1
|
Chen Y, Wang C, Wu Y, Wang Y, Meng Y, Wu F, Zhang H, Cheng YY, Jiang X, Shi J, Li H, Zhao P, Wu J, Zheng B, Jin D, Bu W. Nutrient-delivery and metabolism reactivation therapy for melanoma. NATURE NANOTECHNOLOGY 2024; 19:1399-1408. [PMID: 38862714 DOI: 10.1038/s41565-024-01690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
To fulfil the demands of rapid proliferation, tumour cells undergo significant metabolic alterations. Suppression of hyperactivated metabolism has been proven to counteract tumour growth. However, whether the reactivation of downregulated metabolic pathways has therapeutic effects remains unexplored. Here we report a nutrient-based metabolic reactivation strategy for effective melanoma treatment. L-Tyrosine-oleylamine nanomicelles (MTyr-OANPs) were constructed for targeted supplementation of tyrosine to reactivate melanogenesis in melanoma cells. We found that reactivation of melanogenesis using MTyr-OANPs significantly impeded the proliferation of melanoma cells, primarily through the inhibition of glycolysis. Furthermore, leveraging melanin as a natural photothermal reagent for photothermal therapy, we demonstrated the complete eradication of tumours in B16F10 melanoma-bearing mice through treatment with MTyr-OANPs and photothermal therapy. Our strategy for metabolism activation-based tumour treatment suggests specific nutrients as potent activators of metabolic pathways.
Collapse
Affiliation(s)
- Yang Chen
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Chaochao Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Yun Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Fan Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Jieyun Shi
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| | - Bin Zheng
- Cedars-Sinai Cancer Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, P. R. China.
| | - Wenbo Bu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Life Sciences and Technology, Tongji University, Shanghai, P. R. China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, P. R. China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
2
|
Cetin A. Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets. Comb Chem High Throughput Screen 2024; 27:2791-2804. [PMID: 37946345 DOI: 10.2174/0113862073252211231024182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties. METHODS A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities. RESULTS Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy. CONCLUSION The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
Collapse
Affiliation(s)
- Adnan Cetin
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University, Van, 65080, Turkey
| |
Collapse
|
3
|
Chen H, Timashev P, Zhang Y, Xue X, Liang XJ. Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Adv 2022; 12:9725-9737. [PMID: 35424935 PMCID: PMC8977843 DOI: 10.1039/d1ra09067d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology-based phototherapy has attracted enormous attention to cancer treatment owning to its non-invasiveness, high controllability and accuracy. Given the fast development of anti-tumor strategies, we summarize various examples of multifunctional nanosystems to highlight the recent advances in nanotechnology-based combinatorial phototherapy towards improving cancer treatment. The limitations of the monotherapeutic approach and the superiority of the photo-involved combinatorial strategies are discussed in each part. The future breakthroughs and clinical perspectives of combinatorial phototherapy are also outlooked. Our perspectives may inspire researchers to develop more effective phototherapy-based cancer-treating approaches.
Collapse
Affiliation(s)
- Han Chen
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University Moscow 119991 Russia
| | - Xiangdong Xue
- School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong Univeristy Shanghai 200240 China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology of China Beijing 100190 China
| |
Collapse
|
4
|
Kabe Y, Koike I, Yamamoto T, Hirai M, Kanai A, Furuhata R, Tsugawa H, Harada E, Sugase K, Hanadate K, Yoshikawa N, Hayashi H, Noda M, Uchiyama S, Yamazaki H, Tanaka H, Kobayashi T, Handa H, Suematsu M. Glycyrrhizin Derivatives Suppress Cancer Chemoresistance by Inhibiting Progesterone Receptor Membrane Component 1. Cancers (Basel) 2021; 13:3265. [PMID: 34209885 PMCID: PMC8269059 DOI: 10.3390/cancers13133265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazue Hanadate
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nobuji Yoshikawa
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroaki Hayashi
- Laboratory of Natural Products Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
He Q, Li Q, Lv F, Kaitin KI, Shao L. A Survey of Survival Outcomes for Targeted Cancer Drugs Approved by the US Food and Drug Administration. Ther Innov Regul Sci 2021; 55:676-684. [PMID: 33683659 DOI: 10.1007/s43441-021-00264-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The last two decades have witnessed the vigorous development of targeted cancer drugs and the potent therapeutic effects of these drugs have been validated by various true and surrogate end points. Overall survival (OS) and progression-free survival (PFS) outcomes were two important end points used in targeted cancer drugs clinical trials but investigation on which was rare as a consequence of inherent heterogeneity and complexity. Here, we present the review and analysis of OS and PFS outcomes of all targeted cancer drugs approved by the U.S. Food and Drug Administration (FDA) through December 31, 2019, in the setting of clinical studies. METHODS The targeted cancer drug directory was accessed via NCI website. The survival outcomes of those drugs in the setting of clinical trials were collected from publicly available Package Inserts and ClinicalTrials.gov. Median overall (OS) and progression-free survival (PFS) outcomes were summarized for targeted cancer drugs that were evaluated as monotherapies in clinical trials, contributions of targeted drugs to combination therapies in terms of survival benefit were analyzed, survival outcomes of FDA-approved first-line targeted therapies in different cancers were investigated, and the correlation between the absolute OS gain (ΔOS) and PFS gain (ΔPFS) as well as the hazard ratios for PFS (HRPFS) and OS (HROS) between comparative arms of available randomized clinical trials was evaluated. RESULTS A total of 223 indications for 126 targeted cancer drugs have been approved by the FDA through December 31, 2019, among which 28 indications of 23 drugs have been approved for first-line therapies. Eighty indications for leukemia, lymphoma, and rare cancer types without survival data were excluded in the investigation of survival outcomes. For the remaining 143 indications, 99 were approved as monotherapies and 72 were approved as combination therapies. Among monotherapy subset, 18 of 72 (25%) indications with available OS outcomes have maximum median OS less than 12 months, 55 of 72 (76%) drug indications have maximum median OS less than 24 months, and 67 of 72 (93%) have maximum median OS less than 36 months. Regarding PFS, 38 of 88 (43%) drug indications have maximum median PFS less than 6 months, 69 of 88 (78%) drug indications have maximum median PFS less than 12 months, and 84 of 88 (95%) drug indications have maximum median PFS less than 24 months. The addition of targeted drugs to combination regimens under FDA's approval provided notable survival benefit, but the median value of OS gain rate of the available combination regimens was lower than that of PFS. The univariate Spearman Rank correlation coefficient suggested a significant positive correlation between ΔOS and ΔPFS (R = 0.62) but a weak correlation between HROS and HRPFS (R = 0.11) in 46 randomized clinical trials that investigated contributions of targeted cancer drugs to combination therapies with available data. A moderate correlation between ΔOS and ΔPFS (R = 0.43) and a rather weak correlation between HROS and HRPFS (R = 0.07) were also found in other randomized clinical trials that included in our study with available data. CONCLUSIONS The survival benefit provided by targeted cancer drugs varied a lot among cancer types. Though targeted cancer drugs showed improvements in both OS and PFS in approved combination regimens, the median value of OS gain rate was lower than that of PFS. As only weak correlation was found between HRPFS and HROS, the evidence supporting the use of PFS as a surrogate to OS in the setting of targeted cancer drugs might also be limited.
Collapse
Affiliation(s)
- Qian He
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
| | - Qiu Li
- Shanghai Center for iDrug Discovery & Development, 826 Zhangheng Road, Shanghai, 201203, China
| | - Fanzhen Lv
- Huadong Hospital Affiliated to Fudan University, 221 West Yan'an Road, Jing'an, Shanghai, 200040, China
| | - Kenneth I Kaitin
- Tufts Center for the Study of Drug Development, Tufts University School of Medicine, Boston, MA, USA
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
- Shanghai Center for iDrug Discovery & Development, 826 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
6
|
Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110786. [PMID: 32409023 DOI: 10.1016/j.msec.2020.110786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to prepare a promising drug carrier for treatment of lung cancer. The self-assembly nanoparticles of SDP-GEM/PEI-PEG-anti-EGFR with chemotherapeutic drug of gemcitabine (GEM), Magnetic resonance imaging (MRI) guided- imaging and targeting of anti- Epidermal Growth Factor Receptor (anti-EGFR) were designed. The imaging capacity, targeting feasibility and anti-tumor function were evaluated respectively. SDP-GEM/PEI-PEG-anti-EGFR exhibited contrast enhancement under T2 Weight Image (T2WI) and a liner relationship was found between the concentration and relaxation rate of R2 and R2* in vitro. With the targeting of anti-EGFR, the endocytosis of nanoparticles increased significantly, which effectively killed lung cancer cells in vitro, and importantly it can be accurately delivered to tumor site within 3 h in vivo. Prolonged lifetime and smaller tumor volume demonstrated that SDP-GEM/PEI-PEG-anti-EGFR efficiently inhibited tumor growth in vivo. Therefore, SDP-GEM/PEI-PEG-anti-EGFR was an effective and safe drug carrier, which had a great potential application in MRI-guided lung cancer therapy.
Collapse
|
7
|
Karsch-Bluman A, Benny O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:89-98. [PMID: 32030649 DOI: 10.1007/978-3-030-35727-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer recurrence is one of the most imminent problems in the current world of medicine, and it is responsible for most of the cancer-related death rates worldwide. Long-term administration of anticancer cytotoxic drugs may act as a double-edged sword, as necrosis may lead to renewed cancer progression and treatment resistance. The lack of nutrients, coupled with the induced hypoxia, triggers cell death and secretion of signals that affect the tumor niche. Many efforts have been made to better understand the contribution of hypoxia and metabolic stress to cancer progression and resistance, but mostly with respect to inflammation. Here we provide an overview of the direct anticancer effects of necrotic signals, which are not necessarily mediated by inflammation and the role of DAMPs (damage-associated molecular patterns) on the formation of a pro-cancerous environment.
Collapse
Affiliation(s)
- Adi Karsch-Bluman
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Teruya K, Kusumoto Y, Eto H, Nakamichi N, Shirahata S. Selective Suppression of Cell Growth and Programmed Cell Death-Ligand 1 Expression in HT1080 Fibrosarcoma Cells by Low Molecular Weight Fucoidan Extract. Mar Drugs 2019; 17:E421. [PMID: 31331053 PMCID: PMC6669552 DOI: 10.3390/md17070421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022] Open
Abstract
Low molecular weight fucoidan extract (LMF), prepared by an abalone glycosidase digestion of a crude fucoidan extracted from Cladosiphon novae-caledoniae Kylin, exhibits various biological activities, including anticancer effect. Various cancers express programmed cell death-ligand 1 (PD-L1), which is known to play a significant role in evasion of the host immune surveillance system. PD-L1 is also expressed in many types of normal cells for self-protection. Previous research has revealed that selective inhibition of PD-L1 expressed in cancer cells is critical for successful cancer eradication. In the present study, we analyzed whether LMF could regulate PD-L1 expression in HT1080 fibrosarcoma cells. Our results demonstrated that LMF suppressed PD-L1/PD-L2 expression and the growth of HT1080 cancer cells and had no effect on the growth of normal TIG-1 cells. Thus, LMF differentially regulates PD-L1 expression in normal and cancer cells and could serve as an alternative complementary agent for treatment of cancers with high PD-L1 expression.
Collapse
Affiliation(s)
- Kiichiro Teruya
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshihiro Kusumoto
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Eto
- Daiichi Sangyo Co., Ltd., 6-7-2 Nishitenma, Kita-ku, Osaka 530-0047, Japan
| | - Noboru Nakamichi
- Daiichi Sangyo Co., Ltd., 6-7-2 Nishitenma, Kita-ku, Osaka 530-0047, Japan
| | - Sanetaka Shirahata
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Exploration of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives as anticancer and radiosensitizing agents. Bioorg Chem 2019; 88:102956. [DOI: 10.1016/j.bioorg.2019.102956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
|
10
|
Huang RL, Chen HJ, Chen LY, Chao TK, Lin WY, Liew PL, Su PH, Weng YC, Wang YC, Liao CC, Hsu YW, Wang HC, Lai HC. Epigenetic loss of heparan sulfate 3-O-sulfation sensitizes ovarian carcinoma to oncogenic signals and predicts prognosis. Int J Cancer 2018; 143:1943-1953. [PMID: 29732534 DOI: 10.1002/ijc.31580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 11/05/2022]
Abstract
Precision medicine requires markers for therapeutic guidance. The purpose of this study was to determine whether epithelial ovarian cancer (EOC) epigenetics can lead to the identification of biomarkers for precision medicine. Through integrative methylomics, we discovered and validated the epigenetic signature of NEFH and HS3ST2 as an independent prognostic factor for type II EOC in our dataset (n = 84), and two independent methylomics datasets (total n = 467). Integrated transcriptomics dataset (n = 1147) and tissue microarrays (n = 54) of HS3ST2 also related to high-methylation statuses and the EOC prognosis. Mechanistic explorations of HS3ST2 have assessed responses to oncogenic stimulations such as IL-6, EGF, and FGF2 in cancer cells. The combination of HS3ST2 and various oncogenic ligands also confers the worse outcome. 3-O-sulfation of heparan sulfate by HS3ST2 makes ovarian cancer cells intrinsically sensitive to oncogenic signals, which sheds new light on the application of HS3ST2 as a companion diagnostic for targeted therapy using kinase inhibitors or therapeutic antibodies.
Collapse
Affiliation(s)
- Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Hsiang-Ju Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Lin-Yu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Yu Lin
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Phui-Ly Liew
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hsuan Su
- Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yu-Chun Weng
- Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chi-Chun Liao
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yaw-Wen Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Translational epigenetic center, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, People's Republic of China
| |
Collapse
|
11
|
Chou CK, Liu W, Hong YJ, Dahms HU, Chiu CH, Chang WT, Chien CM, Yen CH, Cheng YB, Chiu CC. Ethyl Acetate Extract of Scindapsus cf. hederaceus Exerts the Inhibitory Bioactivity on Human Non-Small Cell Lung Cancer Cells through Modulating ER Stress. Int J Mol Sci 2018; 19:ijms19071832. [PMID: 29933620 PMCID: PMC6073426 DOI: 10.3390/ijms19071832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Unfolded protein response (UPR) is a cytoprotective mechanism that alleviates the protein-folding burden in eukaryotic organisms. Moderate activation of UPR is required for maintaining endoplasmic reticulum (ER) homeostasis and profoundly contributes to tumorigenesis. Defects in UPR signaling are implicated in the attenuation of various malignant phenotypes including cell proliferation, migration, and invasion, as well as angiogenesis. This suggests UPR as a promising target in cancer therapy. The pharmacological effects of the plant Scindapsus cf. hederaceus on human cancer cell lines is not understood. In this study, we identified an ethyl acetate extract from Scindapsus cf. hederaceus (SH-EAE), which markedly altered the protein expression of UPR-related genes in human non-small cell lung cancer (NSCLC) cells. Treatment with the SH-EAE led to the dose-dependent suppression of colony forming ability of both H1299 and H460 cells, but not markedly in normal bronchial epithelial BEAS-2B cells. SH-EAE treatment also attenuated the migration and invasion ability of H1299 and H460 cells. Moreover, SH-EAE strikingly suppressed the protein expression of two ER stress sensors, including inositol requiring enzyme-1α (IRE-1α) and protein kinase R-like ER kinase (PERK), and antagonized the induction of C/EBP homologous protein (CHOP) expression by thapsigargin, an ER stress inducer. SH-EAE induced the formation of massive vacuoles which are probably derived from ER. Importantly, SH-EAE impaired the formation of intersegmental vessels (ISV) in zebrafish larvae, an index of angiogenesis, but had no apparent effect on the rate of larval development. Together, our findings demonstrate, for the first time, that the ability of SH-EAE specifically targets the two sensors of UPR, with significant anti-proliferation and anti-migration activities as a crude extract in human NSCLC cells. Our finding also indicates potential applications of SH-EAE in preventing UPR activation in response to Tg-induced ER stress. We suggest that SH-EAE attenuates UPR adaptive pathways for rendering the NSCLC cells intolerant to ER stress.
Collapse
Affiliation(s)
- Chon-Kit Chou
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Jie Hong
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chen-Hao Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ching-Ming Chien
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environment Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Stem Cell Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Translational Research Center, Cancer Center and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
12
|
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis. It has undergone in-depth clinical and laboratory investigations, with the help of the most important research groups all over the world. Nonetheless the cure for this kind of neoplasia is not right around the corner, given its complexity and multi-faceted feature, that lead researchers to think at "one person one ACC." Currently total resection is the most concrete option for ACC patients, whenever possible. Mitotane remains the main drug for primary or adjuvant therapy, but gives partial and unsatisfactory therapeutic results, especially in metastatic ACC. This prompted the researchers to find other ways to fight against this malignancy: targeted therapy seems the most promising answer, as it is based on biomolecular and genetic cancer signature. Numerous specific targets were explored for the treatment of ACC, such as those involving angiogenesis, steroidogenesis, Wnt/β-catenin pathway and many others key factors. Even if large efforts have been made, no effective target therapy entered in the clinical use. This data should not be considered only as detrimental, rather it should propel scientific research to invest more resources into the therapeutic exploration of ACC and in particular on the most promising strategy, the targeted therapy.
Collapse
Affiliation(s)
- Jacopo Manso
- Unit of Endocrinology, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Raffaele Pezzani
- Unit of Endocrinology, Department of Medicine (DIMED), University of Padua, Padua, Italy - .,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padua, Italy
| |
Collapse
|
13
|
Overcoming resistance of targeted EGFR monotherapy by inhibition of STAT3 escape pathway in soft tissue sarcoma. Oncotarget 2017; 7:21496-509. [PMID: 26909593 PMCID: PMC5008301 DOI: 10.18632/oncotarget.7452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/05/2016] [Indexed: 01/24/2023] Open
Abstract
Although epidermal growth factor receptor (EGFR) is often over-expressed in soft tissue sarcoma (STS), a phase II trial using an EGFR inhibitor gefitinib showed a low response rate. This study identified a new secondary resistance mechanism of gefitinib in STS, and developed new strategies to improve the effectiveness of EGFR inhibition particularly by blocking the STAT3 pathway. We demonstrated that seven STS cell lines of diverse histological origin showed resistance to gefitinib despite blockade of phosphorylated EGFR (pEGFR) and downstream signal transducers (pAKT and pERK) in PI3K/AKT and RAS/ERK pathways. Gefitinib exposure was not associated with decrease in the ratio of pSTAT3/pSTAT1. The relative STAT3 abundance and activation may be responsible for the drug resistance. We therefore hypothesized that the addition of a STAT3 inhibitor could overcome the STAT3 escape pathway. We found that the addition of STAT3 inhibitor S3I-201 to gefitinib achieved synergistic anti-proliferative and pro-apoptotic effects in all three STS cell lines examined. This was confirmed in a fibrosarcoma xenografted mouse model, where the tumours from the combination group (418mm3) were significantly smaller than those from untreated (1032mm3) or single drug (912 and 798mm3) groups. Our findings may have clinical implications for optimising EGFR-targeted therapy in STS.
Collapse
|
14
|
Yang JL, Gupta RD, Goldstein D, Crowe PJ. Significance of Phosphorylated Epidermal Growth Factor Receptor and Its Signal Transducers in Human Soft Tissue Sarcoma. Int J Mol Sci 2017; 18:ijms18061159. [PMID: 28556791 PMCID: PMC5485983 DOI: 10.3390/ijms18061159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that total epidermal growth factor receptor (EGFR) protein is highly expressed in soft tissue sarcoma (STS). We aimed to investigate the significance of phosphorylated-EGFR (pEGFR) and its activated-downstream signal transducers in STS tissue samples. A tissue microarray comprising 87 STS samples was assessed for total EGFR, pEGFR and its phosphorylated signal transducers and expression was correlated with clinicopathlogical parameters including patient outcome. Although the expression of total EGFR was significantly associated with adverse STS histologic grade (p = 0.004) and clinical stage (p = 0.012) similar to pEGFR, phosphorylated protein kinase B (pAkt) and phosphorylated extracellular signal regulated kinase (pERK), it is not a prognostic factor for survival. By contrast, the expression of pEGFR is an independent factor for cancer specific survival, while pERK is an independent prognostic factor for both overall and cancer specific survival in STS (p < 0.05, Cox proportional hazard model and log-rank test) in addition to the recognised factors of tumour grade and clinical stage. pERK and pEGFR are new independent prognostic factors for overall and/or cancer specific survival in STS. The expression of EGFR/pEGFR, and their associated downstream signal transducers, was associated with STS progression, suggesting that EGFR downstream signalling pathways may jointly support STS cell survival.
Collapse
Affiliation(s)
- Jia-Lin Yang
- Department of Surgery, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| | - Romi Das Gupta
- Department of Paediatric and Burns Surgery, Lady Cilento Children's Hospital, Children's Health Queensland, Brisbane 4000, Australia.
| | - David Goldstein
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Department of Medical Oncology, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| | - Philip J Crowe
- Department of Surgery, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| |
Collapse
|
15
|
Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15:15-40. [PMID: 28259249 DOI: 10.1016/s1875-5364(17)30005-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Collapse
|
16
|
Grüner BM, Winkelmann I, Feuchtinger A, Sun N, Balluff B, Teichmann N, Herner A, Kalideris E, Steiger K, Braren R, Aichler M, Esposito I, Schmid RM, Walch A, Siveke JT. Modeling Therapy Response and Spatial Tissue Distribution of Erlotinib in Pancreatic Cancer. Mol Cancer Ther 2016; 15:1145-52. [DOI: 10.1158/1535-7163.mct-15-0165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/06/2015] [Indexed: 11/16/2022]
|
17
|
Wang X, Batty KM, Crowe PJ, Goldstein D, Yang JL. The Potential of panHER Inhibition in Cancer. Front Oncol 2015; 5:2. [PMID: 25674538 PMCID: PMC4309158 DOI: 10.3389/fonc.2015.00002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Purpose: Hyper-activation of the HER (erbB) family receptors, HER 1-4, leads to up-regulation of the three vital signaling pathways: mitogen activated protein kinase, phosphoinositide 3-kinase/AKT, and Janus kinase/signal transducer and activator of transcription pathways. Blocking HER1/EGFR has a limited anticancer effect due to either secondary mutation e.g., T790M or by-pass signaling of other HER members. The emergence of an anti-panHER approach to blockade of these pathways as a cancer treatment may provide a solution to this resistance. This review aimed to provide an overview of the HER signaling pathways and their involvement in tumor progression and examine the current progress in panHER inhibition. Methods: Recent literature associated with HER signaling pathways and panHER inhibition was reviewed through PubMed and Medline database, followed by critical comparison and analysis. Results: Pre-clinical studies and clinical trials of panHER inhibitors show promising results, and the potential to improve patient outcomes in solid cancers. Conclusion: The use of panHER inhibitors in cancers with HER-family hyper-activation, such as other epithelial cancers and sarcoma, is a new direction to research and has potential in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia ; Department of Surgery, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia
| | - Kathleen M Batty
- Sarcoma Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia ; Department of Surgery, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia
| | - Philip J Crowe
- Sarcoma Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia ; Department of Surgery, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia
| | - David Goldstein
- Sarcoma Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia ; Department of Medical Oncology, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia
| | - Jia-Lin Yang
- Sarcoma Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia ; Department of Surgery, Prince of Wales Clinical School, University of New South Wales (UNSW) , Sydney, NSW , Australia
| |
Collapse
|
18
|
Foy KC, Miller MJ, Overholser J, Donnelly SM, Nahta R, Kaumaya PT. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides. Oncoimmunology 2014; 3:e956005. [PMID: 25941587 DOI: 10.4161/21624011.2014.956005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022] Open
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.
Collapse
Affiliation(s)
- Kevin Chu Foy
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | - Megan J Miller
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA
| | - Jay Overholser
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | | | - Rita Nahta
- Department of Pharmacology; Emory University ; Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA ; James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center; The Ohio State University ; Columbus, OH USA
| |
Collapse
|
19
|
Ren H, Wu Y, Li Y, Cao W, Sun Z, Xu H, Zhang X. Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3981-3986. [PMID: 23737377 DOI: 10.1002/smll.201300628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/12/2013] [Indexed: 06/02/2023]
Abstract
A photoresponsive polyelectrolyte multilayer film containing a diselenide functional group is fabricated using an unconventional layer-by-layer method. The polycation backbone is constructed through copolymerization of di-(1-hydroxylundecyl) diselenide and 1,4-bis(2-hydroxyethyl)piperazine with 2,4-diisocyanatotoluene. A common polyanion poly(styrene sulfonate) is selected as the polyanion. The obtained film can be gradually disrupted under the irradiation of mild visible light, and this process can be monitored with UV-vis spectroscopy. The residue of the film is estimated to be 17% after 5 h of irradiation. The intensity of the visible light can be as low as 50 mW cm⁻², which is even weaker than the sunlight. The cytotoxicity of the building blocks is evaluated in MTT assays using human hepatic cell line (L-02), and the results are satisfactory. Further tests show that cells can grow in a regular manner on this film, indicating good biocompatibility. In addition, the film can be used to achieve cargo loading and controlled release. Considering that light can not only trigger controlled release but also act as part of the therapy itself (photodynamic therapy), this system shows hope for further development into a platform for the combination of chemotherapy and photodynamic therapy, especially for applications concerning skin.
Collapse
Affiliation(s)
- Huifeng Ren
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
21
|
Messaoudi S, Zhang AD, Griol-Charhbili V, Escoubet B, Sadoshima J, Farman N, Jaisser F. The epidermal growth factor receptor is involved in angiotensin II but not aldosterone/salt-induced cardiac remodelling. PLoS One 2012; 7:e30156. [PMID: 22291909 PMCID: PMC3264592 DOI: 10.1371/journal.pone.0030156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/11/2011] [Indexed: 01/10/2023] Open
Abstract
Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling.
Collapse
Affiliation(s)
- Smail Messaoudi
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - An Di Zhang
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Violaine Griol-Charhbili
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Brigitte Escoubet
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
- University Denis Diderot, Paris 7, Paris, France
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Nicolette Farman
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
| | - Frederic Jaisser
- INSERM, U872, Centre de Recherche des Cordeliers, Paris, France
- Pierre et Marie Curie University, Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 2011; 33:190-234. [PMID: 21922503 DOI: 10.1002/med.20252] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we review potential determinants of the anticancer efficacy of innate immune peptides (ACPs) for cancer cells. These determinants include membrane-based factors, such as receptors, phosphatidylserine, sialic acid residues, and sulfated glycans, and peptide-based factors, such as residue composition, sequence length, net charge, hydrophobic arc size, hydrophobicity, and amphiphilicity. Each of these factors may contribute to the anticancer action of ACPs, but no single factor(s) makes an overriding contribution to their overall selectivity and toxicity. Differences between the anticancer actions of ACPs seem to relate to different levels of interplay between these peptide and membrane-based factors.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | | |
Collapse
|
23
|
Napoletani D, Signore M, Sauer T, Liotta L, Petricoin E. Homologous control of protein signaling networks. J Theor Biol 2011; 279:29-43. [DOI: 10.1016/j.jtbi.2011.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/06/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022]
|
24
|
Shimizu M, Adachi S, Masuda M, Kozawa O, Moriwaki H. Cancer chemoprevention with green tea catechins by targeting receptor tyrosine kinases. Mol Nutr Food Res 2011; 55:832-43. [PMID: 21538846 DOI: 10.1002/mnfr.201000622] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/17/2011] [Accepted: 03/24/2011] [Indexed: 12/14/2022]
Abstract
Recent studies indicate that receptor tyrosine kinases (RTKs), which play important roles in cell proliferation, are one of the possible targets of green tea catechins (GTCs) in cancer cell growth inhibition. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin in green tea, inhibits cell proliferation and induces apoptosis in various types of cancer cells, including colorectal cancer and hepatocellular carcinoma cells, by blocking the activation of the epidermal growth factor receptor (EGFR) family of RTKs. EGCG inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R) and VEGFR2, the other members of the RTK family, and this effect is also associated with the anticancer and chemopreventive properties of this agent. EGCG suppresses the activation of EGFR in part by altering membrane lipid organization and causing the subsequent inhibition of the dimerization and activation of this receptor. Preliminary trials have shown that GTCs successfully prevent the development and progression of precancerous lesions, such as colorectal adenomas, without causing severe adverse effects. The present report reviews evidence indicating that GTCs exert anticancer and chemopreventive effects by inhibiting the activation of specific RTKs, especially EGFR, IGF-1R, and VEGFR2, and concludes that targeting RTKs and their related signaling pathways by using tea catechins could be a promising strategy for the prevention of human cancers.
Collapse
Affiliation(s)
- Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
25
|
Cornelissen B, Darbar S, Hernandez R, Kersemans V, Tullis I, Barber PR, Smart S, Vojnovic B, Reilly R, Vallis KA. ErbB-2 blockade and prenyltransferase inhibition alter epidermal growth factor and epidermal growth factor receptor trafficking and enhance (111)In-DTPA-hEGF Auger electron radiation therapy. J Nucl Med 2011; 52:776-83. [PMID: 21498540 DOI: 10.2967/jnumed.110.084392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The intracellular distribution of Auger electron-emitting radiopharmaceuticals is a determinant of cytotoxicity. However, the mechanisms by which these agents are routed through the cell are ill understood. The aim of this study was to investigate how trafficking of (111)In-labeled human epidermal growth factor ((111)In-DTPA-hEGF) relates to that of the EGF receptor (EGFR) and whether coadministration of agents that modulate EGFR signaling alters the efficacy of (111)In-DTPA-hEGF. METHODS The spatiotemporal interaction between AlexaFluor488-EGF (AF488-EGF) and Cy3-conjugated anti-EGFR antibody (Cy3-anti-EGFR) was studied in the breast cancer cell line MDA-MB-468 using fluorescence resonance energy transfer and 2-photon fluorescence lifetime imaging. (111)In internalization and nuclear fractionation assays were performed to investigate the effect of the ErbB-2-blocking antibody trastuzumab and a prenyltransferase inhibitor, L-778,123, on the subcellular localization of (111)In-DTPA-hEGF in MDA-MB-468 (1.3 × 10(6) EGFR per cell; ErbB-2 negative) and 231-H2N (0.2 × 10(6) EGFR per cell; 0.4 × 10(5) ErbB-2 per cell) cell lines. The cytotoxicity of (111)In-DTPA-hEGF (0-64 nM) plus trastuzumab (0-50 μg/mL) or L-778,123 (0-22.5 μM) was measured using clonogenic assays in a panel of breast cancer cell lines that express different levels of EGFR and ErB-2. Clonogenic survival data were used to calculate combination indices. Tumor growth inhibition was measured in vivo in 231-H2N xenograft-bearing mice treated with (111)In-DTPA-hEGF plus trastuzumab or L-788,123. RESULTS Using fluorescence resonance energy transfer, we showed that EGF interacts with EGFR in the cytoplasm and nucleus after internalization of the ligand-receptor complex in MDA-MB-468 cells. Nuclear localization of (111)In-DTPA-hEGF is enhanced by trastuzumab and L-788,123. Trastuzumab and L-788,123 sensitized 231-H2N cells to (111)In-DTPA-hEGF. Nuclear localization and cytotoxicity of (111)In-DTPA-hEGF were significantly increased in 231-H2N xenografts by cotreatment with L-788,123 (P < 0.0001). CONCLUSION The therapeutic efficacy of (111)In-DTPA-hEGF is increased through the coadministration of selected molecularly targeted drugs that modulate EGFR signaling and trafficking.
Collapse
Affiliation(s)
- Bart Cornelissen
- Department of Oncology, CRUK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Griol-Charhbili V, Fassot C, Messaoudi S, Perret C, Agrapart V, Jaisser F. Epidermal Growth Factor Receptor Mediates the Vascular Dysfunction But Not the Remodeling Induced by Aldosterone/Salt. Hypertension 2011; 57:238-44. [DOI: 10.1161/hypertensionaha.110.153619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathophysiological aldosterone (aldo)/mineralocorticoid receptor signaling has a major impact on the cardiovascular system, resulting in hypertension and vascular remodeling. Mineralocorticoids induce endothelial dysfunction, decreasing vasorelaxation in response to acetylcholine and increasing the response to vasoconstrictors. Activation of the epidermal growth factor receptor (EGFR) is thought to mediate the vascular effects of aldo, but this has yet to be demonstrated in vivo. In this study, we analyzed the molecular and functional vascular consequences of aldo-salt challenge in the waved 2 mouse, a genetic model with a partial loss of EGFR tyrosine kinase activity. Deficient EGFR activity is associated with global oxidative stress and endothelial dysfunction. A decrease in EGFR activity did not affect the arterial wall remodeling process induced by aldo-salt. By contrast, normal EGFR activity was required for the aldo-induced enhancement of phenylephrine- and angiotensin II–mediated vasoconstriction. In conclusion, this in vivo study demonstrates that EGFR plays a key role in aldosterone-mediated vascular reactivity.
Collapse
Affiliation(s)
- Violaine Griol-Charhbili
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| | - Céline Fassot
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| | - Smail Messaoudi
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| | - Claudine Perret
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| | - Vincent Agrapart
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| | - Frederic Jaisser
- From the Institut National de la Santé et de la Recherche Médicale, U872, Centre de Recherche des Cordeliers, Paris, France; Pierre et Marie Curie University, Paris, France
| |
Collapse
|
27
|
The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials 2010; 31:7575-85. [PMID: 20599266 DOI: 10.1016/j.biomaterials.2010.06.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 06/08/2010] [Indexed: 12/16/2022]
Abstract
Biodegradable chimaeric polymersomes based on asymmetric PEG-PCL-PDEA triblock copolymers were prepared and investigated for delivery of exogenous proteins into cells. PEG-PCL-PDEA copolymers with M(n)(PEG) = 5 kg/mol, M(n)(PCL) = 18.2 kg/mol, and short PDEA blocks ranging from 1.1, 2.7 to 4.1 kg/mol (denoted as copolymer 1, 2 and 3, respectively) were obtained by controlled reversible addition-fragmentation chain transfer (RAFT) polymerization. The direct hydration of copolymer thin films in MES buffer (pH 5.3) yielded uniform polymersomes with sizes of 130-175 nm. These polymersomes had close to neutral zeta potentials (-2 approximately +2.7 mV) at pH 7.4. The polymersomal structures were confirmed by confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and catalytic activity experiment on 3,3',3''-phosphinidyne(trisbenzenesulfonic acid)-loaded polymersomes. MTT assays showed that these polymersomes were non-toxic up to a concentration of 0.5mg/mL. These chimaeric polymersomes, in particular polymersome 2, showed remarkably high protein loading efficiencies and loading contents for bovine serum albumin (BSA), cytochrome C (CC), lysozyme (Lys), ovalbumin (OVA) and immunoglobulin G (IgG). The encapsulation of proteins did not significantly alter the polymersome size distributions and zeta potentials. The protein release studies showed that both BSA and CC were released in a controlled manner. Importantly, the released CC fully maintained its activity. Notably, CLSM studies showed that FITC-CC loaded polymersomes efficiently delivered and released proteins into the cytoplasm of RAW 264.7 cells. Moreover, these chimaeric polymersomes were able to simultaneously load and transport proteins and doxorubicin into the cytoplasm as well as the cell nucleus. We are convinced that these biodegradable chimaeric polymersomes have great potentials in protein therapy.
Collapse
|
28
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
29
|
Tomasetti M, Strafella E, Staffolani S, Santarelli L, Neuzil J, Guerrieri R. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate. Br J Cancer 2010; 102:1224-34. [PMID: 20332775 PMCID: PMC2856000 DOI: 10.1038/sj.bjc.6605617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H2O2 that promoted cell death. Methods: The redox-silent vitamin E analogue α-tocopheryl succinate (α-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Results: Prostate cancer cells were sensitive to α-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3–AA, whereas α-TOS–VK3 and α-TOS–AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA–VK3 combination combined with a sub-toxic dose of α-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal–mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. Conclusion: These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.
Collapse
Affiliation(s)
- M Tomasetti
- Department of Molecular Pathology and Innovative Therapies, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Tan Y, Chiow KH, Huang D, Wong SH. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells. Br J Pharmacol 2010; 159:1497-510. [PMID: 20233216 DOI: 10.1111/j.1476-5381.2009.00627.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. EXPERIMENTAL APPROACH We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. KEY RESULTS Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. CONCLUSION AND IMPLICATIONS This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.
Collapse
Affiliation(s)
- Y Tan
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
31
|
|