1
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V. Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 2024; 65:115. [PMID: 39513593 PMCID: PMC11575927 DOI: 10.3892/ijo.2024.5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is a member of the aldehyde dehydrogenase gene subfamily that encode enzymes with the ability to oxidize retinaldehyde. It was recently shown that high ALDH1A1 RNA abundance correlates with a poor prognosis in acute myeloid leukemia (AML). AML is a hematopoietic malignancy associated with high morbidity and mortality rates. Although there are a number of agents that inhibit ALDH activity, it would be crucial to develop methodologies for adjustable genetic interference, which would permit interventions on several oncogenic pathways in parallel. Intervention in multiple oncogenic pathways is theoretically possible with microRNAs (miRNAs or miRs), a class of small non‑coding RNAs that have emerged as key regulators of gene expression in AML. A number of miRNAs have shown the ability to interfere with ALDH1A1 gene expression directly in solid tumor cells, and these miRNAs can be evaluated in AML model systems. There are indications that a few of these miRNAs actually do have an association with AML disease course, rendering them a promising target for genetic intervention in AML cells.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
5
|
Péterffy B, Nádasi TJ, Krizsán S, Horváth A, Márk Á, Barna G, Timár B, Almási L, Müller J, Csanádi K, Rakonczai A, Nagy Z, Kállay K, Kertész G, Kriván G, Csóka M, Sebestyén A, Semsei ÁF, Kovács GT, Erdélyi DJ, Bödör C, Egyed B, Alpár D. Digital PCR-based quantification of miR-181a in the cerebrospinal fluid aids patient stratification in pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:28556. [PMID: 39558071 PMCID: PMC11574027 DOI: 10.1038/s41598-024-79733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Despite remarkable improvements in the survival of pediatric acute lymphoblastic leukemia (ALL), sensitive detection and clinical management of central nervous system leukemia (CNSL) are still immensely challenging. Blast cells residing in the CNS but not circulating in the cerebrospinal fluid (CSF) remain undetected by current diagnostic methods, preventing a truly risk-adapted anti-leukemic treatment in this compartment. We examined the clinical applicability of the molecular marker microRNA (miR)-181a quantified in the cell-free CSF to evaluate the level of CNS involvement and to optimize patient stratification based on CNS status. Normalized copy number of miR-181a was longitudinally profiled using droplet digital PCR, and the results were compared with the degree of leukemic involvement of the CNS. After combining cytospin- and flow cytometry (FCM) data with miR-181a expression, we could stratify previously ambiguous cases and reclassify patients into a CNS-positive/miR-significant group (mean ± SE for miR-181a copies: 3300.70 ± 809.69) bearing remarkable infiltration as well as into CNS-minimal/miR-significant and CNS-minimal/miR-minimal groups differentiating putative, clinically significant occult CNSL cases (2503.50 ± 275.89 and 744.02 ± 86.81 copies, respectively, p = 1.13 × 10-6). In summary, miR-181a expression is a promising biomarker for CNSL detection, facilitating the robust identification of patients who could benefit from intensified CNS-directed therapy.
Collapse
Grants
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- 739593 Horizon 2020 Framework Programme
- 739593 Horizon 2020 Framework Programme
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- EFOP-3.6.3-VEKOP-16-2017-00009 Complementary Research Excellence Program of Semmelweis University
- BO/00125/22 János Bolyai Research Scholarship
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Tamás J Nádasi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Horváth
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Botond Timár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Laura Almási
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Judit Müller
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, 86 Üllői Str, 1089, Budapest, Hungary
| | - Anna Rakonczai
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Zsolt Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Monika Csóka
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary
| | - Gábor T Kovács
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Dániel J Erdélyi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary.
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary.
| | - Donát Alpár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| |
Collapse
|
6
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024; 103:4375-4400. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
7
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
8
|
Hsu WY, Chiou SS, Lin PC, Liao YM, Yeh CY, Tseng YH. Prediction of miRNA‑mRNA network regulating the migration ability of cytarabine‑resistant HL60 cells. Biomed Rep 2024; 20:20. [PMID: 38170076 PMCID: PMC10758919 DOI: 10.3892/br.2023.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Cytarabine is an important medicine for acute myeloid leukemia (AML) treatment, however, drug resistance hinders the treatment of AML. Although microRNA (miRNA or miR) alteration is one of the well-recognized mechanisms underlying drug resistance in AML, few studies have investigated the role and function of miRNAs in the development of cytarabine resistance. In the present study, total RNA was isolated from parental HL60 and cytarabine-resistant HL60 (R-HL60) cells. Subsequently, miRNAs and mRNAs were detected using small RNA sequencing and gene expression array, respectively. Differentially expressed mRNAs (DEMs) and differentially expressed genes (DEGs) with more than two-fold changes between HL60 and R-HL60 cells were screened out. Negatively associated miRNA-mRNA pairs were selected as candidate miRNA-mRNA target pairs according to the miRDB, Targetscan or miRTar databases. Functional enrichment analysis of DEGs included in the candidate miRNA-mRNA pairs was performed. The results indicated that 10 DEGs (CCL2, SOX9, SLC8A1, ICAM1, CXCL10, SIPR2, FGFR1, OVOL2, MITF and CARD10) were simultaneously involved in seven Gene Ontology pathways related to the regulation of migration ability, namely the 'regulation of cell migration', 'regulation of locomotion', 'regulation of cellular component movement', 'cell migration', 'locomotion', 'cell motility', and 'localization of cell'. DEMs predicted to negatively regulate the aforementioned 10 DEGs were paired with DEGs into 16 candidate miRNA-mRNA pairs related to the regulation of migration ability. In addition, migration assays revealed that the migration ability of R-HL60 cells was greater than that of HL60 cells. These findings provide a new perspective for the treatment of cytarabine-resistant AML and advance our understanding of altered migration ability underlying cytarabine resistance development, specifically related to miRNAs.
Collapse
Affiliation(s)
- Wan-Yi Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Special Hematologic Disease Service Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Special Hematologic Disease Service Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Pei-Chin Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Special Hematologic Disease Service Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Mei Liao
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
- Special Hematologic Disease Service Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Chung-Yu Yeh
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, R.O.C
| |
Collapse
|
9
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
10
|
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z. Role of miR‑181a‑5p in cancer (Review). Int J Oncol 2023; 63:108. [PMID: 37539738 PMCID: PMC10552769 DOI: 10.3892/ijo.2023.5556] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non‑coding RNAs (ncRNAs) that can post‑transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR‑181a‑5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR‑181a‑5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR‑181a‑5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR‑181a‑5p. However, the precise role of miR‑181a‑5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR‑181a‑5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
11
|
Akyüz N, Janjetovic S, Ghandili S, Bokemeyer C, Dierlamm J. EBV and 1q Gains Affect Gene and miRNA Expression in Burkitt Lymphoma. Viruses 2023; 15:1808. [PMID: 37766215 PMCID: PMC10537407 DOI: 10.3390/v15091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities of the long arm of chromosome 1 (1q) represent the most frequent secondary chromosomal aberrations in Burkitt lymphoma (BL) and are observed almost exclusively in EBV-negative BL cell lines (BL-CLs). To verify chromosomal abnormalities, we cytogenetically investigated EBV-negative BL patient material, and to elucidate the 1q gain impact on gene expression, we performed qPCR with six 1q-resident genes and analyzed miRNA expression in BL-CLs. We observed 1q aberrations in the form of duplications, inverted duplications, isodicentric chromosome idic(1)(q10), and the accumulation of 1q12 breakpoints, and we assigned 1q21.2-q32 as a commonly gained region in EBV-negative BL patients. We detected MCL1, ARNT, MLLT11, PDBXIP1, and FCRL5, and 64 miRNAs, showing EBV- and 1q-gain-dependent dysregulation in BL-CLs. We observed MCL1, MLLT11, PDBXIP1, and 1q-resident miRNAs, hsa-miR-9, hsa-miR-9*, hsa-miR-92b, hsa-miR-181a, and hsa-miR-181b, showing copy-number-dependent upregulation in BL-CLs with 1q gains. MLLT11, hsa-miR-181a, hsa-miR-181b, and hsa-miR-183 showed exclusive 1q-gains-dependent and FCRL5, hsa-miR-21, hsa-miR-155, hsa-miR-155*, hsa-miR-221, and hsa-miR-222 showed exclusive EBV-dependent upregulation. We confirmed previous data, e.g., regarding the EBV dependence of hsa-miR-17-92 cluster members, and obtained detailed information considering 1q gains in EBV-negative and EBV-positive BL-CLs. Altogether, our data provide evidence for a non-random involvement of 1q gains in BL and contribute to enlightening and understanding the EBV-negative and EBV-positive BL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.A.); (S.J.); (S.G.); (C.B.)
| |
Collapse
|
12
|
Norkaew C, Subkorn P, Chatupheeraphat C, Roytrakul S, Tanyong D. Pinostrobin, a fingerroot compound, regulates miR-181b-5p and induces acute leukemic cell apoptosis. Sci Rep 2023; 13:8084. [PMID: 37208425 DOI: 10.1038/s41598-023-35193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2023] [Indexed: 05/21/2023] Open
Abstract
Pinostrobin (PN) is the most abundant flavonoid found in fingerroot. Although the anti-leukemic properties of PN have been reported, its mechanisms are still unclear. MicroRNAs (miRNAs) are small RNA molecules that function in posttranscriptional silencing and are increasingly being used in cancer therapy. The aims of this study were to investigate the effects of PN on proliferation inhibition and induction of apoptosis, as well as the involvement of miRNAs in PN-mediated apoptosis in acute leukemia. The results showed that PN reduced cell viability and induced apoptosis in acute leukemia cells via both intrinsic and extrinsic pathways. A bioinformatics approach and Protein-Protein Interaction (PPI) network analysis revealed that ataxia-telangiectasia mutated kinase (ATM), one of the p53 activators that responds to DNA damage-induced apoptosis, is a crucial target of PN. Four prediction tools were used to predict ATM-regulated miRNAs; miR-181b-5p was the most likely candidate. The reduction in miR-181b-5 after PN treatment was found to trigger ATM, resulting in cellular apoptosis. Therefore, PN could be developed as a drug for acute leukemia; in addition, miR-181b-5p and ATM may be promising therapeutic targets.
Collapse
Affiliation(s)
- Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Paweena Subkorn
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
13
|
Circ_0035381 Regulates Acute Myeloid Leukemia Development by Modulating YWHAZ Expression via Adsorbing miR-582-3p. Biochem Genet 2023; 61:354-371. [PMID: 35917008 DOI: 10.1007/s10528-022-10244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/07/2022] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukemia (AML) is a common hematopoietic disorder. Many circular RNAs (circRNAs) are abnormally expressed in AML, including hsa_circ_0035381 (circ_0035381). Nevertheless, the function and mechanism of circ_0035381 in AML remain mostly unclear. Expression of circ_0035381 was determined by qRT-PCR. The impacts of circ_0035381 on AML cell proliferation, apoptosis, and mitochondrial damage were validated via performing loss-of-function experiments. Targeting relationship was predicted by bioinformatics analysis and verified via dual-luciferase reporter and RNA immunoprecipitation assays. Circ_0035381 was upregulated in AML bone marrow samples and cells. Circ_0035381 downregulation decreased AML cell growth in nude mice and restrained AML cell proliferation and contributed to AML apoptosis and mitochondrial damage in vitro. Circ_0035381 acted as a miR-582-3p sponge, and miR-582-3p downregulation mitigated the impacts of circ_0035381 interference on AML cell proliferation, apoptosis, and mitochondrial damage. MiR-582-3p targeted Tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta (YWHAZ), and it restrained AML cell proliferation and facilitated AML cell apoptosis and mitochondrial damage by decreasing YWHAZ expression. Notably, circ_0035381 regulated YWHAZ expression via miR-582-3p. Circ_0035381 knockdown repressed cell proliferation and promoted cell apoptosis and mitochondrial damage via regulating the miR-582-3p/YWHAZ axis in AML.
Collapse
|
14
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
15
|
Hadar A, Voinsky I, Parkhomenko O, Puzianowska‐Kuźnicka M, Kuźnicki J, Gozes I, Gurwitz D. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Dev Res 2022; 83:1419-1424. [PMID: 35774024 PMCID: PMC9545764 DOI: 10.1002/ddr.21972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
With increased life expectancies in developed countries, cancer rates are becoming more common among the elderly. Cancer is typically driven by a combination of germline and somatic mutations accumulating during an individual's lifetime. Yet, many centenarians reach exceptionally old age without experiencing cancer. It was suggested that centenarians have more robust DNA repair and mitochondrial function, allowing improved maintenance of DNA stability. In this study, we applied real-time quantitative PCR to examine the expression of ATM in lymphoblastoid cell lines (LCLs) from 15 healthy female centenarians and 24 younger female donors aged 21-88 years. We observed higher ATM mRNA expression of in LCLs from female centenarians compared with both women aged 21-48 years (FD = 2.0, p = .0016) and women aged 56-88 years (FD = 1.8, p = .0094. Positive correlation was found between ATM mRNA expression and donors age (p = .0028). Levels of hsa-miR-181a-5p, which targets ATM, were lower in LCLs from centenarians compared with younger women. Our findings suggest a role for ATM in protection from age-related diseases, possibly reflecting more effective DNA repair, thereby reducing somatic mutation accumulation during aging. Further studies are required for analyzing additional DNA repair pathways in biosamples from centenarians and younger age men and women.
Collapse
Affiliation(s)
- Adva Hadar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Irena Voinsky
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Olga Parkhomenko
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Monika Puzianowska‐Kuźnicka
- Department of Human EpigeneticsMossakowski Medical Research InstituteWarsawPoland
- Department of Geriatrics and GerontologyMedical Centre of Postgraduate EducationWarsawPoland
| | - Jacek Kuźnicki
- The International Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
16
|
Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 2022; 17:94-104. [PMID: 35674998 DOI: 10.1007/s11899-022-00663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.,Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Sophia Korotev
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
17
|
Zhao B, Li J, Zhang X, Dai Y, Yang N, Bao Z, Chen Y, Wu X. Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β-catenin signaling pathway. Int J Biol Macromol 2022; 207:110-120. [PMID: 35248611 DOI: 10.1016/j.ijbiomac.2022.02.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Exosomal miRNAs are verified critical biomarkers, which participate in several biological processes. The growth and development of the hair follicle (HF) are typically controlled by the exosomal miRNAs via cell-to-cell communication. This study identified a high expression of miR-181a-5p in the low-passage DPC-Exos (exosomes derived from dermal papilla cell), revealing the transportation patterns of the DPC-Exos-derived miR-181a-5p entering the HFSC (hair follicle stem cell). The exosomal miR-181a-5p activates the Wnt/β-catenin signaling pathway by targeting the Wnt inhibitor WIF1 and thereby regulates the proteins and genes related to HF growth and development. Moreover, the exosomal miR-181a-5p was found to suppress the HFSC apoptosis but promoted the HFSC proliferation. The in vitro culture of the HF organ revealed that the exosomal miR-181a-5p possesses a positive role in hair growth. Collectively, the exosomal miR-181a-5p affects the HF growth and development through the Wnt/β-catenin signaling pathway. The exosomal miR-181a-5p might, therefore, act as the novel biomarker and therapeutic target for treating hair-related diseases and wool production in mammals.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, China.
| |
Collapse
|
18
|
miRNA-seq and clinical evaluation in multiple myeloma: miR-181a overexpression predicts short-term disease progression and poor post-treatment outcome. Br J Cancer 2022; 126:79-90. [PMID: 34718359 PMCID: PMC8727627 DOI: 10.1038/s41416-021-01602-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite significant advances in multiple myeloma (MM) therapy, disease relapse and treatment resistance remain major obstacles in clinical management. Herein, we have studied the clinical utility of miRNAs in improving patients' risk-stratification and prognosis. METHODS miRNA-seq was performed in CD138+ plasma cells of MM, smoldering multiple myeloma (sMM) and monoclonal gammopathy of undetermined significance (MGUS) patients. The screening MM cohort consisted of 138 patients. miRNA levels of CD138+ plasma cells were quantified by RT-qPCR following 3'-end RNA polyadenylation. Disease progression and patients' death were used as clinical end-point events. Internal validation was conducted by bootstrap analysis. Clinical net benefit on disease prognosis was assessed by decision curve analysis. Kruykov et al. 2016 served as validation cohort (n = 151). RESULTS miRNA-seq highlighted miR-181a to be upregulated in MM vs. sMM/MGUS, and R-ISS III vs. I patients. Screening and validation cohorts confirmed the significantly higher risk for short-term progression and worse survival of the patients overexpressing miR-181a. Multivariate models integrating miR-181a with disease established markers led to superior risk-stratification and clinical benefit for MM prognosis. CONCLUSIONS CD138+ overexpression of miR-181a was strongly correlated with inferior disease outcome and contributed to superior prediction of MM patients early progression, supporting personalised prognosis and treatment decisions.
Collapse
|
19
|
Liu X, Liu X, Cai M, Luo A, He Y, Liu S, Zhang X, Yang X, Xu L, Jiang H. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer 2021; 20:139. [PMID: 34702297 PMCID: PMC8549339 DOI: 10.1186/s12943-021-01395-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and have been confirmed to be critical in tumorigenesis and to be potential biomarkers or therapeutic targets. However, only a few circRNAs have been functionally characterized in pediatric acute myeloid leukemia (AML). Methods Here, we investigated the expression pattern of circRNAs in pediatric AML using a circRNA microarray. The characteristics, potential diagnostic value, and prognostic significance of circRNF220 were evaluated. A series of functional experiments were performed to investigate the role of circRNF220 in primary pediatric AML cells. Then we investigated the aberrant transcriptional networks regulated by circRNF220 in primary AML cells by RNA-seq. Furthermore, biotin RNA pulldown assays were implemented to verify the relationship between circRNF220 and miR-30a. Results We identified a circRNA, circRNF220, which was specifically abundant in and accumulated in the peripheral blood and bone marrow of pediatric patients with AML. It could distinguish AML from ALL and other hematological malignancies with high sensitivity and specificity. Significantly, circRNF220 expression independently predicted prognosis, while high expression of circRNF220 was an unfavorable prognostic marker for relapse. Furthermore, we characterized the function of circRNF220 and found that circRNF220 knockdown specifically inhibited proliferation and promoted apoptosis in AML cell lines and primary cells. Mechanistically, circRNF220 may act as an endogenous sponge of miR-30a to sequester miR-30a and inhibit its activity, which increases the expression of its targets MYSM1 and IER2 and implicated in AML relapse. Conclusions Collectively, these findings demonstrated that circRNF220 could be highly efficient and specific for the accurate diagnosis of pediatric AML, with implications for relapse prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01395-7.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaoping Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mansi Cai
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ailing Luo
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Sha Liu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xiaohong Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China
| | - Xu Yang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.,Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Zhujiang Newtown, Tianhe District, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
20
|
Iravani Saadi M, Ramzi M, Hesami Z, kheradmand N, Owjfard M, Nabi Abdolyousefi E, Karimi Z. MiR-181a and -b expression in acute lymphoblastic leukemia and its correlation with acute graft-versus-host disease after hematopoietic stem cell transplantation, COVID-19 and torque teno viruses. Virusdisease 2021; 32:727-736. [PMID: 34722832 PMCID: PMC8543773 DOI: 10.1007/s13337-021-00743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL), a malignant transformation and proliferation of the lymphoid line of blood cells, is characterized by chromosomal abnormalities and genetic changes. The purpose of this research was the evaluation of expression level of miR-181a and -b in patients with ALL compared to the control group. Furthermore, we examined their expression level in hematopoietic stem-cell transplantation (HSCT) patients who developed acute graft-versus-host disease (aGVHD) in comparison with those without aGVHD and explore the relationship between their expression level and cytogenetic abnormalities. In this cross-sectional study, 76 newly diagnosed adult De novo ALL patients were enrolled who were admitted to our referral hospital. All patients received standard chemotherapy, consisting of daunorubicin. A total of 37 patients underwent HSCT from the related human leukocyte antigen-matched donors. ALL patients have been diagnosed with the coronavirus disease 2019 (COVID-19) and Torque teno viruses (TTVs). We assessed the expression levels of miR-181a and -b in the peripheral blood sample of ALL patients at the time of diagnosis prior to chemotherapy, and healthy matched individuals by RT–PCR. TTVs and COVID-19 load were also determined via RT–PCR. In conclusion, the expression level of miR-181a and -b were significantly higher in ALL patients than healthy controls and also increased in patients who developed aGVHD in comparison with those without aGVHD. MiR-181a and -b can be a useful biomarker in ALL and a useful indicator of aGVHD. The expression level of miR-181a in ALL patients with COVID-19 is significantly up-regulated, while it is reduced in these patients with TTV.
Collapse
Affiliation(s)
- Mahdiyar Iravani Saadi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hesami
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadiya kheradmand
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Nabi Abdolyousefi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Wei Y, Wang T, Zhang N, Ma Y, Shi S, Zhang R, Zheng X, Zhao L. LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. J Mol Histol 2021; 52:419-426. [PMID: 33675502 PMCID: PMC8012339 DOI: 10.1007/s10735-021-09968-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022]
Abstract
Hypertrophic scar (HS), a fibroproliferative disorder caused by abnormal wound healing after skin injury, which is characterized by excessive deposition of extracellular matrix and invasive growth of fibroblasts. Recent studies have shown that some non-coding RNA implicated the formation of HS, but the mechanism remains unclear. In this study, we found that lncRNA TRHDE-AS1 was downregulated in HS tissues and HSFs, and the level of lncRNA TRHDE-AS1 negatively correlated with the level of miR-181a-5p in HS tissue and HSFs. Overexpressed lncRNA TRHDE-AS1 significantly suppressed miR-181a-5p level, while promoted HSFs apoptosis and inhibited HSFs proliferation. Further study shown that PTEN was a direct target of miR-181a-5p, and lncRNA TRHDE-AS1 served as a molecular sponge for miR-181a-5p to regulate the expression of PTEN. Overexpression of PTEN could eliminate lncRNA TRHDE-AS1-mediated proliferation suppression of HSFs. In conclusion, our study suggested that lncRNA TRHDE-AS1/miR-181a-5p/PTEN axis plays an important role in promoting hypertrophic scar formation, which may be effectively used as a therapeutic target for hypertrophic scar treatment.
Collapse
Affiliation(s)
- Yanping Wei
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China.
| | - Tingting Wang
- Xinxiang Medical University, Xinxiang, 453003, China
| | | | - Yunyun Ma
- Henan Medical College, Zhengzhou, 451191, China
| | - Siji Shi
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| | - Ruxing Zhang
- Department of Neurology, The Fifth People's Hospital of Jiaozuo, Jiaozuo, 454000, China
| | - Xianzhao Zheng
- Department of Neurology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| | - Lindong Zhao
- Department of Dermatology, People's Hospital of Jiaozuo City, Jiaozuo, 454002, China
| |
Collapse
|
22
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
23
|
Szczepanek J. Role of microRNA dysregulation in childhood acute leukemias: Diagnostics, monitoring and therapeutics: A comprehensive review. World J Clin Oncol 2020; 11:348-369. [PMID: 32855905 PMCID: PMC7426929 DOI: 10.5306/wjco.v11.i6.348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate the expression of genes by sequence-specific binding to mRNA to either promote or block its translation; they can also act as tumor suppressors (e.g., let-7b, miR-29a, miR-99, mir-100, miR-155, and miR-181) and/or oncogenes (e.g., miR-29a, miR-125b, miR-143-p3, mir-155, miR-181, miR-183, miR-196b, and miR-223) in childhood acute leukemia (AL). Differentially expressed miRNAs are important factors associated with the initiation and progression of AL. As shown in many studies, they can be used as noninvasive diagnostic and prognostic biomarkers, which are useful in monitoring early stages of AL development or during therapy (e.g., miR-125b, miR-146b, miR-181c, and miR-4786), accurate classification of different cellular or molecular AL subgroups (e.g., let-7b, miR-98, miR-100, miR-128b, and miR-223), and identification and development of new therapeutic agents (e.g., mir-10, miR-125b, miR-203, miR-210, miR-335). Specific miRNA patterns have also been described for commonly used AL therapy drugs (e.g., miR-125b and miR-223 for doxorubicin, miR-335 and miR-1208 for prednisolone, and miR-203 for imatinib), uncovering miRNAs that are associated with treatment response. In the current review, the role of miRNAs in the development, progression, and therapy monitoring of pediatric ALs will be presented and discussed.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń 87100, Poland
| |
Collapse
|
24
|
Egyed B, Kutszegi N, Sági JC, Gézsi A, Rzepiel A, Visnovitz T, Lőrincz P, Müller J, Zombori M, Szalai C, Erdélyi DJ, Kovács GT, Semsei ÁF. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med 2020; 18:250. [PMID: 32571344 PMCID: PMC7310470 DOI: 10.1186/s12967-020-02415-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Refractory central nervous system (CNS) involvement is among the major causes of therapy failure in childhood acute leukemia. Applying contemporary diagnostic methods, CNS disease is often underdiagnosed. To explore more sensitive and less invasive CNS status indicators, we examined microRNA (miR) expressions and extracellular vesicle (EV) characteristics. Methods In an acute lymphoblastic leukemia (ALL) discovery cohort, 47 miRs were screened using Custom TaqMan Advanced Low-Density Array gene expression cards. As a validation step, a candidate miR family was further scrutinized with TaqMan Advanced miRNA Assays on serial cerebrospinal fluid (CSF), bone marrow (BM) and peripheral blood samples with different acute leukemia subtypes. Furthermore, small EV-rich fractions were isolated from CSF and the samples were processed for immunoelectron microscopy with anti-CD63 and anti-CD81 antibodies, simultaneously. Results Regarding the discovery study, principal component analysis identified the role of miR-181-family (miR-181a-5p, miR-181b-5p, miR-181c-5p) in clustering CNS-positive (CNS+) and CNS-negative (CNS‒) CSF samples. We were able to validate miR-181a expression differences: it was about 52 times higher in CSF samples of CNS+ ALL patients compared to CNS‒ cases (n = 8 vs. n = 10, ΔFC = 52.30, p = 1.5E−4), and CNS+ precursor B cell subgroup also had ninefold higher miR-181a levels in their BM (p = 0.04). The sensitivity of CSF miR-181a measurement in ALL highly exceeded those of conventional cytospin in the initial diagnosis of CNS leukemia (90% vs. 54.5%). Pellet resulting from ultracentrifugation of CNS+ CSF samples of ALL patients showed atypical CD63−/CD81− small EVs in high density by immunoelectron microscopy. Conclusions After validating in extensive cohorts, quantification of miR-181a or a specific EV subtype might provide novel tools to monitor CNS disease course and further adjust CNS-directed therapy in pediatric ALL.
Collapse
Affiliation(s)
- Bálint Egyed
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Nóra Kutszegi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Department of Measurements and Information Systems, Budapest University of Technology and Economics, 2 Magyar tudosok korutja, Budapest, 1117, Hungary
| | - Andrea Rzepiel
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1/c Pázmány Promenade, Budapest, 1117, Hungary
| | - Judit Müller
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Marianna Zombori
- Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Gábor T Kovács
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.
| |
Collapse
|
25
|
Meijer LL, Garajová I, Caparello C, Le Large TYS, Frampton AE, Vasile E, Funel N, Kazemier G, Giovannetti E. Plasma miR-181a-5p Downregulation Predicts Response and Improved Survival After FOLFIRINOX in Pancreatic Ductal Adenocarcinoma. Ann Surg 2020; 271:1137-1147. [PMID: 30394883 DOI: 10.1097/sla.0000000000003084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to identify plasma microRNA (miRNA) biomarkers for stratifying and monitoring patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC) treated with FOLFIRINOX, and to investigate their functional roles. SUMMARY BACKGROUND DATA FOLFIRINOX has become a standard therapy for patients with advanced PDAC and can be used to potentially downstage disease. However, only a subset of patients respond, and biomarkers to guide decision-making are urgently needed. METHODS We used microarray-based profiling to discover deregulated miRNAs in pre- and postchemotherapy plasma samples from patients based on their progression-free survival (PFS) after FOLFIRINOX. Nine candidate plasma miRNAs were validated in an independent cohort (n = 43). The most discriminative plasma miRNA was correlated with clinicopathological factors and survival, and also investigated in an additional cohort treated with gemcitabine plus nab-paclitaxel. Expression patterns were further evaluated in matched tumor tissues. In vitro studies explored its function, key downstream gene-targets, and interaction with 5-fluorouracil, irinotecan, and oxaliplatin. RESULTS Plasma miR-181a-5p was significantly downregulated in non-progressive patients after FOLFIRINOX. In multivariate analysis, this decline correlated with improved PFS and overall survival, especially when combined with CA19-9 decline [hazard ratio (HR) = 0.153, 95% confidence interval (CI), 0.067-0.347 and HR = 0.201, 95% CI, 0.070-0.576, respectively]. This combination did not correlate with survival in patients treated with gemcitabine plus nab-paclitaxel. Tissue expression of miR-181a-5p reflected plasma levels. Inhibition of miR-181a-5p coupled with oxaliplatin exposure in pancreatic cell lines decreased cell viability. CONCLUSIONS Plasma miR-181a-5p is a specific biomarker for monitoring FOLFIRINOX response. Decline in plasma miR-181a-5p and CA19-9 levels is associated with better prognosis after FOLFIRINOX and may be useful for guiding therapeutic choices and surgical exploration.
Collapse
Affiliation(s)
- Laura L Meijer
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Amsterdam, the Netherlands
| | - Ingrid Garajová
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Amsterdam, The Netherlands
- Department of Medical Oncology, University Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Chiara Caparello
- Department of Medical Oncology, University Hospital of Pisa, Pisa, Italy
| | - Tessa Y S Le Large
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Amsterdam, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Amsterdam, The Netherlands
- Laboratory of Experimental Oncology & Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Adam E Frampton
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| | - Enrico Vasile
- Department of Medical Oncology, University Hospital of Pisa, Pisa, Italy
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC-Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC-Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, Elfaki I, Kulinski M, Kuttikrishnan S, Prabhu KS, Khan AQ, Yadav SK, El-Rifai W, Zargar MA, Zayed H, Haris M, Uddin S. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 2020; 19:57. [PMID: 32164715 PMCID: PMC7069174 DOI: 10.1186/s12943-020-01175-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Salma N Younes
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Era's Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Lubna Zarif
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sabah Nisar
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ikhlak Ahmed
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Santosh K Yadav
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Mohammad A Zargar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| |
Collapse
|
27
|
Sun Y, Wang H, Luo C. MiR-100 regulates cell viability and apoptosis by targeting ATM in pediatric acute myeloid leukemia. Biochem Biophys Res Commun 2020; 522:855-861. [PMID: 31801665 DOI: 10.1016/j.bbrc.2019.11.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is the most common pediatric malignancy and a major cause of morbidity and mortality in children. miR-100 is associated with progression of various diseases including AML. The aim of this study was to explore the underlying molecule mechanisms of miR-100 involved in AML. The expressions of miR-100 and ataxia telangiectasia mutated (ATM) in pediatric AML patients and cell lines were monitored using qRT-PCR and western blot assays. MTT assay was carried to evaluate cell viability. Cell apoptosis was measured by flow cytometry. The binding sites between miR-100 and ATM were predicted by mirtarbase database. Luciferase reporter assay was used to confirm the relationship between miR-100 and ATM. miR-100 expression was highly expressed in bone marrow of AML patients and cell lines. Moreover, Knockdown of miR-100 led to the inhibition of viability and promotion of apoptosis in Kasumi-1 and MV-4-11 cells. miR-100 harbored the 3'UTR of ATM. Meanwhile, the expression of ATM was downregulated in bone marrow of AML patients and AML cell lines. Subsequently, a negative correlation between miR-100 and ATM in bone marrow of AML patients was also observed. Furthermore, ectopic expression of ATM repressed cell viability while enhanced apoptosis. Notably, loss of ATM attenuated the effect of miR-100 depletion on cell viability and apoptosis in AML cells. miR-100 participates in cell viability and apoptosis by targeting ATM in pediatric AML.
Collapse
Affiliation(s)
- Yin Sun
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Hongxiang Wang
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China
| | - Chibao Luo
- Department of Pediatrics, Tengzhou Central People's Hospital, Tengzhou, 277500, Shandong, China.
| |
Collapse
|
28
|
Nehrbas J, Butler JT, Chen DW, Kurre P. Extracellular Vesicles and Chemotherapy Resistance in the AML Microenvironment. Front Oncol 2020; 10:90. [PMID: 32117744 PMCID: PMC7033644 DOI: 10.3389/fonc.2020.00090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicle (EV) trafficking provides for a constitutive mode of cell-cell communication within tissues and between organ systems. Different EV subtypes have been identified that transfer regulatory molecules between cells, influencing gene expression, and altering cellular phenotypes. Evidence from a range of studies suggests that EV trafficking enhances cell survival and resistance to chemotherapy in solid tumors. In acute myeloid leukemia (AML), EVs contribute to the dynamic crosstalk between AML cells, hematopoietic elements and stromal cells and promote adaptation of compartmental bone marrow (BM) function through transport of protein, RNA, and DNA. Careful analysis of leukemia cell EV content and phenotypic outcomes provide evidence that vesicles are implicated in transferring several known key mediators of chemoresistance, including miR-155, IL-8, and BMP-2. Here, we review the current understanding of how EVs exert their influence in the AML niche, and identify research opportunities to improve outcomes for relapsed or refractory AML patients.
Collapse
Affiliation(s)
- Jill Nehrbas
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John T Butler
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.,Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Chao Y, Zhang L, Zhang X, Ma C, Chen Z. Expression of MiR-140 and MiR-199 in Synovia and its Correlation with the Progression of Knee Osteoarthritis. Med Sci Monit 2020; 26:e918174. [PMID: 31957742 PMCID: PMC6990666 DOI: 10.12659/msm.918174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to explore the expression of miR-140 and miR-199 in synovia of patients with knee osteoarthritis (KOA) and its correlation with the progression of this disease. We used the Kellgren and Lawrence grading (KLG) system. Material/Methods There were 110 patients with early (KLG <2), middle (KLG=2) and late (KLG >2) stage KOA and 60 healthy individuals (control) included in this study. Results The relative expression levels of miR-140 (1.07±0.091) and miR-199 (1.03±0.110) in synovia of the control group were higher than those of KOA groups (0.511±0.130, 0.298±0.168) and the difference exhibited statistical significance (P<0.01). Expression of miR-140 in the middle and the late stage KOA groups (0.322±0.118 and 0.110±0.088 respectively) were 58.80% and 81.29% lower, respectively, compared to the early stage KOA group (0.588±0.172), which was significant (P<0.05). Expression of miR-199 in the middle and the late stage KOA groups (0.210±0.124 and 0.056±0.068 respectively) were 39.41% (P<0.05) and 83.72% (P<0.01) respectively lower than that in the early KOA group (0.344±0.147). The severity of OA was significantly negatively correlated with the expressions of miR-140 and miR-199 (r=−0.859, P<0.05; r=−0.724, P<0.001 respectively). Matrix metalloproteinase (MMP)-3 levels of the early stage, middle stage and late stage KOA groups were 1.320±0.118, 1.488±0.210, and 1.955±0.023 respectively; and IL-1β mRNA was 1.401±0.204, 1.522±0.210, and 1.889±0.217 respectively, which were obviously higher than those in the control group (1.020±0.085), (P<0.05). Conclusions Expression levels of miR-140 and miR-199 in synovia might act as an early diagnostic marker for KOA. These expression levels might also act as indicators of OA progression to some extent.
Collapse
Affiliation(s)
- Yu Chao
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical College (General Medical College of Xi'an Medical College), Xi'an, Shaanxi, China (mainland)
| | - Liwen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical College (General Medical College of Xi'an Medical College), Xi'an, Shaanxi, China (mainland)
| | - Xiang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical College (General Medical College of Xi'an Medical College), Xi'an, Shaanxi, China (mainland)
| | - Cong Ma
- Clinical Medicine, School of Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zhijun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Medical College (General Medical College of Xi'an Medical College), Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
30
|
Rezaeian AH, Khanbabaei H, Calin GA. Therapeutic Potential of the miRNA-ATM Axis in the Management of Tumor Radioresistance. Cancer Res 2019; 80:139-150. [PMID: 31767626 DOI: 10.1158/0008-5472.can-19-1807] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/09/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein kinase is widely known for its function as a chief mobilizer of the DNA damage response (DDR) upon DNA double-strand breaks. ATM orchestrates the DDR by modulating the expression of various miRNAs through several mechanisms. On the other hand, a set of miRNAs contribute to tight regulation of ATM by directly targeting the 3'-untranslated region of ATM mRNA. This review addresses the therapeutic application and molecular mechanisms that underlie the intricate interactions between miRNAs and ATM. It also describes therapeutic delivery of miRNAs in different environments such as hypoxic tumor microenvironments.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - George A Calin
- Departments of Experimental Therapeutics and Leukemia and the Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
31
|
Braicu C, Gulei D, Raduly L, Harangus A, Rusu A, Berindan-Neagoe I. Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Mol Aspects Med 2019; 70:90-105. [PMID: 31703947 DOI: 10.1016/j.mam.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding transcripts which regulate genetic and epigenetic events by interfering with mRNA translation. miRNAs are involved in regulation of cell fate due to their ability of interfering with physiological or pathological processes. In this review paper, we evaluate the role of miR-181 family members as prognostic or diagnostic markers or therapeutic targets in malignant pathologies in connection with the main hallmarks of cancer that are modulated by the family. Also, we take over the dual role of this family in dependency with the tumour suppressor and oncogenic features presented in cell and cancer type specific manner. Restoration of the altered expression levels contributes to the activation of cell death pathways or to a reduction in the invasion and migration mechanism; moreover, the mechanism of drug resistance is also modulated by miR-181 sequences with important applications in therapeutic strategies for malignant cells sensitisation. Overall, the main miR-181 family regulatory mechanisms are presented in a cancer specific context, emphasizing the possible clinical application of this family in terms of novel diagnosis and therapy approaches.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonia Harangus
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Leon Daniello" Pneumophtisiology Clinic, 6 Bogdan Petriceicu Hasdeu Street, 400332, Cluj-Napoca, Romania.
| | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.
| |
Collapse
|
32
|
McNeer NA, Philip J, Geiger H, Ries RE, Lavallée VP, Walsh M, Shah M, Arora K, Emde AK, Robine N, Alonzo TA, Kolb EA, Gamis AS, Smith M, Gerhard DS, Guidry Auvil JM, Meshinchi S, Kentsis A. Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia 2019; 33:1934-1943. [PMID: 30760869 PMCID: PMC6687545 DOI: 10.1038/s41375-019-0402-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/02/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemias (AML) are characterized by mutations of tumor suppressor and oncogenes, involving distinct genes in adults and children. While certain mutations have been associated with the increased risk of AML relapse, the genomic landscape of primary chemotherapy-resistant AML is not well defined. As part of the TARGET initiative, we performed whole-genome DNA and transcriptome RNA and miRNA sequencing analysis of pediatric AML with failure of induction chemotherapy. We identified at least three genetic groups of patients with induction failure, including those with NUP98 rearrangements, somatic mutations of WT1 in the absence of apparent NUP98 mutations, and additional recurrent variants including those in KMT2C and MLLT10. Comparison of specimens before and after chemotherapy revealed distinct and invariant gene expression programs. While exhibiting overt therapy resistance, these leukemias nonetheless showed diverse forms of clonal evolution upon chemotherapy exposure. This included selection for mutant alleles of FRMD8, DHX32, PIK3R1, SHANK3, MKLN1, as well as persistence of WT1 and TP53 mutant clones, and elimination of FLT3, PTPN11, and NRAS mutant clones. These findings delineate genetic mechanisms of primary chemotherapy resistance in pediatric AML, which should inform improved approaches for its diagnosis and therapy.
Collapse
Affiliation(s)
- Nicole A McNeer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Philip
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vincent-Philippe Lavallée
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | - Todd A Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, CA, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred Dupont Hospital for Children, Wilmington, DE, USA
| | - Alan S Gamis
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | | | | | | | - Alex Kentsis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Abstract
Acute myeloid leukemia (AML) is a kind of malignant hematopoietic system disease characterized by abnormal proliferation, poor cell differentiation, and infiltration of bone marrow, peripheral blood, or other tissues. To date, the first-line treatment of AML is still based on daunorubicin and cytosine arabinoside or idarubicin and cytosine arabinoside regimen. However, the complete remission rate of AML is still not optimistic, especially in elderly patients, and the recurrence rate after complete remission is still high. The resistance of leukemia cells to chemotherapy drugs becomes the main obstacle in the treatment of AML. At present, the research on the mechanisms of drug resistance in AML is very active. This article will elaborate on the main mechanisms of drug resistance currently being studied, including drug resistance-related proteins and enzymes, gene alterations, micro RNAs, and signal pathways.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Yan Gu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| |
Collapse
|
34
|
Koolivand M, Moein S, MalekZadeh K. The relationship of miR-181a expression level and AML: A systematic review protocol. Int J Surg Protoc 2018; 13:1-4. [PMID: 31851750 PMCID: PMC6913575 DOI: 10.1016/j.isjp.2018.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/18/2018] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION The most common type of leukemia is acute myeloid leukemia (AML) with the lowest survival rate among all of the leukemias particularly in adults. The evidence has shown that dysregulation of miRNA expression is associated with AML. Therefore, the aim of this systematic review was to clarify the role of miR-181a expression in AML. METHODS AND ANALYSIS In the present study, observational studies of the roles of miR-181a expression in patients with AML will be included. Standards and indicators test should be performed for all patients. We will search PubMed, SCOPUS and ISI Web of Science with no restriction of language. The outcomes will be reviewed for association between miR-181a level and AML progression and the strength of this relationship with AML will be investigated. Selection of articles and data extraction will be performed by two independent reviewers. STROBE will be used for assessment of study quality. Publication bias and data synthesis will be an assessment by funnel plots and Beggs and Egger's tests using Stata software V.12.1. ETHICS AND DISSEMINATION There are no ethical issues. TRIAL REGISTRATION NUMBER This systematic review protocol is registered in the PROSPERO (International Prospective Register of Systematic Reviews), and registration number CRD42016040080.
Collapse
Affiliation(s)
- Mohsen Koolivand
- Student Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Sohaila Moein
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Kianoosh MalekZadeh
- Medical Genetics Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
35
|
Sun X, Liu H, Li T, Qin L. MicroRNA‑339‑5p inhibits cell proliferation of acute myeloid leukaemia by directly targeting SOX4. Mol Med Rep 2018; 18:5261-5269. [PMID: 30320397 DOI: 10.3892/mmr.2018.9552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/25/2018] [Indexed: 11/06/2022] Open
Abstract
In recent decades, microRNAs (miRNAs) have been considered novel gene regulators. Dysregulated miRNAs serve crucial roles in the formation and progression of acute myeloid leukaemia (AML). Therefore, the roles of differentially expressed miRNAs in AML require extensive investigation to obtain insight into the treatment of patients with AML. The present study demonstrated significant miR‑339‑5p downregulation in AML samples and cell lines. miR‑339‑5p overexpression attenuated AML cell proliferation by inducing cell cycle arrest and promoting cell apoptosis. Additionally, sex‑determining region Y‑related high‑mobility group box 4 (SOX4) was identified as a direct target gene of miR‑339‑5p in AML. Furthermore, SOX4 expression was significantly upregulated in AML samples; this upregulation was inversely correlated with the expression levels of miR‑339‑5p. Additionally, a series of rescue experiments demonstrated that SOX4 resumption reversed the effects of miR‑339‑5p overexpression on cell proliferation, cycle status and apoptosis of AML. In conclusion, miR‑339‑5p may serve its antiproliferative role in AML by directly targeting SOX4, which suggests that miR‑339‑5p may be considered an effective novel therapeutic target for treating patients with such an aggressive haematological malignancy.
Collapse
Affiliation(s)
- Xueming Sun
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Huaqiang Liu
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Tingting Li
- Department of Hematology, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Laiying Qin
- Department of Clinical Laboratory, Jinan Hospital for Infectious Diseases, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
36
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
37
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
38
|
Liu X, Peng H, Liao W, Luo A, Cai M, He J, Zhang X, Luo Z, Jiang H, Xu L. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1. Mol Carcinog 2018; 57:1237-1250. [PMID: 29802737 DOI: 10.1002/mc.22839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/26/2018] [Accepted: 05/23/2018] [Indexed: 02/05/2023]
Abstract
Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongxia Peng
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wang Liao
- Department of Pediatrics, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mansi Cai
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziyan Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Yu J, Qi J, Sun X, Wang W, Wei G, Wu Y, Gao Q, Zheng J. MicroRNA‑181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep 2018; 40:1959-1970. [PMID: 30106448 PMCID: PMC6111568 DOI: 10.3892/or.2018.6632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR)-181a is a member of the miR-181 family that serves a key role in the pathogenesis of various cancer types. The present study aimed to investigate the interaction between miR-181a and Ras association domain family protein1 isoform A (RASSF1A), and their roles in gastric carcinogenesis. The interaction between miR-181a and RASSF1A was assessed in cell lines and cancer tissues. The direct binding of miR-181a and RASSF1A was identified using a luciferase reporting gene system. The effects of miR-181a and RASSF1A on gastric cancer cell growth, cell cycle and apoptosis were assessed with a Cell Counting Kit-8 assay and flow cytometry. The effects of miR-181a on cell division cycle 25A (CDC25A), cyclin A2, cyclin D1, p21, Bcl-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) protein levels were assessed in gastric cancer cell lines. miR-181a directly interacted with the 3′-untranslated region of RASSF1A and downregulated RASSF1A protein expression. In tissues from patients with gastric cancer, the miR-181a level was significantly higher in the tumor tissues and was negatively correlated with the RASSF1A protein level. RASSF1A suppressed gastric cancer cell proliferation and G1/S transition, and promoted apoptosis; whereas miR-181a promoted cancer cell proliferation and G1/S transition, and suppressed apoptosis. RASSF1A knockdown attenuated the effects of miR-181a downregulation on cell proliferation and apoptosis. Furthermore, miR-181a upregulated CDC25A, cyclin A2 and Bcl-2, and downregulated Bax protein expression in gastric cancer cell lines. These data indicate that miR-181a promotes gastric carcinogenesis, possibly through a direct interaction with RASSF1A.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunhua Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qi Gao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
40
|
Lung RW, Hau P, Yu KH, Yip KY, Tong JH, Chak W, Chan AW, Lam K, Lo AK, Tin EK, Chau S, Pang JC, Kwan JS, Busson P, Young LS, Yap L, Tsao S, To K, Lo K. EBV-encoded miRNAs target ATM-mediated response in nasopharyngeal carcinoma. J Pathol 2018; 244:394-407. [PMID: 29230817 PMCID: PMC5888186 DOI: 10.1002/path.5018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/09/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Raymond W‐M Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Pok‐Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Ken H‐O Yu
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong
| | - Kevin Y Yip
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong
| | - Joanna H‐M Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Wing‐Po Chak
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Anthony W‐H Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Ka‐Hei Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Angela Kwok‐Fung Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Edith K‐Y Tin
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Shuk‐Ling Chau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Jesse C‐S Pang
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Johnny S‐H Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Pierre Busson
- UMR8126 CNRS, Université Paris‐SudUniversité Paris‐SaclayGustave Roussy, VillejuifFrance
| | | | - Lee‐Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
| | - Sai‐Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Ka‐Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| | - Kwok‐Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health ScienceThe Chinese University of Hong KongHong Kong
| |
Collapse
|
41
|
Ba Z, Gu L, Hao S, Wang X, Cheng Z, Nie G. Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif 2017; 51. [PMID: 29194827 DOI: 10.1111/cpr.12409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Long non-coding RNA cancer susceptibility candidate 2 (CASC2) is a novel lncRNA and has been indicated as playing tumour suppressor gene in several tumours. However, the role of CASC2 in osteosarcoma is still uncovered. MATERIALS AND METHODS The CASC2 and miR-181a expressions were measured via qRT-PCR. CCK-8 assay and colony formation assay were performed to determine the cell growth, and transwell assay was performed to assess the cell invasion. RESULTS We showed that CASC2 expression was downregulated in osteosarcoma samples and cell lines. Moreover, we showed that downregulated expression of CASC2 was correlated with advanced TNM stage. Furthermore, overexpression of CASC2 inhibited osteosarcoma cell proliferation, colony formation, and invasion. In addition, we indicated that ectopic expression of CASC2 suppressed miR-181a expression and enhanced the expression of Ras association domain family member 6 (RASSF6), PTEN and ATM in osteosarcoma cell, which were the direct target gene of miR-181a. Moreover, we indicated that RASSF6 expression was downregulated in osteosarcoma samples and cell lines and downregulated expression of RASSF6 was correlated with advanced TNM stage. We found that the expression of RASSF6 was positively correlated with the expression of CASC2 in osteosarcoma tissues. Ectopic expression of CASC2 suppressed the osteosarcoma cell proliferation, colony formation and invasion through regulating RASSF6 expression. CONCLUSIONS Our data illuminated that CASC2 acted as a tumour suppressor in osteosarcoma progression.
Collapse
Affiliation(s)
- Zhiwen Ba
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Lili Gu
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Songnan Hao
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Xiaofang Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhenping Cheng
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| | - Guangchen Nie
- Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
42
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
43
|
Du M, Zhang Z, Gao T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol Res 2017; 50:36. [PMID: 29041990 PMCID: PMC5644130 DOI: 10.1186/s40659-017-0141-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Background Melanoma took top position among the lethal cancers and, despite there have been some great attempts made to increase the natural life of patients with metastatic disease, long-lasting and complete remissions are few. Piceatannol, owns the similar function as resveratrol, has been defined as an anti-cancer agent playing important role in inhibition of proliferation, migration and metastasis in various cancer. Thus, we aim to investigate the anti-cancer effect and mechanisms of piceatannol in melanoma cells. Methods Melanoma cell lines WM266-4 and A2058 were treated either with or without piceatannol. Cell viability and cell apoptosis were assessed by using MTT and Annexin V/PI assay, respectively. Cells were transfected with specific miRNA using Lipfectamine 2000. miRNA bingding ability to 3'-UTR region within specific gene was assed by firefly luciferase analysis. Gene and protein expression was eveluated by qRT-PCR and western blot analysis, respectively. Results Our study showed that piceatannol inhibited WM266-4 and A2058 cells growth and induced apoptosis. Totally, 16 differentially expressed miRNAs were screened out including 8 up-regulated and 8 down-regulated miRNAs. Expression level of miR-181a is significantly higher in piceatannol-treated cells than normal control and is lower in melanoma cancer tissues than its adjacent normal tissues. Bcl-2 is a target gene of miR-181a. Moreover, silencing of miR-181a reverses the decrease of cell viability induced by piceatannol in WM266-4 and A2058 cells. Taken together, present study uncovered the ability of piceatannol to repress melanoma cell growth and clarified the contribution of miR-181a in the anticancer role of piceatannol. Conclusion The present study proposes that piceatannol can be taken into account to be a hopeful anticancer agent for melanoma.
Collapse
Affiliation(s)
- Maotao Du
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhong Zhang
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Tao Gao
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| |
Collapse
|
44
|
Zhang SF, Chen JC, Zhang J, Xu JG. miR-181a involves in the hippocampus-dependent memory formation via targeting PRKAA1. Sci Rep 2017; 7:8480. [PMID: 28814760 PMCID: PMC5559581 DOI: 10.1038/s41598-017-09095-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional gene regulation by microRNAs (miRNAs) is involved in memory formation. However, the roles of individual miRNAs in these processes remain largely unknown. In this study, we want to clarify the role of miR-181a in hippocampus-dependent memory formation. A transient increase in miR-181a expression was observed after conditioned fear conditioning (CFC) and object location task (OLT) training. Selective overexpression or inhibition of miR-181a in the dorsal hippocampus (DH) via the injection of a miR-181a agomir or antagomir enhanced or impaired the CFC- and OLT-dependent memory formation, respectively. Using bioinformatics and luciferase assays, we identified PRKAA1 as a potential target gene of miR-181a. After CFC or OLT training, the expression and activity of PRKAA1 decreased as miR-181a expression increased and was effectively blocked by the miR-181a antagomir. Moreover, microinjection of the PRKAA1 agonist AICAR or inhibitor compound C in the DH reversed the roles of the miR-181a agomir or antagomir in CFC- and OLT-dependent memory formation. In conclusion, this work provides novel evidence describing the role and mechanism of miR-181a in hippocampus-dependent memory formation, which sheds light on the potential regulation of cognition and future treatments for cognitive disorders.
Collapse
Affiliation(s)
- Sun-Fu Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.,Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, Sichuan, P. R. China
| | - Jun-Chen Chen
- Department of Neurosurgery, Sichuan 81 Rehabilitation Center, Chengdu, Sichuan, P. R. China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jian-Guo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
45
|
Wang X, Chen H, Bai J, He A. MicroRNA: an important regulator in acute myeloid leukemia. Cell Biol Int 2017; 41:936-945. [PMID: 28370893 DOI: 10.1002/cbin.10770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a general class of endogenous non-coding RNAs with a length of 22 nucleotides, widely existing in diverse species and playing important roles in malignancies initiation and progression. MiRNAs are essential to many in vivo biological processes such as cell proliferation, apoptosis, immune response, and tumorigenesis. Significant progress till date has been made in understanding the roles of microRNAs in normal hematopoiesis and hematopoietic malignant diseases. In this review, we summarize the particular signatures of microRNAs in acute myeloid leukemia (AML) patients with specific karyotype and the clinical significance of microRNAs in early diagnosis and treatment. MicroRNAs hypermethylation was also proved to correlate with the pathogenesis of AML. However, the target genes and exact pathways of microRNAs participating in these processes are still unknown and more efforts need to be made in the near future.
Collapse
Affiliation(s)
- Xiaman Wang
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Hongli Chen
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Ju Bai
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China
| | - Aili He
- Department of Clinical Hematology, Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an, P.R. China
| |
Collapse
|
46
|
Guo Q, Luan J, Li N, Zhang Z, Zhu X, Zhao L, Wei R, Sun L, Shi Y, Yin X, Ding N, Jiang G, Li X. MicroRNA-181 as a prognostic biomarker for survival in acute myeloid leukemia: a meta-analysis. Oncotarget 2017; 8:89130-89141. [PMID: 29179505 PMCID: PMC5687675 DOI: 10.18632/oncotarget.19195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has indicated that microRNA-181 (miR-181) is dysregulated in hematological malignancies, and associates with the clinical outcomes. However, the association of miR-181 expression levels with acute myeloid leukemia (AML) remains inconclusive, as publications from different groups have reported contradictory results. In this manuscript, a meta-analysis was performed to assess the prognostic significance of miR-181 in AML patients. Eligible studies were retrieved from PubMed, Embase and Cochrane Library databases, and a total of 6 studies including 815 AML patients were included in the final analysis. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were extracted and pooled to investigate the correlation between miR-181 and the survival of AML patients. Our results showed that elevated miR-181 expression was associated with increased survival in 395 American patients, and reduced survival in 325 Chinese patients. Both subgroup analyses and meta-regression indicated that the origin of AML patients contributed to the heterogeneity in the datasets evaluating the correlation between overall survival (OS) and miR-181. These results indicate that miR-181 can be used as a promising prognostic biomarker in AML patients, which may depend on the origin of patient population.
Collapse
Affiliation(s)
- Qiang Guo
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Junwen Luan
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Ni Li
- Muping Hospital of Traditional Chinese Medicine, Yantai 264100, Shandong, China
| | - Zhen Zhang
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xiaoxiao Zhu
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Lin Zhao
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Ran Wei
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Linlin Sun
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Yin Shi
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xunqiang Yin
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Na Ding
- Shandong Institute of Scientific and Technical Information, Jinan 250101, Shandong, China
| | - Guosheng Jiang
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xia Li
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| |
Collapse
|
47
|
Yang J, Yuan Y, Yang X, Hong Z, Yang L. Decreased expression of microRNA-122 is associated with an unfavorable prognosis in childhood acute myeloid leukemia and function analysis indicates a therapeutic potential. Pathol Res Pract 2017; 213:1166-1172. [PMID: 28822593 DOI: 10.1016/j.prp.2017.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/15/2022]
Abstract
MicroRNA (miR)-122 functions as a tumor suppressor in various human cancers. However, its involvement in childhood acute myeloid leukemia (AML) remains unknown. In this study, quantitative real-time PCR assay demonstrated that miR-122 expression in bone marrow specimens from AML children were significantly lower than that in non-malignant controls (P<0.001). Statistically, AML children with low miR-122 expression more frequently had large white blood cell count (P=0.022), French-American-British classification subtype M7 (P<0.001), unfavorable cytogenetics (P=0.002) and day 7 response to the treatment (P=0.036), short relapse-free (P=0.001) and overall (P=0.008) survivals than those with high expression. Multivariate analysis also determined that miR-122 expression was an independent prognostic factor for both relapse-free and overall survivals. Functionally, the enforced expression of miR-122 in AML cell lines efficiently suppressed cell proliferation and reduced the ratio of S-phase cells in vitro (all P<0.05). In conclusion, the abnormal expression of miR-122 may be a marker of the aggressive progression in childhood AML. Importantly, its downregulation may serve as a prognostic factor to predict poor outcome. Our study also reveal that miR-122 may function as a tumor suppressor in childhood AML, highlighting a new therapeutic strategy for this malignancy.
Collapse
Affiliation(s)
- Juan Yang
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Yufang Yuan
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Xiaochun Yang
- Department of Pediatrics, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, 62 Huaihai Road South, Huai'an 223002, China
| | - Ze Hong
- Department of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Lijuan Yang
- Department of Pediatrics, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
48
|
Zhang Y, Liu Y, Xu X. Upregulation of miR-142-3p Improves Drug Sensitivity of Acute Myelogenous Leukemia through Reducing P-Glycoprotein and Repressing Autophagy by Targeting HMGB1. Transl Oncol 2017; 10:410-418. [PMID: 28445844 PMCID: PMC5406584 DOI: 10.1016/j.tranon.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
miR-142-3p was reported to be downregulated in acute myelogenous leukemia (AML) and acted as a novel diagnostic marker. However, the regulatory effect of miR-142-3p on drug resistance of AML cells and its underlying mechanism have not been elucidated. Here, we found that miR-142-3p was significantly downregulated and high mobility group box 1 (HMGB1) was dramatically upregulated in AML samples and cells, as well as drug-resistant AML cells. P-gp level and autophagy were markedly enhanced in HL-60/ADR and HL-60/ATRA cells. miR-142-3p overexpression improved drug sensitivity of AML cells by inhibiting cell viability and promoting apoptosis, and inhibited P-gp level and autophagy in drug-resistant AML cells, whereas HMGB1 overexpression obviously reversed these effect. HMGB1 was demonstrated to be a target of miR-142-3p, and miR-142-3p negatively regulated HMGB1 expression. In conclusion, our study elucidated that upregulation of miR-142-3p improves drug sensitivity of AML through reducing P-glycoprotein and repressing autophagy by targeting HMGB1, contributing to better understanding the molecular mechanism of drug resistance in AML.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Xueju Xu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
49
|
MicroRNA-192 regulates cell proliferation and cell cycle transition in acute myeloid leukemia via interaction with CCNT2. Int J Hematol 2017; 106:258-265. [PMID: 28409330 DOI: 10.1007/s12185-017-2232-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs approximately 18-22 nucleotides in length, which play an important role in malignant transformation. The roles of miR-192 as an oncogene or tumor suppressor in solid tumors have been previously reported. However, little is known about the role of miR-192 in human acute myeloid leukemia. The results of the present study indicate that miR-192 is significantly downregulated in specimens from acute myeloid leukemia patients. Functional assays demonstrated that overexpression of miR-192 in NB4 and HL-60 cells significantly inhibited cell proliferation compared with that in control cells, and induced G0/G1 cell cycle arrest, cell differentiation, and apoptosis in vitro. Dual-luciferase reporter gene assays showed that miR-192 significantly suppressed the activity of a reporter gene containing the wild type 3'-UTR of CCNT2, but it did not suppress the activity of a reporter gene containing mutated 3'-UTR of CCNT2. QRT-PCR and Western blot assays showed that miR-192 significantly downregulated the expression of CCNT2 in human leukemia cells. Exogenous expression of CCNT2 attenuated the cell cycle arrest induced by miR-192 in NB4 and HL-60 cells. Collectively, miR-192 inhibits cell proliferation and induces G0/G1 cell cycle arrest in AML by regulating the expression of CCNT2.
Collapse
|