulating anti-apoptotic proteins, inhibiting the JAK2/STAT3 pathway, inhibiting the ERK1/2 pathway, modulating microRNAs and regulating p-glycoprotein. These results highlight the potential of mushroom extracts to modulate multiple mechanisms in order to improve the efficacy of chemotherapy. This work sheds light on the use of mushroom extracts as an aid to chemotherapy to combat chemoresistance. Although studies are limited, the diversity of mushrooms and their bioactive compounds show promising results for innovative strategies to treat cancer more effectively. It is crucial to carry out further studies to better understand the therapeutic potential of mushroom extracts to improve the efficacy of chemotherapy in cancer cells.
Collapse
Affiliation(s)
- Jéssica Fonseca
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (UCIBIO-IUCS-CESPU), 4585-116 Gandra, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sara Ricardo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
9
|
Pinar O, Rodríguez-Couto S. Biologically active secondary metabolites from white-rot fungi. Front Chem 2024; 12:1363354. [PMID: 38545465 PMCID: PMC10970999 DOI: 10.3389/fchem.2024.1363354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, there has been a considerable rise in the production of novel metabolites derived from fungi compared to the ones originating from bacteria. These organic substances are utilized in various sectors such as farming, healthcare, and pharmaceutical. Since all dividing living cells contain primary metabolites, secondary metabolites are synthesized by utilizing intermediate compounds or by-products generated from the primary metabolic pathways. Secondary metabolites are not critical for the growth and development of an organism; however, they exhibit a variety of distinct biological characteristics. White-rot fungi are the only microorganisms able to decompose all wood components. Hence, they play an important role in both the carbon and nitrogen cycles by decomposing non-living organic substrates. They are ubiquitous in nature, particularly in hardwood (e.g., birch and aspen) forests. White-rot fungi, besides ligninolytic enzymes, produce different bioactive substances during their secondary metabolism including some compounds with antimicrobial and anticancer properties. Such properties could be of potential interest for the pharmaceutical industries. Considering the importance of the untapped biologically active secondary metabolites from white-rot fungi, the present paper reviews the secondary metabolites produced by white-rot fungi with different interesting bioactivities.
Collapse
Affiliation(s)
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| |
Collapse
|
10
|
Nandi S, Sikder R, Rapior S, Arnould S, Simal-Gandara J, Acharya K. A review for cancer treatment with mushroom metabolites through targeting mitochondrial signaling pathway: In vitro and in vivo evaluations, clinical studies and future prospects for mycomedicine. Fitoterapia 2024; 172:105681. [PMID: 37743029 DOI: 10.1016/j.fitote.2023.105681] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Resistance to apoptosis stands as a roadblock to the successful pharmacological execution of anticancer drug effect. A comprehensive insight into apoptotic signaling pathways and an understanding of the mechanisms of apoptosis resistance are crucial to unveil new drug targets. At this juncture, researchers are heading towards natural sources in particular, mushroom as their potential drugs leads to being the reliable source of potent bioactive compounds. Given the continuous increase in cancer cases, the potent anticancer efficacy of mushrooms has inevitably become a fascinating object to researchers due to their higher safety margin and multitarget. This review aimed to collect and summarize all the available scientific data on mushrooms from their extracts to bioactive molecules in order to suggest their anticancer attributes via a mitochondrion -mediated intrinsic signaling mechanism. Compiled data revealed that bioactive components of mushrooms including polysaccharides, sterols and terpenoids as well as extracts prepared using 15 different solvents from 53 species could be effective in the supportive treatment of 20 various cancers. The underlying therapeutic mechanisms of the studied mushrooms are explored in this review through diverse and complementary investigations: in vitro assays, pre-clinical studies and clinical randomized controlled trials. The processes mainly involved were ROS production, mitochondrial membrane dysfunction, and action of caspase 3, caspase 9, XIAP, cIAP, p53, Bax, and Bcl-2. In summary, the study provides facts pertaining to the potential beneficial effect of mushroom extracts and their active compounds against various types of cancer and is shedding light on the underlying targeted signaling pathways.
Collapse
Affiliation(s)
- Sudeshna Nandi
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Rimpa Sikder
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India
| | - Sylvie Rapior
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Laboratory of Botany, Phytochemistry and Mycology, Faculty of Pharmacy, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Stéphanie Arnould
- Centre for Integrative Biology, Molecular, Cellular & Developmental biology unit, CNRS UMR 5077, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, WB 700019, India.
| |
Collapse
|
11
|
Zhang Y, Wu N, Wang J, Chen Z, Wu Z, Song M, Zheng Z, Wang K. Gastrointestinal metabolism characteristics and mechanism of a polysaccharide from Grifola frondosa. Int J Biol Macromol 2023; 253:126357. [PMID: 37595710 DOI: 10.1016/j.ijbiomac.2023.126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Grifola frondosa polysaccharide (GFP) is mainly composed of α-1,4 glycosidic bonds and possesses multiple pharmacological activities. However, the absence of pharmacokinetic studies has limited its further development and utilization. Herein, GFP was labeled with 5-DTAF (FGFP) and cyanine 5.5 amine (GFP-Cy5.5) to investigate its gastrointestinal metabolism characteristics and mechanism. Significant distributions of the polysaccharide in the liver and kidneys were observed by near infrared imaging. To investigate the specific distribution form of the polysaccharide, in vitro digestion models were constructed and revealed that FGFP was degraded in saliva and rat small intestine extract. The metabolites were detected in the stomach and small intestine, followed by further degradation in the distal intestine in the in vivo experiment. Subsequent investigations showed that α-amylase was involved in the gastrointestinal degradation of GFP, and its metabolite finally entered the kidneys, where it was excreted directly with urine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Niuniu Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Jingyi Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zehong Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
12
|
Xiong H, Han X, Cai L, Zheng H. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front Oncol 2023; 13:1274048. [PMID: 37876967 PMCID: PMC10593453 DOI: 10.3389/fonc.2023.1274048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongtai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Cai
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang S, Zhang Q, Li C, Xing N, Zhou P, Jiao Y. A zinc-modified Anemarrhena asphodeloides polysaccharide complex enhances immune activity via the NF-κB and MAPK signaling pathways. Int J Biol Macromol 2023; 249:126017. [PMID: 37517752 DOI: 10.1016/j.ijbiomac.2023.126017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Anemarrhena asphodeloides polysaccharide (AAP70-1) was reported to have immunomodulatory effects in our previous report. To further improve the immunomodulatory effects of AAP70-1, an A. asphodeloides polysaccharide-zinc complex (AAP-Zn) was synthesized using a ZnCl2 modification method, and the potential mechanisms by which AAP-Zn activates macrophages were investigated. The results showed that the structural features of AAP-Zn were similar to those of AAP70-1 with a Zn content of 0.2 %, confirming that Zn mainly interacted with AAP70-1 by forming ZnO coordination bonds and Zn…OH bonds. In addition, the administration of AAP70-1 and AAP-Zn effectively improved the immunomodulatory effects by enhancing phagocytosis and upregulating the mRNA expression of cytokines (TNF-α, IL-6, IL-1β, and IL-18), as well as increasing the production levels of nitric oxide (NO) and reactive oxygen species (ROS) in zebrafish embryos. The intracellular mechanism by which AAP-Zn activates macrophages was found to involve activation of the NF-κB and MAPK signaling pathways. Our findings suggested that AAP-Zn may be a potential immunopotentiator in the field of biomedicine or functional foods.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Pengfei Zhou
- School of Basic Medical Science, Guangdong Medical University, Dongguan 523808, China
| | - Yukun Jiao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
14
|
Gariboldi MB, Marras E, Ferrario N, Vivona V, Prini P, Vignati F, Perletti G. Anti-Cancer Potential of Edible/Medicinal Mushrooms in Breast Cancer. Int J Mol Sci 2023; 24:10120. [PMID: 37373268 DOI: 10.3390/ijms241210120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Edible/medicinal mushrooms have been traditionally used in Asian countries either in the cuisine or as dietary supplements and nutraceuticals. In recent decades, they have aroused increasing attention in Europe as well, due to their health and nutritional benefits. In particular, among the different pharmacological activities reported (antibacterial, anti-inflammatory, antioxidative, antiviral, immunomodulating, antidiabetic, etc.), edible/medicinal mushrooms have been shown to exert in vitro and in vivo anticancer effects on several kinds of tumors, including breast cancer. In this article, we reviewed mushrooms showing antineoplastic activity again breast cancer cells, especially focusing on the possible bioactive compounds involved and their mechanisms of action. In particular, the following mushrooms have been considered: Agaricus bisporus, Antrodia cinnamomea, Cordyceps sinensis, Cordyceps militaris, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, Lentinula edodes, and Pleurotus ostreatus. We also report insights into the relationship between dietary consumption of edible mushrooms and breast cancer risk, and the results of clinical studies and meta-analyses focusing on the effects of fungal extracts on breast cancer patients.
Collapse
Affiliation(s)
- Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Nicole Ferrario
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Veronica Vivona
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Pamela Prini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Francesca Vignati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| |
Collapse
|
15
|
Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int J Biol Macromol 2023; 232:123261. [PMID: 36649870 DOI: 10.1016/j.ijbiomac.2023.123261] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The combination of selenium and polysaccharides is one of the significant ways to ameliorate the anti-cancer effects of polysaccharides. PLP50-1, a homogeneous polysaccharide purified from the aqueous extract of Paeonia lactiflora, had a molecular weight of 1.52 × 104 Da and consisted of α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and →6)-β-D-Fruf-(2→. PLP50-1 showed weak anti-tumor effects against A549 cells. To ameliorate the activity of PLP50-1, the complex nanoparticles combining P. lactiflora polysaccharide with selenium were constructed successfully. Structural properties of the polysaccharide-based selenium nanoparticles (PLP-SeNPs) were clarified using various means. The results displayed that a kind of monodisperse spherical nanoparticles containing high selenium content (39.1 %) with controllable size was constructed and showed satisfactory stability. The cellular anti-tumor assay indicated that PLP-SeNPs had stronger antiproliferative activity against A549 cells than PLP50-1. Additionally, the zebrafish experiments displayed that PLP-SeNPs inhibited the proliferation and migration of A549 cells significantly and blocked the angiogenesis.
Collapse
|
16
|
Masuda Y, Nakayama Y, Shimizu R, Naito K, Miyamoto E, Tanaka A, Konishi M. Maitake α-glucan promotes differentiation of monocytic myeloid-derived suppressor cells into M1 macrophages. Life Sci 2023; 317:121453. [PMID: 36709912 DOI: 10.1016/j.lfs.2023.121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
AIMS Myeloid-derived suppressor cells (MDSCs) are major components of the tumor microenvironment and systemically accumulate in tumor-bearing hosts and patients with cancer, facilitating cancer progression. Maitake macromolecular α-glucan YM-2A, isolated from Grifola frondosa, inhibits tumor growth by enhancing immune responses. The present study investigated the effects of YM-2A on the immunosuppressive potential of MDSCs. MAIN METHODS YM-2A was orally administered to CT26 tumor-bearing mice, and the number of immune cells in the spleen and tumor was measured. Splenic MDSCs isolated from the CT26 tumor-bearing mice were treated with YM-2A and co-cultured with T cells to measure their inhibitory effect on T cell proliferation. For adoptive transfer of monocytic MDSCs (M-MDSCs), YM-2A-treated M-MDSCs mixed with CT26 cells were implanted subcutaneously in the mice to measure the tumor growth rate. KEY FINDINGS YM-2A selectively reduced the accumulation of M-MDSCs but not that of polymorphonuclear MDSCs (PMN-MDSCs) in CT26 tumor-bearing mice. In tumor tissues, YM-2A treatment induced the polarity of immunostimulatory M1-phenotype; furthermore, it increased the infiltration of dendritic, natural killer, and CD4+ and CD8+ T cells. YM-2A treatment of purified M-MDSCs from CT-26 tumor-bearing mice induced dectin-1-dependent differentiation into M1 macrophages. YM-2A-treated M-MDSCs lost their inhibitory activity against proliferation and activation of CD8+ T cells. Furthermore, adoptive transfer of M-MDSCs treated with YM-2A inhibited CT26 tumor growth. SIGNIFICANCE YM-2A promotes the differentiation of M-MDSCs into immunostimulatory M1 macrophages, thereby enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Ryohei Shimizu
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kenta Naito
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Eri Miyamoto
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Akihiro Tanaka
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
17
|
De Luca F, Roda E, Ratto D, Desiderio A, Venuti MT, Ramieri M, Bottone MG, Savino E, Rossi P. Fighting secondary triple-negative breast cancer in cerebellum: A powerful aid from a medicinal mushrooms blend. Biomed Pharmacother 2023; 159:114262. [PMID: 36657301 DOI: 10.1016/j.biopha.2023.114262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is the second most common cause of brain metastasis onset in patients, with the cerebellum accounting for the 33% of cases. In the current study, using a 4T1 triple-negative mouse BC model, we revealed that an orally administered medicinal mushrooms (MM) blend, rich in β-glucans, played a direct and specific anti-cancer action on cerebellar metastases, also bettering locomotor performances. The neuroprotective effect of the MM blend plays through (i) a direct and specific inhibition of cerebellar metastatization pattern typical of TNBC (with an induced reduction of about 50% of metastases density) and (ii) the regulation of apoptosis and proliferation-related genes, as suggested by expression changes of specific molecular markers, i.e. PCNA, p53, Bcl2, BAX, CASP9, CASP3, Hsp70 and AIF. Therefore, inhibiting the metastatization process, triggering a significant apoptosis increase, and lessening cell proliferation, this MM supplement, employed as adjuvant treatment in association with conventional therapy, could represent a promising approach, in the field of Integrative Oncology, for patients' management in both prevention and treatment of brain metastases from BC.
Collapse
Affiliation(s)
- Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy.
| | - Daniela Ratto
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Anthea Desiderio
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy.
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Martino Ramieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy.
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Integrating herbal medicine into oncology care delivery: development, implementation, and evaluation of a novel program. Support Care Cancer 2023; 31:128. [PMID: 36680628 PMCID: PMC9860233 DOI: 10.1007/s00520-023-07577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To evaluate the feasibility of a novel program facilitating patient-provider communication about appropriate use of herbal medicine at a large academic cancer center and its impact on patient wellbeing. METHODS In the Herbal Oncology Program (HOP), integrative medicine providers counseled patients about unmet symptom needs and prescribed traditional Chinese medicine (TCM) herbs when indicated, taking into consideration the clinical context, patient preference, and research evidence. To evaluate the feasibility and outcomes, we performed a retrospective analysis using medical record data (symptoms and other concerns that motivated patients to seek herbal products, types and numbers of dispensed TCM herbs, and demographic characteristics). We also conducted a survey to assess patient experience and satisfaction. RESULTS All 851 participants were outpatients, with 712 (84%) in active treatment. HOP dispensed 1266 herbal prescriptions for a range of symptoms, most commonly GI symptoms (467, 37%); pain (353, 28%); and treatment-related fatigue, sleep, and mood disorders (346, 27%). Of 269 patients invited to the survey, 107 (40%) completed it. A majority of respondents 70.9% (73/103) were satisfied with the effectiveness of dispensed herbs in relieving their symptoms, and few 6.7% (7/104) had experienced mild adverse events that resolved after discontinuing herbal use. CONCLUSIONS The study's findings support the feasibility of integrating herbal medicine into an academic oncology setting. Patient satisfaction with HOP was high, with limited adverse events. The patterns of herbal prescriptions in HOP suggest future areas for clinical research to strengthen the evidence base around safe and effective use.
Collapse
|
19
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
20
|
Substrate Composition Effect on the Nutritional Quality of Pleurotus ostreatus (MK751847) Fruiting body. Heliyon 2022; 8:e11841. [DOI: 10.1016/j.heliyon.2022.e11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
21
|
Zhang S, Li Y, Li Z, Liu W, Zhang H, Ohizumi Y, Nakajima A, Xu J, Guo Y. Structure, anti-tumor activity, and potential anti-tumor mechanism of a fungus polysaccharide from Fomes officinalis. Carbohydr Polym 2022; 295:119794. [DOI: 10.1016/j.carbpol.2022.119794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
|
22
|
Aguilera-Braico DM, Balogh GA. CD3Ɛ immune restorative ability induced by Maitake Pro4x in immunosupressed BALBc mice. BMC Res Notes 2022; 15:307. [PMID: 36138418 PMCID: PMC9502923 DOI: 10.1186/s13104-022-06201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives The aim of this research was to determine if the rich beta glucan compound called Maitake Pro4X can recover the T cell/NK population depleted by Dexamethasone treatment in lymph nodes from cancer-free BALBc female mice. A CD3Ɛ molecular FITC labelled marker was used to measure the effect of Maitake D-Fraction Pro4X (5 mg/kg) on T cell/NK cells populations employing flow cytometry from immunosuppressed female BALBc mice in lymph nodes. There were employed other molecular markers such as CD19, CD105, Ly6G. Results Maitake Pro4X (5 mg/kg) was able to recover 42.97% of the depleted CD3Ɛ FITC cell population level in Lymph nodes from immunosuppressed female BALBc mice from 4.328 ± 6.229 to 22.646 ± 12.393 (p < 0.01) using Flow Cytometry. Maitake was also able to significantly increase the Ly6G PE cell population with p < 0.05 in lymph nodes. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-06201-1.
Collapse
Affiliation(s)
- Diego Maximo Aguilera-Braico
- BIOMED-UCA, Laboratory of Biomedical Sciences, Pontifical Catholic Argentine University-UCA, 1600 Alicia Moreau de Justo Avenue, 1007, Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int J Mol Sci 2022; 23:ijms231810502. [PMID: 36142412 PMCID: PMC9504980 DOI: 10.3390/ijms231810502] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Various chemotherapeutic drugs have been extensively used for cancer treatment. However, current anticancer drugs cause severe side effects and induce resistance. Therefore, the development of novel and effective anticancer agents with minimal or no side effects is important. Notably, natural compounds have been highlighted as anticancer drugs. Among them, many researchers have focused on mushrooms that have biological activities, including antitumor activity. The aim of this review is to discuss the anticancer potential of different mushrooms and the underlying molecular mechanisms. We provide information regarding the current clinical status and possible modes of molecular actions of various mushrooms and mushroom-derived compounds. This review will help researchers and clinicians in designing evidence-based preclinical and clinical studies to test the anticancer potential of mushrooms and their active compounds in different types of cancers.
Collapse
|
24
|
Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules 2022; 27:molecules27134090. [PMID: 35807336 PMCID: PMC9267963 DOI: 10.3390/molecules27134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Of the biologically active components, polysaccharides play a crucial role of high medical and pharmaceutical significance. Mushrooms have existed for a long time, dating back to the time of the Ancient Egypt and continue to be well explored globally and experimented with in research as well as in national and international cuisines. Mushroom polysaccharides have slowly become valuable sources of nutraceuticals which have been able to treat various diseases and disorders in humans. The application of mushroom polysaccharides for anticancer mycotherapy is what is being reviewed herein. The widespread health benefits of mushroom polysaccharides have been highlighted and the significant inputs of mushroom-based polysaccharides in anticancer clinical trials have been presented. The challenges and limitation of mushroom polysaccharides into this application and the gaps in the current application areas that could be the future direction have been discussed.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea;
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India; (M.M.); (J.G.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6271; Fax: +82-2-455-1044
| |
Collapse
|
25
|
Bhambri A, Srivastava M, Mahale VG, Mahale S, Karn SK. Mushrooms as Potential Sources of Active Metabolites and Medicines. Front Microbiol 2022; 13:837266. [PMID: 35558110 PMCID: PMC9090473 DOI: 10.3389/fmicb.2022.837266] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Mushrooms exist as an integral and vital component of the ecosystem and are very precious fungi. Mushrooms have been traditionally used in herbal medicines for many centuries. Scope and Approach There are a variety of medicinal mushrooms mentioned in the current work such as Agaricus, Amanita, Calocybe, Cantharellus, Cordyceps, Coprinus, Cortinarius, Ganoderma, Grifola, Huitlacoche, Hydnum, Lentinus, Morchella, Pleurotus, Rigidoporus, Tremella, Trametes sp., etc., which play a vital role in various diseases because of several metabolic components and nutritional values. Medicinal mushrooms can be identified morphologically on the basis of their size, color (white, black, yellow, brown, cream, pink and purple-brown, etc.), chemical reactions, consistency of the stalk and cap, mode of attachment of the gills to the stalk, and spore color and mass, and further identified at a molecular level by Internal Transcribed Spacer (ITS) regions of gene sequencing. There are also other methods that have recently begun to be used for the identification of mushrooms such as high-pressure liquid chromatography (HPLC), nuclear magnetic resonance spectroscopy (NMR), microscopy, thin-layer chromatography (TLC), DNA sequencing, gas chromatography-mass spectrometry (GC-MS), chemical finger printing, ultra-performance liquid chromatography (UPLC), fourier transform infrared spectroscopy (FTIR), liquid chromatography quadrupole time-of-flight mass spectrometry (LCMS-TOF) and high-performance thin-layer chromatography (HPTLC). Lately, the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) technique is also used for the identification of fungi. Key Finding and Conclusion Medicinal mushrooms possess various biological activities like anti-oxidant, anti-cancer, anti-inflammatory, anti-aging, anti-tumor, anti-viral, anti-parasitic, anti-microbial, hepatoprotective, anti-HIV, anti-diabetic, and many others that will be mentioned in this article. This manuscript will provide future direction, action mechanisms, applications, and the recent collective information of medicinal mushrooms. In addition to many unknown metabolites and patented active metabolites are also included.
Collapse
Affiliation(s)
- Anne Bhambri
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| | | | | | | | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
26
|
Panda SK, Luyten W. Medicinal mushrooms: Clinical perspective and challenges. Drug Discov Today 2022; 27:636-651. [PMID: 34823005 DOI: 10.1016/j.drudis.2021.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023]
Abstract
Mushrooms are valued by humans worldwide as food, but also for their medicinal properties. Over 130 medicinal effects of mushrooms have been reported, including anti-diabetic, antioxidant, antimicrobial, anticancer, prebiotic, immunomodulating, anti-inflammatory and cardiovascular benefits. Several mushrooms have been tested in phase I, II, or III clinical trials for various diseases, including cancers, as well as to modulate immunity. Here, we review clinical studies on medicinal mushrooms or preparations (but not pure compounds) derived thereof. Overall, few phase III trials have been performed, and in many cases, these trials included a relatively small number of patients. Therefore, despite the promising published clinical data, especially on immune modulation, more work is required to clarify the therapeutic value of mushrooms.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Department of Biology, KU Leuven, 3000 Leuven, Belgium; Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India.
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
27
|
Panda SK, Sahoo G, Swain SS, Luyten W. Anticancer Activities of Mushrooms: A Neglected Source for Drug Discovery. Pharmaceuticals (Basel) 2022; 15:176. [PMID: 35215289 PMCID: PMC8876642 DOI: 10.3390/ph15020176] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/08/2023] Open
Abstract
Approximately 270 species of mushrooms have been reported as potentially useful for human health. However, few mushrooms have been studied for bioactive compounds that can be helpful in treating various diseases. Like other natural regimens, the mushroom treatment appears safe, as could be expected from their long culinary and medicinal use. This review aims to provide a critical discussion on clinical trial evidence for mushrooms to treat patients with diverse types of cancer. In addition, the review also highlights the identified bioactive compounds and corresponding mechanisms of action among the explored mushrooms. Furthermore, it also discusses mushrooms with anticancer properties, demonstrated either in vitro and/or in vivo models, which have never been tested in clinical studies. Several mushrooms have been tested in phase I or II clinical trials, mostly for treating breast cancer (18.6%), followed by colorectal (14%) and prostate cancer (11.6%). The majority of clinical studies were carried out with just 3 species: Lentinula edodes (22.2%), Coriolus versicolor, and Ganoderma lucidum (both 13.9%); followed by two other species: Agaricus bisporus and Grifola frondosa (both 11.1%). Most in vitro cell studies use breast cancer cell lines (43.9%), followed by lung (14%) and colorectal cancer cell lines (13.1%), while most in vivo animal studies are performed in mice tumor models (58.7%). Although 32 species of mushrooms at least show some promise for the treatment of cancer, only 11 species have been tested clinically thus far. Moreover, most clinical studies have investigated fewer numbers of patients, and have been limited to phase III or IV. Therefore, despite the promising preclinical and clinical data publication, more solid scientific efforts are required to clarify the therapeutic value of mushrooms in oncology.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Center of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar 751004, India
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Bhubaneswar 751004, India;
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar 751023, India;
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
28
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
29
|
Proteins and polysaccharides from vegetative mycelium of medicinal basidiomycete Lentinus edodes display cytotoxicity towards human and animal cancer cell lines. Int J Biol Macromol 2022; 195:398-411. [PMID: 34921890 DOI: 10.1016/j.ijbiomac.2021.12.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022]
Abstract
Detection and study of biologically active compounds seems a promising area of research in cancer diagnostics and therapies. The glycoprotein and polysaccharide fractions showing high cytotoxicity towards several human and animal cancer cell lines: A549, Hep-2, HeLa, С6 and SPEV-2 were isolated from basidiomycete Lentinus edodes vegetative mycelium and fruiting body and further characterized. It was found that water-soluble glycoprotein fractions caused the most significant, 70-100% inhibition of metabolic activity of SPЕV-2, А549 and С6 cell lines. The effective concentrations of glycoprotein fractions reducing the viability of cancer cell lines were determined. The protein and subunit composition of fractions was studied; the highly active galactose-specific lectins were found to be present in these fractions. Comparative analysis of transcriptomes of L. edodes vegetative mycelium, fruiting body and primordium revealed the presence of carbohydrate-binding glycoproteins (lectins) specific for each stage of basidiomycete morphogenesis. Histological examination revealed some morphological indicators of immune system activation and the absence of toxic effect on gastro-intestinal mucosa of animals at peroral administration of fungal glycoprotein fractions. Fungal protein and, in particular, lectin preparations derived from L. еdodes vegetative mycelium might be considered as novel prospective tools in cancer diagnostics and therapies.
Collapse
|
30
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
31
|
Zhao F, Guo Z, Ma ZR, Ma LL, Zhao J. Antitumor activities of Grifola frondosa (Maitake) polysaccharide: A meta-analysis based on preclinical evidence and quality assessment. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114395. [PMID: 34271115 DOI: 10.1016/j.jep.2021.114395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The antitumor effects of Grifola frondosa/maitake polysaccharide (GFP) have been reported in many preclinical studies, especially in vivo experiments. The present meta-analysis aimed to provide an in vivo evidence and theoretical basis for future clinical trials by assessing the efficacy and underlying mechanisms of GFP in tumor treatment. MATERIALS AND METHODS English and Chinese databases were examined to include animal experiments to study the antitumor activity of GFP. Literature screening, data extraction, and meta-analysis were conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In addition, the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk of bias (RoB) tool was used to assess the risk of bias of the included animal studies. RESULTS Potentially relevant studies (442) were identified, and finally 24 eligible studies (all in English) were included. The meta-analysis revealed that GFP has significant effects in inhibiting tumor growth (high dose: mean difference (MD) = -1.34, 95% confidence interval (CI) = [-1.73, -0.95]; low dose: MD = -5.68, 95% CI = [-7.27, -4.09]), improving tumor remission rate (odds ratio = 25.59, 95% CI = [9.08, 72.11]), and enhancing immune function in both cellular (CD4+ T cell percentage: MD = 3.03, 95% CI = [1.16, 4.90]; CD8+ T cell percentage: MD = 1.10, 95% CI = [-0.29, 2.49]) and humoral immunity (MD and [95% CI] of interleukin (IL)-2, IL-12 and tumor necrosis factor-α were 7.86 [6.29, 9.44], 35.95 [5.18, 66.72], and 10.03 [8.71, 11.36], respectively), and the differences between the two groups of the above indicators were statistically significant (all P < 0.01) except CD8+ T cell percentage. Additionally, the quality of the included studies was not high, and the risk of bias mainly concentrated on selection, detection, and reporting biases. CONCLUSION GFP is a potential candidate for tumor treatment and clinical trials. TRIAL REGISTRATION The review protocol for this study was registered with the PROSPERO database before beginning the review process (CRD42018108897).
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| | - Zhong Guo
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| | - Zhong-Ren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Ling-Li Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.
| | - Jin Zhao
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Medical College of Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
32
|
Rizzo G, Goggi S, Giampieri F, Baroni L. A review of mushrooms in human nutrition and health. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Sur D, Gorzo A, Sabarimurugan S, Krishnan SM, Lungulescu CV, Volovat SR, Burz C. A Comprehensive Review of the Use of Antioxidants and Natural Products in Cancer Patients Receiving Anticancer Therapy. Anticancer Agents Med Chem 2021; 22:1511-1522. [PMID: 34488590 DOI: 10.2174/1871520621666210901100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of mortality and morbidity worldwide. The side effects of cancer treatment affect the quality of life. Cancer patients search for antioxidant dietary supplements and natural products during or after conventional cancer treatment for the alleviation of side effects, improvement of the benefits of treatment, and promotion of well-being. However, the efficacy and safety of these products remain controversial; moreover, previous data do not support the standardized use of those alternative treatments in clinics. The current study reviewed the manuscripts reporting the administration of antioxidants and natural products during cancer treatment and revised preclinical and clinical studies on various types of cancer. Most of the positive results were obtained from experimental animal models; however, human clinical studies are discouraging in this regard. Therefore, further precise and distinguishable studies are required regarding antioxidant dietary supplementation. Future studies are also needed to clarify dietary supplements' mechanism of action and pharmacokinetics in a suitable cancer patient population that will benefit the therapeutic regimens. Despite the popularity of dietary supplements, clinicians and patients should always consider their potential benefits and risks. Patients should discuss with their physician before taking any dietary antioxidant supplements or natural products.
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| | - Shanthi Sabarimurugan
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009. Australia
| | - Saravana Murali Krishnan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046. India
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași. Romania
| | - Claudia Burz
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| |
Collapse
|
34
|
Mushroom-derived polysaccharides as antitumor and anticancer agent: A concise review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Kawai J, Andoh T, Mori K. Suppression of leukotriene B4 production is involved in the anti-pruritic action of Grifola frondosa in pollen allergy-induced ocular itching in mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1934418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| |
Collapse
|
36
|
Venturella G, Ferraro V, Cirlincione F, Gargano ML. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int J Mol Sci 2021; 22:ijms22020634. [PMID: 33435246 PMCID: PMC7826851 DOI: 10.3390/ijms22020634] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Medicinal mushrooms have important health benefits and exhibit a broad spectrum of pharmacological activities, including antiallergic, antibacterial, antifungal, anti-inflammatory, antioxidative, antiviral, cytotoxic, immunomodulating, antidepressive, antihyperlipidemic, antidiabetic, digestive, hepatoprotective, neuroprotective, nephroprotective, osteoprotective, and hypotensive activities. The growing interest in mycotherapy requires a strong commitment from the scientific community to expand clinical trials and to propose supplements of safe origin and genetic purity. Bioactive compounds of selected medicinal mushrooms and their effects and mechanisms in in vitro and in vivo clinical studies are reported in this review. Besides, we analyzed the therapeutic use and pharmacological activities of mushrooms.
Collapse
Affiliation(s)
- Giuseppe Venturella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, I-90128 Palermo, Italy; (V.F.); (F.C.)
- Correspondence: ; Tel.: +39-09123891234
| | - Valeria Ferraro
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, I-90128 Palermo, Italy; (V.F.); (F.C.)
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, I-90128 Palermo, Italy; (V.F.); (F.C.)
| | - Maria Letizia Gargano
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy;
| |
Collapse
|
37
|
Zeb M, Lee CH. Medicinal Properties and Bioactive Compounds from Wild Mushrooms Native to North America. Molecules 2021; 26:E251. [PMID: 33419035 PMCID: PMC7825331 DOI: 10.3390/molecules26020251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mushrooms, the fruiting bodies of fungi, are known for a long time in different cultures around the world to possess medicinal properties and are used to treat various human diseases. Mushrooms that are parts of traditional medicine in Asia had been extensively studied and this has led to identification of their bioactive ingredients. North America, while home to one of the world's largest and diverse ecological systems, has not subjected its natural resources especially its diverse array of mushroom species for bioprospecting purposes: Are mushrooms native to North America a good source for drug discovery? In this review, we compile all the published studies up to September 2020 on the bioprospecting of North American mushrooms. Out of the 79 species that have been investigated for medicinal properties, 48 species (60%) have bioactivities that have not been previously reported. For a mere 16 selected species, 17 new bioactive compounds (10 small molecules, six polysaccharides and one protein) have already been isolated. The results from our literature search suggest that mushrooms native to North America are indeed a good source for drug discovery.
Collapse
Affiliation(s)
| | - Chow H. Lee
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| |
Collapse
|
38
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
39
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
40
|
Zeng Z, Mishuk AU, Qian J. Safety of dietary supplements use among patients with cancer: A systematic review. Crit Rev Oncol Hematol 2020; 152:103013. [PMID: 32570150 DOI: 10.1016/j.critrevonc.2020.103013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary supplements (DS) are commonly taken by patients with cancer, but safety of DS use remains unclear. A systematic literature search was conducted using PubMed, ClinicalTrials.gov, International Pharmaceutical Abstracts and Alt HealthWatch databases from inception through October 12, 2018. Included studies were limited to clinical trials including patients with cancer, DS products as interventions, evaluation of safety endpoints of DS use, and published in English. Sixty-five studies were included to evaluate 20 different DS among patients with 12 types of cancer. Botanical DS (n = 13), vitamins (n = 8), and probiotics/synbiotics (n = 7) were the top 3 types of DS evaluated in these trials. Majority of studied DS appeared safe. Among 19 trials including patients with cancer undergoing chemotherapy, most (n = 18) of studied DS (e.g., vitamins, botanical, omega-3 fatty acid) were found to be safe. Evaluation of DS use and its safety should be regularly incorporated in clinical trials among patients with cancer.
Collapse
Affiliation(s)
- Zhen Zeng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | - Jingjing Qian
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA.
| |
Collapse
|
41
|
Novel Medicinal Mushroom Blend as a Promising Supplement in Integrative Oncology: A Multi-Tiered Study using 4T1 Triple-Negative Mouse Breast Cancer Model. Int J Mol Sci 2020; 21:ijms21103479. [PMID: 32423132 PMCID: PMC7279026 DOI: 10.3390/ijms21103479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although medicinal mushroom extracts have been proposed as promising anti-cancer agents, their precise impacts on metastatic breast cancer are still to be clarified. For this purpose, the present study exploited the effect of a novel medicinal mushroom blend, namely Micotherapy U-care, in a 4T1 triple-negative mouse breast cancer model. Mice were orally administered with Micotherapy U-care, consisting of a mixture of Agaricus blazei, Ophiocordyceps sinensis, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes. The syngeneic tumor-bearing mice were generated by injecting 4T1 cells in both supplemented and non-supplemented mice. After sacrifice 35 days later, specific endpoints and pathological outcomes of the murine pulmonary tissue were evaluated. (i) Histopathological and ultrastructural analysis and (ii) immunohistochemical assessment of TGF-ß1, IL-6 and NOS2, COX2, SOD1 as markers of inflammation and oxidative stress were performed. The QoL was comparatively evaluated. Micotherapy U-care supplementation, starting before 4T1 injection and lasting until the end of the experiment, dramatically reduced the pulmonary metastases density, also triggering a decrease of fibrotic response, and reducing IL-6, NOS, and COX2 expression. SOD1 and TGF-ß1 results were also discussed. These findings support the valuable potential of Micotherapy U-care as adjuvant therapy in the critical management of triple-negative breast cancer.
Collapse
|
42
|
Hetland G, Tangen JM, Mahmood F, Mirlashari MR, Nissen-Meyer LSH, Nentwich I, Therkelsen SP, Tjønnfjord GE, Johnson E. Antitumor, Anti-Inflammatory and Antiallergic Effects of Agaricus blazei Mushroom Extract and the Related Medicinal Basidiomycetes Mushrooms, Hericium erinaceus and Grifola frondosa: A Review of Preclinical and Clinical Studies. Nutrients 2020; 12:nu12051339. [PMID: 32397163 PMCID: PMC7285126 DOI: 10.3390/nu12051339] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Since the 1980s, medicinal effects have been documented in scientific studies with the related Basidiomycota mushrooms Agaricus blazei Murill (AbM), Hericium erinaceus (HE) and Grifola frondosa (GF) from Brazilian and Eastern traditional medicine. Special focus has been on their antitumor effects, but the mushrooms' anti-inflammatory and antiallergic properties have also been investigated. The antitumor mechanisms were either direct tumor attack, e.g., apoptosis and metastatic suppression, or indirect defense, e.g., inhibited tumor neovascularization and T helper cell (Th) 1 immune response. The anti-inflammatory mechanisms were a reduction in proinflammatory cytokines, oxidative stress and changed gut microbiota, and the antiallergic mechanism was amelioration of a skewed Th1/Th2 balance. Since a predominant Th2 milieu is also found in cancer, which quite often is caused by a local chronic inflammation, the three conditions-tumor, inflammation and allergy-seem to be linked. Further mechanisms for HE were increased nerve and beneficial gut microbiota growth, and oxidative stress regulation. The medicinal mushrooms AbM, HE and GF appear to be safe, and can, in fact, increase longevity in animal models, possibly due to reduced tumorigenesis and oxidation. This article reviews preclinical and clinical findings with these mushrooms and the mechanisms behind them.
Collapse
Affiliation(s)
- Geir Hetland
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Correspondence:
| | - Jon-Magnus Tangen
- National CBRNE Medical Advisory Centre, Oslo University Hospital, 0407 Oslo, Norway;
| | - Faiza Mahmood
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, 1478 Lørenskog, Norway;
| | - Mohammad Reza Mirlashari
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | - Lise Sofie Haug Nissen-Meyer
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | - Ivo Nentwich
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0407 Oslo, Norway; (M.R.M.); (L.S.H.N.-M.); (I.N.)
| | | | - Geir Erland Tjønnfjord
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Egil Johnson
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (G.E.T.); (E.J.)
- Department of Gastrointestinal and Pediatric Surgery, Oslo University Hospital, 0407 Oslo, Norway
| |
Collapse
|
43
|
Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol 2020; 104:4675-4703. [PMID: 32274562 DOI: 10.1007/s00253-020-10476-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.
Collapse
|
44
|
Bellan DL, Mazepa E, Biscaia SMP, Gonçalves JP, Oliveira CC, Rossi GR, Ferreira LG, Noseda MD, Trindade ES, Duarte MER, Franco CRC. Non-Cytotoxic Sulfated Heterorhamnan from Gayralia brasiliensis Green Seaweed Reduces Driver Features of Melanoma Metastatic Progression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:194-206. [PMID: 31970542 DOI: 10.1007/s10126-020-09944-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Melanoma is a form of skin cancer with high mortality owing to its fast progression and metastatic capacity. The treatments available nowadays are only palliative in advanced stages of the disease. Thus, alternative therapies for cancer treatment are in demand, and molecules from natural sources, such as polysaccharides, could represent new possible therapeutic approaches. Polysaccharides of freshwater and marine algae with biological activities, such as antitumor properties, are greatly reported in the scientific literature. In the present study, a sulfated heterorhamnan obtained from the green seaweed Gayralia brasiliensis (Gb1 fraction) was chemically characterized and its biological activities in the B16-F10 murine melanoma cell line were evaluated. The Gb1 polysaccharidic fraction tested concentrations presented low or absence of cytotoxicity to B16-F10 cells and neither cell proliferation nor cell cycle were altered. Interestingly, Gb1 treatment decreased B16-F10 cells migration and invasion capabilities and CD44 labeling, showing to be a promising compound for further in vitro and in vivo antitumor studies.
Collapse
Affiliation(s)
- D L Bellan
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - E Mazepa
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - S M P Biscaia
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - J P Gonçalves
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - C C Oliveira
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - G R Rossi
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - L G Ferreira
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - M D Noseda
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - E S Trindade
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - M E R Duarte
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - C R C Franco
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
45
|
Dávila G LR, Murillo A W, Zambrano F CJ, Suárez M H, Méndez A JJ. Evaluation of nutritional values of wild mushrooms and spent substrate of Lentinus crinitus (L.) Fr. Heliyon 2020; 6:e03502. [PMID: 32181387 PMCID: PMC7062765 DOI: 10.1016/j.heliyon.2020.e03502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/05/2019] [Accepted: 02/24/2020] [Indexed: 12/02/2022] Open
Abstract
In Colombia, despite the great diversity of mushrooms, most are yet unknown from the taxonomic point of view, and even less known from their nutritional composition or their possible application to obtain value-added products from agro-waste. The mycelial growth of Lentinus crinitus (L.) Fr strain was investigated on agro-waste in culture media agar and correlation analyses were performed. The proximate and mineral element composition was determinate in wild mushrooms and spent substrate of L. crinitus, obtained in the solid-state fermentation. The evaluation of the mycelial growth of the L. crinitus strain confirmed that it can grow on agro-waste. The treatment T6 (Orange peel and brand) was determined to be the best for the mycelial growth of L. crinitus (0.0790 cm/h), T7 (Bran, Orange peel and rice husk) and T5 (Rice hush and orange peel) followed, with mycelial growth rates of 0.0753 cm/h and .0720 cm/h, respectively. The growth rate was positively correlated with C/N ratios but negatively correlated with Zn, N and protein. The combination of the agro-waste (T6, T7 and T5) were used to obtain the spent substrate and assess its nutritional potential. The results showed that wild mushrooms of L. crinitus had protein contents of 14.42%, and fiber of 57.18%. The spent substrate of L. crinitus increased their protein content (10.5–11.22%), fiber (44.1–56%) and nitrogen (1.64–1.28%). These advances are promising for the use of L. crinitus as degrader of agro-waste to obtain different products of food and agro-industrial interest.
Collapse
Affiliation(s)
- Lina R Dávila G
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Walter Murillo A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Cristian J Zambrano F
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| | - Héctor Suárez M
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jonh J Méndez A
- Grupo de Investigación en Productos Naturales, GIPRONUT, Universidad del Tolima, Ibagué, 730006, Colombia
| |
Collapse
|
46
|
Bie N, Han L, Wang Y, Wang X, Wang C. A polysaccharide from Grifola frondosa fruit body induces HT-29 cells apoptosis by PI3K/AKT-MAPKs and NF-κB-pathway. Int J Biol Macromol 2020; 147:79-88. [DOI: 10.1016/j.ijbiomac.2020.01.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
|
47
|
Del Cornò M, Gessani S, Conti L. Shaping the Innate Immune Response by Dietary Glucans: Any Role in the Control of Cancer? Cancers (Basel) 2020; 12:cancers12010155. [PMID: 31936360 PMCID: PMC7016572 DOI: 10.3390/cancers12010155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
β-glucans represent a heterogeneous group of naturally occurring and biologically active polysaccharides found in many kinds of edible mushrooms, baker’s yeast, cereals and seaweeds, whose health-promoting effects have been known since ancient times. These compounds can be taken orally as food supplements or as part of daily diets, and are safe to use, nonimmunogenic and well tolerated. A main feature of β-glucans is their capacity to function as biological response modifiers, exerting regulatory effects on inflammation and shaping the effector functions of different innate and adaptive immunity cell populations. The potential to interfere with processes involved in the development or control of cancer makes β-glucans interesting candidates as adjuvants in antitumor therapies as well as in cancer prevention strategies. Here, the regulatory effects of dietary β-glucans on human innate immunity cells are reviewed and their potential role in cancer control is discussed.
Collapse
|
48
|
Lyu F, Xu X, Zhang L. Natural polysaccharides with different conformations: extraction, structure and anti-tumor activity. J Mater Chem B 2020; 8:9652-9667. [DOI: 10.1039/d0tb01713b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Natural polysaccharides as sustainable polymers are rich sources with good biological safety and various biological functions, which are important research topics in the fields of food and medicine.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan 430072
- China
| |
Collapse
|
49
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
50
|
Kawai J, Mori K, Hirasawa N. Grifola frondosa extract and ergosterol reduce allergic reactions in an allergy mouse model by suppressing the degranulation of mast cells. Biosci Biotechnol Biochem 2019; 83:2280-2287. [PMID: 31412751 DOI: 10.1080/09168451.2019.1654360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing number of patients suffering from allergic diseases is a global health problem. Grifola frondosa is an edible mushroom consumed as a health food in Asia, and has recently been reported to have anti-allergic effects. We previously reported that G. frondosa extract (GFE) and its active components, ergosterol and its derivatives, inhibited the antigen-induced activation of RBL-2H3 cells. Here, we demonstrated that GFE and ergosterol also had an inhibitory effect on the degranulation of bone marrow-derived mast cells (BMMCs) and alleviated anaphylactic cutaneous responses in mice. Using an air pouch-type allergic inflammation mouse model, we confirmed that oral administration of GFE and ergosterol suppressed the degranulation of mast cells in vivo. Our findings suggest that G. frondosa, including ergosterol as its active component, reduces type I allergic reactions by suppressing mast cell degranulation in mice, and might be a novel functional food that prevents allergic diseases.
Collapse
Affiliation(s)
- Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|