1
|
Yao C, Xin H, Liu S, Wang H, Ma Y, Yao C, Meng J. Change and significance of connexin 43 in saliva extracellular vesicles from oral lichen planus patients. Arch Oral Biol 2025; 173:106217. [PMID: 40058334 DOI: 10.1016/j.archoralbio.2025.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVES This study aims to explore whether Connexin 43 (Cx43) in salivary extracellular vesicles (EVs) can serve as a biomarker for diagnosing oral lichen planus (OLP), an inflammatory oral mucosal disorder. DESIGN The study assessed disease activity in OLP patients using the reticulum-erosion-ulcer disease activity score. Saliva EVs were isolated and purified with an EV Enrichment Kit. Transmission electron microscopy was used to examine the morphology and size of EVs, while Western blotting verified EV biomarkers. ELISA measured serum inflammatory factors, such as TNF-α and IL-17. The importance of Cx43 in the diagnosis of OLP was evaluated using receiver operating characteristic (ROC) curve analysis, and correlations were determined through Pearson analysis. RESULTS The average diameter of isolated saliva EVs was approximately 110 nm, and they expressed high levels of known EV biomarkers. In OLP patients, both Cx43 mRNA and protein levels were significantly higher compared to healthy controls. Furthermore, Cx43 mRNA and protein levels increased gradually with increased disease severity, from the reticular type to the more severe erosion type of OLP. Cx43 mRNA and protein levels were found to effectively diagnosing OLP and correlated significantly with disease activity scores. Moreover, elevated Cx43 mRNA and protein levels showed strong positive correlations with serum TNF-α and IL-17 levels in OLP patients. CONCLUSION Cx43 mRNA and protein levels in salivary EVs serve as effective biomarkers for diagnosing OLP and are significantly associated with disease activity and inflammatory markers. This makes Cx43 a promising candidate for non-invasive diagnosis of OLP.
Collapse
Affiliation(s)
- Chun Yao
- Department of Stomatology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China; Department of Stomatology, Zhenjiang First People's Hospital, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Haiyan Xin
- Department of Orthodontics, Central Laboratory of Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Si Liu
- Department of Stomatology, Zhenjiang First People's Hospital, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Hong Wang
- Department of Stomatology, Zhenjiang First People's Hospital, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yanhong Ma
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Chao Yao
- Department of Oral and Maxillofacial Surgery, Central Laboratory of Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.
| | - Jian Meng
- Department of Stomatology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
2
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2025; 13:1368-1378. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
3
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Miao Q, Li S, Lyu W, Zhang J, Han Y. Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications. Drug Des Devel Ther 2025; 19:457-469. [PMID: 39867866 PMCID: PMC11766710 DOI: 10.2147/dddt.s505355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration. In OSCC tumor-derived exosomes promote cancer progression through cell proliferation, migration, invasion, and angiogenesis, and serve as potential biomarkers for early diagnosis and prognosis. Additionally, engineered exosomes constructed specifically based on exosome properties hold great promise for targeted drug delivery and regenerative therapies such as bone regeneration in orthodontics and periodontal healing. With continued research, exosomes hold great potential for improving diagnosis and treatment in oral diseases, advancing personalized and regenerative therapies.
Collapse
Affiliation(s)
- Qiandai Miao
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Shaoqing Li
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Weijia Lyu
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Jianxia Zhang
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Yan Han
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| |
Collapse
|
5
|
Rizwan M, Mahjabeen I, Haris MS, Qayyum F, Kayani MA. Deregulation of Exosomal miR-17, miR-20a and TGFBR2 in Head and Neck Cancer Patients. Technol Cancer Res Treat 2025; 24:15330338251323314. [PMID: 39989256 PMCID: PMC11848883 DOI: 10.1177/15330338251323314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Introduction: Exosomes play significant roles in transferring cargo materials like proteins, RNAs (including miRNAs), and DNA. However, the role of serum exosome shuttled RNAs and miRNAs in head and neck cancer (HNC) remains unclear. This study assessed the diagnostic and prognostic significance of exosomal miR-17, miR-20a, and TGFBR2 in HNC patients. Methods: Exosomes were isolated, from 400 confirmed HNC patients and 400 healthy controls, and characterized by NTA, TEM, Immunolabelling, and ELISA. Quantitative PCR was used to check the expressions of exosomal molecules. Oxidative stress was also measured through ELISA in cancer patients and healthy controls. Results: Data analysis revealed significant dysregulation in the expressional levels of miR-17 (p < .0001), miR-20a (p = .0003), and TGFBR2 (p = .0005), which were found associated with aggressiveness and poor survival of HNC patients. Spearman correlation revealed a positive statistically significant association between miR-20a versus miR-17 (r = 0.534; p < .01), while a negative correlation was found between TGFBR2 versus miR-17 (r = -0.240; p = .015). Significantly decreased levels of peroxidase (POD) (p < .0001) and an increased level of 8-Oxoguanine (p < .0001) were observed. Conclusion: The results showed that these exosomal miRNAs and target gene may serve as potential and noninvasive diagnostic and prognostic markers for head and neck cancer patients.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Shahbaz Haris
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fouzia Qayyum
- Department of ENT, Bahawalpur Victoria Hospital, Bahawalpur, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
6
|
Leung LL, Qu X, Chen B, Chan JYK. Extracellular vesicles in liquid biopsies: there is hope for oral squamous cell carcinoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:639-659. [PMID: 39811735 PMCID: PMC11725428 DOI: 10.20517/evcna.2024.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life. Liquid biopsy is a non-invasive, real-time method for predicting cancer status and potentially serves as a biomarker source for treatment response. Liquid biopsy includes rich biologically relevant components, such as circulating tumor cells, circulating tumor DNA, and extracellular vesicles (EVs). EVs are particularly intriguing due to their relatively high abundance in most biofluids, with the potential to identify specific cargo derived from circulating tumor EVs. Moreover, normal cells in lymph nodes can uptake EVs, fostering a pre-metastatic microenvironment that facilitates lymph node metastases - a common occurrence in oral cancers. This review encompasses English language publications over the last twenty years, focusing on methods for isolating EVs from saliva, blood, and lymphatic fluids, as well as the collection methods employed. Seventeen cases met the inclusion criteria according to ISEV guidelines, including 10 saliva cases, 6 blood cases, and 1 lymphatic fluid case. This review also highlighted research gaps in oral squamous cell carcinoma (OSCC) EVs, including a lack of multi-omics studies and the exploration of potential EV markers for drug resistance, as well as a notable underutilization of microfluidic technologies to translate liquid biopsy EV findings into clinical applications.
Collapse
Affiliation(s)
| | | | | | - Jason YK. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China
| |
Collapse
|
7
|
De S, Rai V, Ahmed F, Basak M, Bose S. Deciphering the Nanometabolomics Paradigm: Understanding the Role of Pathophysiology and Biomarkers in Predicting Oral Cancer. J Maxillofac Oral Surg 2024. [DOI: 10.1007/s12663-024-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
|
8
|
Cheng FC, Wang LH, Lai YJ, Chiang CP. The utility of microbiome (microbiota) and exosomes in dentistry. J Dent Sci 2024; 19:1313-1319. [PMID: 39035305 PMCID: PMC11259687 DOI: 10.1016/j.jds.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/23/2024] Open
Abstract
The concept of the oral-systemic link is important in both basic and clinical dentistry. The microbiome (microbiota) and exosomes are two prevalent issues in the modern medical researches. The common advent of oral and general microbiological investigation originated from the initial observations of oral bacteria within the dental plaque known as oral microbiome. In addition to oral diseases related to oral microbiome, the disruption of the oral and intestinal microbiome could result in the onset of systemic diseases. In the past decade, the exosomes have emerged in the field of the medical researches as they play a role in regulating the transport of intracellular vesicles. However, with the rapid advancement of exosomes researches in recent years, oral tissues (such as dental pulp stem cells and salivary gland cells) are used as the research materials to further promote the development of regenerative medicine. This article emphasized the importance of the concept of the oral-systemic link through the examples of microbiome (microbiota) and exosomes. Through the researches related to microbiome (microbiota) and exosomes, many evidences showed that as the basic dentistry developed directly from the assistance of the basic medicine, indirectly the progress of the basic dentistry turns back to promote the development of the basic medicine, indicating the importance of the concept of the oral-systemic link. The understanding of the oral-systemic link is essential for both clinicians and medical researchers, regardless of their dental backgrounds.
Collapse
Affiliation(s)
- Feng-Chou Cheng
- Chia-Te Dental Clinic, New Taipei City, Taiwan
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Ling-Hsia Wang
- Center for the Literature and Art, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Yun-Ju Lai
- School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chun-Pin Chiang
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
9
|
Ma X, Yang R, Li H, Zhang X, Zhang X, Li X. Role of exosomes in the communication and treatment between OSCC and normal cells. Heliyon 2024; 10:e28148. [PMID: 38560136 PMCID: PMC10981056 DOI: 10.1016/j.heliyon.2024.e28148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that needs new therapeutic targets due to the poor postoperative prognosis in patients. Exosomes are currently one of important research areas owing to their unique properties. Exosomes are capable of acting as drug transporters, as well as facilitating interactions between OSCC and normal cells. Exosomes can be detected in body fluids such as blood, urine, cerebrospinal fluid, and bile. When exosomes are released from donor cells, they can carry various bioactive molecules to recipient cells, where these molecules participate in biological processes. This review highlights the mechanisms of exosome transfer between normal and OSCC cells. Exosomes isolated from donor OSCC cells can carry circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) and play a role in signaling processes in the recipient OSCC cells, human umbilical vein endothelial cells, and macrophages. Exosomes secreted by carcinoma-associated fibroblasts, macrophages, and stem cells can also enter the recipient OSCC cells and modulate signaling events in these cells. Exosomes isolated from OSCC plasma, serum, and saliva are also associated with OSCC prognosis. Furthermore, while exosomes were shown to be associated with chemotherapy resistance in OSCC, they can also be used for drug delivery during OSCC treatment. In this paper, we reviewed the molecular mechanisms and functions of exosomes from different cell sources in OSCC cells, providing a basis for diagnosis and prognosis prediction in OSCC patients, and offering guidance for the design of molecular targets carried by exosomes in OSCC.
Collapse
Affiliation(s)
- Xingyue Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Ruisi Yang
- Hebei Medical University, Hebei Province, Shijiazhuang, 050017, China
| | - Haiyang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiaoyan Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| |
Collapse
|
10
|
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, Xu R, Mai Z, Guo B, Zhao X. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnology 2024; 22:171. [PMID: 38610017 PMCID: PMC11015696 DOI: 10.1186/s12951-024-02443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Salivary extracellular vesicles (EVs) have emerged as key tools for non-invasive diagnostics, playing a crucial role in the early detection and monitoring of diseases. These EVs surpass whole saliva in biomarker detection due to their enhanced stability, which minimizes contamination and enzymatic degradation. The review comprehensively discusses methods for isolating, enriching, quantifying, and characterizing salivary EVs. It highlights their importance as biomarkers in oral diseases like periodontitis and oral cancer, and underscores their potential in monitoring systemic conditions. Furthermore, the review explores the therapeutic possibilities of salivary EVs, particularly in personalized medicine through engineered EVs for targeted drug delivery. The discussion also covers the current challenges and future prospects in the field, emphasizing the potential of salivary EVs in advancing clinical practice and disease management.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
11
|
Gupta S, Singh B, Abhishek R, Gupta S, Sachan M. The emerging role of liquid biopsy in oral squamous cell carcinoma detection: advantages and challenges. Expert Rev Mol Diagn 2024; 24:311-331. [PMID: 38607339 DOI: 10.1080/14737159.2024.2340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Oral Squamous Cell Carcinoma (OSCC), the sixth most widespread malignancy in the world, accounts for 90% of all cases of oral cancer. The primary risk factors are tobacco chewing, alcohol consumption, viral infection, and genetic modifications. OSCC has a high morbidity rate due to the lack of early diagnostic methods. Nowadays, liquid biopsy plays a vital role in the initial diagnosis of oral cancer. ctNAs extracted from saliva and serum/plasma offer meaningful insights into tumor genetics and dynamics. The interplay of these elements in saliva and serum/plasma showcases their significance in advancing noninvasive, effective OSCC detection and monitoring. AREAS COVERED This review mainly focused on the role of liquid biopsy as an emerging point in the diagnosis and prognosis of OSCC and the current advancements and challenges associated with liquid biopsy. EXPERT OPINION Liquid biopsy is regarded as a new, minimally invasive, real-time monitoring tool for cancer diagnosis and prognosis. Many biomolecules found in bodily fluids, including ctDNA, ctRNA, CTCs, and EVs, are significant biomarkers to identify cancer in its early stages. Despite these groundbreaking strides, challenges persist. Standardization of sample collection, isolation, processing, and detection methods is imperative for ensuring result reproducibility across diverse studies.
Collapse
Affiliation(s)
- Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Brijesh Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Rajul Abhishek
- Department of Surgical Oncology, Motilal Nehru Medical College, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
12
|
Jeong S, Shim KH, Kim D, Bae H, Jeong DE, Kang MJ, An SSA. Assessment of acetylcholinesterase activity in CD9-positive exosomes from patients with Parkinson's disease. Front Aging Neurosci 2024; 16:1332455. [PMID: 38384937 PMCID: PMC10879351 DOI: 10.3389/fnagi.2024.1332455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic dysfunction and associated with abnormalities in the cholinergic system. However, the relationship between PD and cholinergic dysfunction, particularly in exosomes, is not fully understood. Methods We enrolled 37 patients with PD and 44 healthy controls (HC) to investigate acetylcholinesterase (AChE) activity in CD9-positive and L1CAM-positive exosomes. Exosomes were isolated from plasma using antibody-coupled magnetic beads, and their sizes and concentrations were assessed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Subsequently, the AChE activity in these exosomes was analyzed in relation to various clinical parameters. Results A significant decrease in AChE activity was observed in CD9-positive exosomes derived from patients with PD, whereas no significant differences were found in L1CAM-positive exosomes. Further analysis with a larger sample size confirmed a substantial reduction in AChE activity in CD9-positive exosomes from the PD plasma, with moderate diagnostic accuracy. The decrease in AChE activity of CD9-positive exosomes did not show an association with cognitive impairment but displayed a trend toward correlation with PD progression. Discussion The reduction in AChE activity in CD9-positive exosomes suggests potential peripheral cholinergic dysfunction in PD, independent of the central cholinergic system. The observed alterations in AChE activity provide valuable insights into the association between cholinergic dysfunction and the pathogenesis of PD.
Collapse
Affiliation(s)
- Sumin Jeong
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Danyeong Kim
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Heewon Bae
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Da-Eun Jeong
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
13
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 3-therapeutic + diagnostic potential in dentistry. Periodontol 2000 2024; 94:415-482. [PMID: 38546137 DOI: 10.1111/prd.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of various diseases. Over 5000 publications are currently being published on this topic yearly, many of which in the dental space. This extensive review article is the first scoping review aimed at summarizing all therapeutic uses of exosomes in regenerative dentistry. A total of 944 articles were identified as using exosomes in the dental field for either their regenerative/therapeutic potential or for diagnostic purposes derived from the oral cavity. In total, 113 research articles were selected for their regenerative potential (102 in vitro, 60 in vivo, 50 studies included both). Therapeutic exosomes were most commonly derived from dental pulps, periodontal ligament cells, gingival fibroblasts, stem cells from exfoliated deciduous teeth, and the apical papilla which have all been shown to facilitate the regenerative potential of a number of tissues including bone, cementum, the periodontal ligament, nerves, aid in orthodontic tooth movement, and relieve temporomandibular joint disorders, among others. Results demonstrate that the use of exosomes led to positive outcomes in 100% of studies. In the bone field, exosomes were found to perform equally as well or better than rhBMP2 while significantly reducing inflammation. Periodontitis animal models were treated with simple gingival injections of exosomes and benefits were even observed when the exosomes were administered intravenously. Exosomes are much more stable than growth factors and were shown to be far more resistant against degradation by periodontal pathogens found routinely in a periodontitis environment. Comparative studies in the field of periodontal regeneration found better outcomes for exosomes even when compared to their native parent stem cells. In total 47 diagnostic studies revealed a role for salivary/crevicular fluid exosomes for the diagnosis of birth defects, cardiovascular disease, diabetes, gingival recession detection, gingivitis, irritable bowel syndrome, neurodegenerative disease, oral lichen planus, oral squamous cell carcinoma, oropharyngeal cancer detection, orthodontic root resorption, pancreatic cancer, periodontitis, peri-implantitis, Sjögren syndrome, and various systemic diseases. Hence, we characterize the exosomes as possessing "remarkable" potential, serving as a valuable tool for clinicians with significant advantages.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
- Advanced PRF Education, Venice, Florida, USA
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
14
|
Wang J, Jing J, Zhou C, Fan Y. Emerging roles of exosomes in oral diseases progression. Int J Oral Sci 2024; 16:4. [PMID: 38221571 PMCID: PMC10788352 DOI: 10.1038/s41368-023-00274-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Cheravi M, Baharara J, Yaghmaei P, Roudbari NH. Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process. Curr Stem Cell Res Ther 2024; 19:1042-1054. [PMID: 37957915 DOI: 10.2174/011574888x270145231102062259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes. METHODS In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used. RESULTS MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size. CONCLUSION CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.
Collapse
Affiliation(s)
- Mojtaba Cheravi
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Baharara
- Department of Biology and Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roudbari
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Ren J, Jing X, Liu Y, Liu J, Ning X, Zong M, Zhang R, Cheng H, Cui J, Li B, Wu X. Exosome-based engineering strategies for the diagnosis and treatment of oral and maxillofacial diseases. J Nanobiotechnology 2023; 21:501. [PMID: 38129853 PMCID: PMC10740249 DOI: 10.1186/s12951-023-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oral and maxillofacial diseases are one of the most prevalent diseases in the world, which not only seriously affect the health of patients' oral and maxillofacial tissues, but also bring serious economic and psychological burdens to patients. Therefore, oral and maxillofacial diseases require effective treatment. Traditional treatments have limited effects. In recent years, nature exosomes have attracted increasing attention due to their ability to diagnose and treat diseases. However, the application of nature exosomes is limited due to low yield, high impurities, lack of targeting, and high cost. Engineered exosomes can be endowed with better comprehensive therapeutic properties by modifying exosomes of parent cells or directly modifying exosomes, and biomaterial loading exosomes. Compared with natural exosomes, these engineered exosomes can achieve more effective diagnosis and treatment of oral and maxillary system diseases, and provide reference and guidance for clinical application. This paper reviews the engineering modification methods of exosomes and the application of engineered exosomes in oral and maxillofacial diseases and looks forward to future research directions.
Collapse
Affiliation(s)
- Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jinrong Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
17
|
Wu J, Liu G, Jia R, Guo J. Salivary Extracellular Vesicles: Biomarkers and Beyond in Human Diseases. Int J Mol Sci 2023; 24:17328. [PMID: 38139157 PMCID: PMC10743646 DOI: 10.3390/ijms242417328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Extracellular vesicles, as bioactive molecules, have been extensively studied. There are abundant studies in the literature on their biogenesis, secretion, structure, and content, and their roles in pathophysiological processes. Extracellular vesicles have been reviewed as biomarkers for use in diagnostic tools. Saliva contains many extracellular vesicles, and compared with other body fluids, it is easier to obtain in a non-invasive way, making its acquisition more easily accepted by patients. In recent years, there have been numerous new studies investigating the role of salivary extracellular vesicles as biomarkers. These studies have significant implications for future clinical diagnosis. Therefore, in this paper, we summarize and review the potential applications of salivary extracellular vesicles as biomarkers, and we also describe their other functions (e.g., hemostasis, innate immune defense) in both oral and non-oral diseases.
Collapse
Affiliation(s)
- Jialing Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Gege Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China; (J.W.); (G.L.); (R.J.)
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Minami S, Chikazu D, Ochiya T, Yoshioka Y. Extracellular vesicle-based liquid biopsies in cancer: Future biomarkers for oral cancer. Transl Oncol 2023; 38:101786. [PMID: 37713973 PMCID: PMC10509717 DOI: 10.1016/j.tranon.2023.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Oral cancer is the sixth most common cancer worldwide, with approximately 530,000 new cases and 300,000 deaths each year. The process of carcinogenesis is complex, and survival rates have not changed significantly in recent decades. Early detection of cancer, prognosis prediction, treatment selection, and monitoring of progression are important to improve survival. With the recent significant advances in analytical technology, liquid biopsy has made it possible to achieve these goals. In this review, we report new results from clinical and cancer research applications of liquid biopsy, focusing on extracellular vesicles (EVs) among the major targets of liquid biopsy, namely, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and EVs. In addition, the potential application of EVs derived from gram-negative bacteria (outer membrane vesicles; OMVs) among oral bacteria, which have recently attracted much attention, to liquid biopsy for oral cancer will also be addressed.
Collapse
Affiliation(s)
- Sakura Minami
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
19
|
Solomon MC, Chandrashekar C, Kulkarni S, Shetty N, Pandey A. Exosomes: Mediators of cellular communication in potentially malignant oral lesions and head and neck cancers. F1000Res 2023; 12:58. [PMID: 38059133 PMCID: PMC10696492 DOI: 10.12688/f1000research.127368.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 12/08/2023] Open
Abstract
Exosomes are a unique type of extracellular vesicles that contain a plethora of biological cargo such as miRNA, mRNA, long non-coding RNA, DNA, proteins and lipids. Exosomes serve as very effective means of intercellular communication. Due the presence of a lipid bilayer membrane, exosomes are resistant to degradation and are highly stable. This makes them easily identifiable in blood and other bodily fluids such as saliva. The exosomes that are secreted from a parent cell directly release their contents into the cytoplasm of a recipient cell and influence their cellular activity and function. Exosomes can also transfer their content between cancer cells and normal cells and regulate the tumor microenvironment. Exosomes play a vital role in tumor growth, tumor invasion and metastasis. Exosomes provide a multitude of molecular and genetic information and have become valuable indicators of disease activity at the cellular level. This review explores the molecular characteristics of exosomes and the role that exosomes play in the tumorigenesis pathway of potentially malignant oral lesions and head and neck cancers The application of exosomes in the treatment of oral cancers is also envisioned. Exosomes are very small and can easily pass through various biological barriers, making them very good delivery vectors for therapeutic drugs as well as to selectively induce DNA's mRNA and miRNAs into targeted cancer cells.
Collapse
Affiliation(s)
- Monica Charlotte Solomon
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chetana Chandrashekar
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Spoorti Kulkarni
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nisha Shetty
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aditi Pandey
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
20
|
Bozyk N, Tang KD, Zhang X, Batstone M, Kenny L, Vasani S, Punyadeera C. Salivary exosomes as biomarkers for early diagnosis of oral squamous cell carcinoma. ORAL ONCOLOGY REPORTS 2023; 6:100017. [DOI: 10.1016/j.oor.2023.100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Zhang Y, Liu J, Liu S, Yu L, Liu S, Li M, Jin F. Extracellular vesicles in oral squamous cell carcinoma: current progress and future prospect. Front Bioeng Biotechnol 2023; 11:1149662. [PMID: 37304135 PMCID: PMC10250623 DOI: 10.3389/fbioe.2023.1149662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most aggressive oral and maxillofacial malignancy with a high incidence and low survival rate. OSCC is mainly diagnosed by tissue biopsy, which is a highly traumatic procedure with poor timeliness. Although there are various options for treating OSCC, most of them are invasive and have unpredictable therapeutic outcomes. Generally, early diagnosis and noninvasive treatment cannot be always satisfied simultaneously in OSCC. Extracellular vesicles (EVs) are involved in intercellular communication. EVs facilitate disease progression and reflect the location and status of the lesions. Therefore, EVs are relatively less invasive diagnostic tools for OSCC. Furthermore, the mechanisms by which EVs are involved in tumorigenesis and tumor treatment have been well studied. This article dissects the involvement of EVs in the diagnosis, development, and treatment of OSCC, providing new insight into the treatment of OSCC by EVs. Different mechanisms, such as inhibiting EV internalization by OSCC cells and constructing engineered vesicles, with potential applications for treating OSCC will be discussed in this review article.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Jianing Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Periodontology, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Siying Liu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Meng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Fang Jin
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
22
|
Feng J, Xiao BL, Zhang LZ, Zhang YH, Tang M, Xu CM, Chen G, Zhang ZL. Simultaneous Detection of Two Extracellular Vesicle Subpopulations in Saliva Assisting Tumor T Staging of Oral Squamous Cell Carcinoma. Anal Chem 2023; 95:7753-7760. [PMID: 37130010 DOI: 10.1021/acs.analchem.3c00940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs), acting as important mediators of intercellular communication, play an essential role in physiological processes, which have unique potential in the medical field. However, the heterogeneity of EVs limits their development for disease diagnosis and therapy, making the EV subpopulation analysis extremely valuable. In this article, a simple microfluidic approach was presented for the on-chip specific isolation and detection of two phenotypes of EVs (Annexin V+ EGFR+ EVs and Annexin V- EGFR+ EVs) based on different biomolecule-modified magnetic nanospheres and a fluorescence labeling technique. Combined with the control of the magnetic field in the microzone and fluid flow, it was easy to form two separate functional regions in the chip to capture different EV subpopulations. This method was successfully applied to the tests of clinical saliva samples in 75 oral squamous cell carcinoma (OSCC) patients and 10 healthy people. The results showed that the total level of EGFR+ EVs was much higher in OSCC patients that in healthy people. Meantime, the ratio of Annexin V+ EGFR+ EVs to Annexin V- EGFR+ EVs was found to be negatively correlated with tumor T stage of OSCC patients with a statistical difference, which suggested the ratio as a clinical index for monitoring the progression of OSCC in real time based on a noninvasive method. The approach provided a novel idea for evaluating the tumor T stage of OSCC and a powerful tool for clinical application.
Collapse
Affiliation(s)
- Jiao Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bo-Lin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Lin-Zhou Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Yi-Hua Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chun-Miao Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
23
|
Liu W, Wang J, Shen X, Shi H. The implications of salivary exosomes as a theranostic secret of human cancers with a focus on oral cancer. Int J Surg 2023; 109:1072-1075. [PMID: 36999809 PMCID: PMC10389483 DOI: 10.1097/js9.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Affiliation(s)
- Wei Liu
- Department of Oral Mucosal Diseases
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemin Shen
- Department of Oral Mucosal Diseases
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People’s Hospital
- Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Research Institute of Stomatology, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Wang S, Yang M, Li R, Bai J. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res 2023; 28:53. [PMID: 36707844 PMCID: PMC9880940 DOI: 10.1186/s40001-022-00916-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of cancers worldwide, is diagnosed mainly through tissue biopsy. However, owing to the tumor heterogeneity and other drawbacks, such as the invasiveness of the biopsy procedure and high cost and limited usefulness of longitudinal surveillance, there has been a focus on adopting more rapid, economical, and noninvasive screening methods. Examples of these include liquid biopsy, optical detection systems, oral brush cytology, microfluidic detection, and artificial intelligence auxiliary diagnosis, which have their own strengths and weaknesses. Extensive research is being performed on various liquid biopsy biomarkers, including novel microbiome components, noncoding RNAs, extracellular vesicles, and circulating tumor DNA. The majority of these elements have demonstrated encouraging clinical outcomes in early OSCC detection. This review summarizes the screening methods for OSCC with a focus on providing new guiding strategies for the diagnosis of the disease.
Collapse
Affiliation(s)
- Shan Wang
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China ,grid.443397.e0000 0004 0368 7493Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216 People’s Republic of China
| | - Mao Yang
- grid.13291.380000 0001 0807 1581West China School of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Ruiying Li
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China
| | - Jie Bai
- grid.13402.340000 0004 1759 700XDepartment of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 People’s Republic of China
| |
Collapse
|
25
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Dholariya S, Singh RD, Sonagra A, Yadav D, Vajaria BN, Parchwani D. Integrating Cutting-Edge Methods to Oral Cancer Screening, Analysis, and Prognosis. Crit Rev Oncog 2023; 28:11-44. [PMID: 37830214 DOI: 10.1615/critrevoncog.2023047772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Oral cancer (OC) has become a significant barrier to health worldwide due to its high morbidity and mortality rates. OC is among the most prevalent types of cancer that affect the head and neck region, and the overall survival rate at 5 years is still around 50%. Moreover, it is a multifactorial malignancy instigated by genetic and epigenetic variabilities, and molecular heterogeneity makes it a complex malignancy. Oral potentially malignant disorders (OPMDs) are often the first warning signs of OC, although it is challenging to predict which cases will develop into malignancies. Visual oral examination and histological examination are still the standard initial steps in diagnosing oral lesions; however, these approaches have limitations that might lead to late diagnosis of OC or missed diagnosis of OPMDs in high-risk individuals. The objective of this review is to present a comprehensive overview of the currently used novel techniques viz., liquid biopsy, next-generation sequencing (NGS), microarray, nanotechnology, lab-on-a-chip (LOC) or microfluidics, and artificial intelligence (AI) for the clinical diagnostics and management of this malignancy. The potential of these novel techniques in expanding OC diagnostics and clinical management is also reviewed.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| |
Collapse
|
27
|
Wu Q, Fu S, Xiao H, Du J, Cheng F, Wan S, Zhu H, Li D, Peng F, Ding X, Wang L. Advances in Extracellular Vesicle Nanotechnology for Precision Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204814. [PMID: 36373730 PMCID: PMC9875626 DOI: 10.1002/advs.202204814] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as important cell surrogates influencing many pathophysiological processes, including cellular homeostasis, cancer progression, neurologic disease, and infectious disease. These behaviors enable EVs broad application prospects for clinical application in disease diagnosis and treatment. Many studies suggest that EVs are superior to conventional synthetic carriers in terms of drug delivery and circulating biomarkers for early disease diagnosis, opening up new frontiers for modern theranostics. Despite these clinical potential, EVs containing diverse cellular components, such as nucleic acids, proteins, and metabolites are highly heterogeneous and small size. The limitation of preparatory, engineering and analytical technologies for EVs poses technical barriers to clinical translation. This article aims at present a critical overview of emerging technologies in EVs field for biomedical applications and challenges involved in their clinic translations. The current methods for isolation and identification of EVs are discussed. Additionally, engineering strategies developed to enhance scalable production and improved cargo loading as well as tumor targeting are presented. The superior clinical potential of EVs, particularly in terms of different cell origins and their application in the next generation of diagnostic and treatment platforms, are clarified.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Siyuan Fu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Hanyang Xiao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jiaxin Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Fang Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Houjuan Zhu
- A*STAR (Agency for ScienceTechnology and Research)Singapore138634Singapore
| | - Dan Li
- Department of DermatologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Fei Peng
- Wellman Center for PhotomedicineMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
28
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Yu W, Li S, Zhang G, Xu HHK, Zhang K, Bai Y. New frontiers of oral sciences: Focus on the source and biomedical application of extracellular vesicles. Front Bioeng Biotechnol 2022; 10:1023700. [PMID: 36338125 PMCID: PMC9627311 DOI: 10.3389/fbioe.2022.1023700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) are a class of nanoparticles that are derived from almost any type of cell in the organism tested thus far and are present in all body fluids. With the capacity to transfer "functional cargo and biological information" to regulate local and distant intercellular communication, EVs have developed into an attractive focus of research for various physiological and pathological conditions. The oral cavity is a special organ of the human body. It includes multiple types of tissue, and it is also the beginning of the digestive tract. Moreover, the oral cavity harbors thousands of bacteria. The importance and particularity of oral function indicate that EVs derived from oral cavity are quite complex but promising for further research. This review will discuss the extensive source of EVs in the oral cavity, including both cell sources and cell-independent sources. Besides, accumulating evidence supports extensive biomedical applications of extracellular vesicles in oral tissue regeneration and development, diagnosis and treatment of head and neck tumors, diagnosis and therapy of systemic disease, drug delivery, and horizontal gene transfer (HGT). The immune cell source, odontoblasts and ameloblasts sources, diet source and the application of EVs in tooth development and HGT were reviewed for the first time. In conclusion, we concentrate on the extensive source and potential applications offered by these nanovesicles in oral science.
Collapse
Affiliation(s)
- Wenting Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Guohao Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hockin H. K. Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
31
|
Gattuso G, Crimi S, Lavoro A, Rizzo R, Musumarra G, Gallo S, Facciponte F, Paratore S, Russo A, Bordonaro R, Isola G, Bianchi A, Libra M, Falzone L. Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:60. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Crimi
- Department of General Surgery and Medical Surgery Specialties, University of Catania, 95123 Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giorgia Musumarra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Simona Gallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Flavia Facciponte
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | | | - Angela Russo
- Medical Oncology Unit, ARNAS Garibaldi, 95122 Catania, Italy
| | | | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Alberto Bianchi
- Department of General Surgery and Medical Surgery Specialties, University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, 80131 Naples, Italy
| |
Collapse
|
32
|
Hofmann L, Medyany V, Ezić J, Lotfi R, Niesler B, Röth R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Jackson EK, Theodoraki MN. Cargo and Functional Profile of Saliva-Derived Exosomes Reveal Biomarkers Specific for Head and Neck Cancer. Front Med (Lausanne) 2022; 9:904295. [PMID: 35899209 PMCID: PMC9309685 DOI: 10.3389/fmed.2022.904295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Background Exosomes contribute to immunosuppression in head and neck squamous cell carcinoma (HNSCC), a tumor entity which lacks specific tumor biomarkers. Plasma-derived exosomes from HNSCC patients correlate with clinical parameters and have potential as liquid biopsy. Here, we investigate the cargo and functional profile of saliva-derived exosomes from HNSCC patients and their potential as non-invasive biomarkers for disease detection and immunomodulation. Methods Exosomes were isolated from saliva of HNSCC patients (n = 21) and healthy donors (HD, n = 12) by differential ultracentrifugation. Surface values of immune checkpoints and tumor associated antigens on saliva-derived exosomes were analyzed by bead-based flow cytometry using CD63 capture. Upon co-incubation with saliva-derived exosomes, activity and proliferation of T cells were assessed by flow cytometry (CD69 expression, CFSE assay). Adenosine levels were measured by mass spectrometry after incubation of saliva-derived exosomes with exogenous ATP. miRNA profiling of saliva-derived exosomes was performed using the nCounter® SPRINT system. Results Saliva-derived, CD63-captured exosomes from HNSCC patients carried high amounts of CD44v3, PDL1 and CD39. Compared to plasma, saliva was rich in tumor-derived, CD44v3+ exosomes and poor in hematopoietic cell-derived, CD45+ exosomes. CD8+ T cell activity was attenuated by saliva-derived exosomes from HNSCC patients, while proliferation of CD4+ T cells was not affected. Further, saliva-derived exosomes produced high levels of immunosuppressive adenosine. 62 HD- and 31 HNSCC-exclusive miRNAs were identified. Samples were grouped in "Healthy" and "Cancer" based on their saliva-derived exosomal miRNA profile, which was further found to be involved in RAS/MAPK, NF-κB complex, Smad2/3, and IFN-α signaling. Conclusions Saliva-derived exosomes from HNSCC patients were enriched in tumor-derived exosomes whose cargo and functional profile reflected an immunosuppressive TME. Surface values of CD44v3, PDL1 and CD39 on CD63-captured exosomes, adenosine production and the miRNA cargo of saliva-derived exosomes emerged as discriminators of disease and emphasized their potential as liquid biomarkers specific for HNSCC.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Valentin Medyany
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, Ulm, Germany.,Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
33
|
Liu H, Huang Y, Huang M, Huang Z, Wang Q, Qing L, Li L, Xu S, Jia B. Current Status, Opportunities, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2679-2705. [PMID: 35733418 PMCID: PMC9208818 DOI: 10.2147/ijn.s365594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is one of the most common cancers in the world, with more than 300,000 cases diagnosed each year, of which oral squamous cell carcinoma accounts for more than 90%, with a 5-year survival rate of only 40–60%, and poor prognosis. Exploring new strategies for the early diagnosis and treatment of oral cancer is key to improving the survival rate. Exosomes are nanoscale lipid bilayer membrane vesicles that are secreted by almost all cell types. During the development of oral cancer, exosomes can transport their contents (DNA, RNA, proteins, etc) to target cells and promote or inhibit the proliferation, invasion, and metastasis of oral cancer cells by influencing the host immune response, drug-resistant metastasis, and tumour angiogenesis. Therefore, exosomes have great potential and advantages as biomarkers for oral cancer diagnosis, and as drug delivery vehicles or targets for oral cancer therapy. In this review, we first describe the biogenesis, biological functions, and isolation methods of exosomes, followed by their relationship with oral cancer. Here, we focused on the potential of exosomes as oral cancer biomarkers, drug carriers, and therapeutic targets. Finally, we provide an insightful discussion of the opportunities and challenges of exosome application in oral cancer diagnosis and treatment, intending to offer new ideas for the clinical management of oral cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
35
|
Unravelling Novel Roles of Salivary Exosomes in the Regulation of Human Corneal Stromal Cell Migration and Wound Healing. Int J Mol Sci 2022; 23:ijms23084330. [PMID: 35457149 PMCID: PMC9024472 DOI: 10.3390/ijms23084330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Salivary exosomes have demonstrated vast therapeutic and diagnostic potential in numerous diseases. This study pioneers previously unexplored roles of SE in the context of corneal wound healing by utilizing primary corneal stromal cells from healthy (HCFs), type I diabetes mellitus (T1DMs), type II DM (T2DMs), and keratoconus (HKCs) subjects. Purified, healthy human SEs carrying tetraspanins CD9+, CD63+, and CD81+ were utilized. Scratch and cell migration assays were performed after 0, 6, 12, 24, and 48 h following SE stimulation (5 and 25 µg/mL). Significantly slower wound closure was observed at 6 and 12 h in HCFs with 5 μg/mL SE and T1DMs with 5 and 25 μg/mL SE. All wounds were closed by 24-hour, post-wounding. HKCs, T1DMs, and T2DMs with 25µg/mL SE exhibited a significant upregulation of cleaved vimentin compared to controls. Thrombospondin 1 was significantly upregulated in HCFs, HKCs, and T2DMs with 25 µg/mL SE. Lastly, HKCs, T1DMs, and T2DMs exhibited a significant downregulation of fibronectin with 25 μg/mL SE. Whether SEs can be utilized to clinical settings in restoring corneal defects is unknown. This is the first-ever study exploring the role of SEs in corneal wound healing. While the sample size was small, results are highly novel and provide a strong foundation for future studies.
Collapse
|
36
|
Patel A, Patel S, Patel P, Tanavde V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front Oncol 2022; 12:828434. [PMID: 35387114 PMCID: PMC8977527 DOI: 10.3389/fonc.2022.828434] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) remains to be a major cause of mortality worldwide because of confounding factors such as late-stage tumor diagnosis, loco-regional aggressiveness and distant metastasis. The current standardized diagnostic regime for HNC is tissue biopsy which fails to determine the thorough tumor dynamics. Therefore, due to the ease of collection, recent studies have focused on the utility of saliva based liquid biopsy approach for serial sampling, early diagnosis, prognosis, longitudinal monitoring of disease progression and treatment response in HNC patients. Saliva collection is convenient, non-invasive, and pain-free and offers repetitive sampling along with real time monitoring of the disease. Moreover, the detection, isolation and analysis of tumor-derived components such as Circulating Tumor Nucleic Acids (CTNAs), Extracellular Vesicles (EVs), Circulating Tumor Cells (CTCs) and metabolites from saliva can be used for genomic and proteomic examination of HNC patients. Although, these circulatory biomarkers have a wide range of applications in clinical settings, no validated data has yet been established for their usage in clinical practice for HNC. Improvements in isolation and detection technologies and next-generation sequencing analysis have resolved many technological hurdles, allowing a wide range of saliva based liquid biopsy application in clinical backgrounds. Thus, in this review, we discussed the rationality of saliva as plausible biofluid and clinical sample for diagnosis, prognosis and therapeutics of HNC. We have described the molecular components of saliva that could mirror the disease status, recent outcomes of salivaomics associated with HNC and current technologies which have the potential to improve the clinical value of saliva in HNC.
Collapse
Affiliation(s)
- Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Parina Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India.,Bioinformatics Institute, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
37
|
Assessing hypoxic damage to placental trophoblasts by measuring membrane viscosity of extracellular vesicles. Placenta 2022; 121:14-22. [PMID: 35245720 PMCID: PMC9010367 DOI: 10.1016/j.placenta.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION As highly sophisticated intercellular communication vehicles in biological systems, extracellular vesicles (EVs) have been investigated as both promising liquid biopsy-based disease biomarkers and drug delivery carriers. Despite tremendous progress in understanding their biological and physiological functions, mechanical characterization of these nanoscale entities remains challenging due to the limited availability of proper techniques. Especially, whether damage to parental cells can be reflected by the mechanical properties of their EVs remains unknown. METHODS In this study, we characterized membrane viscosities of different types of EVs collected from primary human trophoblasts (PHTs), including apoptotic bodies, microvesicles and small extracellular vesicles, using fluorescence lifetime imaging microscopy (FLIM). The biochemical origin of EV membrane viscosity was examined by analyzing their phospholipid composition, using mass spectrometry. RESULTS We found that different EV types derived from the same cell type exhibit different membrane viscosities. The measured membrane viscosity values are well supported by the lipidomic analysis of the phospholipid compositions. We further demonstrate that the membrane viscosity of microvesicles can faithfully reveal hypoxic injury of the human trophoblasts. More specifically, the membrane of PHT microvesicles released under hypoxic condition is less viscous than its counterpart under standard culture condition, which is supported by the reduction in the phosphatidylethanolamine-to-phosphatidylcholine ratio in PHT microvesicles. DISCUSSION Our study suggests that biophysical properties of released trophoblastic microvesicles can reflect cell health. Characterizing EV's membrane viscosity may pave the way for the development of new EV-based clinical applications.
Collapse
|
38
|
Li Y, Wang X, Pang Y, Wang S, Luo M, Huang B. The Potential Therapeutic Role of Mesenchymal Stem Cells-Derived Exosomes in Osteoradionecrosis. JOURNAL OF ONCOLOGY 2021; 2021:4758364. [PMID: 34899907 PMCID: PMC8660232 DOI: 10.1155/2021/4758364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023]
Abstract
As one of the most serious complications of radiotherapy, osteoradionecrosis (ORN) seriously affects the quality of life of patients and even leads to death. Vascular injury and immune disorders are the main causes of bone lesions. The traditional conservative treatment of ORN has a low cure rate and high recurrent. Exosomes are a type of extracellular bilayer lipid vesicles secreted by almost all cell types. It contains cytokines, proteins, mRNA, miRNA, and other bioactive cargos, which contribute to several distinct processes. The favorable biological functions of mesenchymal stem cells-derived exosomes (MSC exosomes) include angiogenesis, immunomodulation, bone regeneration, and ferroptosis regulation. Exploring the characteristic of ORN and MSC exosomes can promote bone regeneration therapies. In this review, we summarized the current knowledge of ORN and MSC exosomes and highlighted the potential application of MSC exosomes in ORN treatment.
Collapse
Affiliation(s)
- Yuetian Li
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyue Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Pang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuangcheng Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng Luo
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
40
|
Prospects of Extracellular Vesicles in Otorhinolaryngology, Head and Neck Surgery. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2040013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diagnostic and therapeutic potential of extracellular vesicles (EVs) has been recognised in many fields of medicine for several years. More recently, it has become a topic of increasing interest in otorhinolaryngology, head and neck surgery (ORL-HNS). With this narrative review, we have aspired to determine different aspects of those nanometrically sized theranostic particles, which seem to have promising potential as biomarkers in some of the most common diseases of the ORL-HNS by being available via less invasive diagnostic methods. At the same time, a better understanding of their activity provides us with new possibilities for developing specific target treatments. So far, most research has been oriented towards the role of EVs in the progression of head and neck cancer, notably head and neck squamous cell cancer. Nonetheless, some of this research has focused on chronic diseases of the ears, nose and paranasal sinuses. However, most research is still in the preclinical or experimental phase. It therefore requires a further and more profound understanding of EV content and behaviour to utilise their nanotheranostic capacities to their fullest potential.
Collapse
|
41
|
Chen M, Xie Y, Luo Y, Xie Y, Wu N, Peng S, Chen Q. Exosomes-a potential indicator and mediator of cleft lip and palate: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1485. [PMID: 34734037 PMCID: PMC8506753 DOI: 10.21037/atm-21-4198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
Objective This article summarizes the recent literature on noncoding ribonucleic acids (ncRNAs) in relation to cleft lip with or without palate and exosomes and their usage in craniofacial diseases. Background Cleft lip with or without cleft palate (CL/P) is a common congenital malformation with genetic and environmental risk factors that affects numerous children and families. Surgical procedures can correct deformations; however, residual sequelae remain after surgery. Studies exploring the pathogenesis of CL/P are crucial for its early diagnosis and treatment and can inform treatment strategy decisions, etiology searches, and treatment during pregnancy. Recently, research has shown that most disease-related genes are ncRNAs, which are important transcripts in the human transcriptome. ncRNAs include microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs play essential roles in various pathophysiological processes, including cell proliferation, migration, apoptosis, and epithelial-mesenchymal transition. Previous studies on protein-coding genes have identified a number of genes related to CL/P; however, the pathogenesis of CL/P has not yet been thoroughly explained. Exosomes are vehicles that transfer various bioactive molecules between cells and represent a new method of intercellular communication. Research has shown that exosomes are related to some craniofacial diseases. Methods We searched the PubMed database for recently published English-language articles using the following keywords: “cleft lip with or without palate,” “noncoding RNA,” “exosomes,” and “craniofacial diseases”. We then reviewed the retrieved articles. Conclusions As exosomes serve as cellular communicators and the palate consists of epithelial and mesenchymal cells, communication between the two cell types may affect its formation. Thus, exosomes could represent a new indicator and mediator of CL/P.
Collapse
Affiliation(s)
- Meng Chen
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yue Xie
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yarui Luo
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China.,Department of Outpatient, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yimin Xie
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Na Wu
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shulei Peng
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China.,Department of Sleep Medicine Centre, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Chen
- Department of Paediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
42
|
Pérez-Ruiz E, Gutiérrez V, Muñoz M, Oliver J, Sánchez M, Gálvez-Carvajal L, Rueda-Domínguez A, Barragán I. Liquid Biopsy as a Tool for the Characterisation and Early Detection of the Field Cancerization Effect in Patients with Oral Cavity Carcinoma. Biomedicines 2021; 9:biomedicines9101478. [PMID: 34680596 PMCID: PMC8533108 DOI: 10.3390/biomedicines9101478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) constitutes approximately 25% of all head and neck cancer, for which the consumption of tobacco and alcohol are the main associated risk factors. The field cancerization effect of OSCC is one of the main reasons for the poor survival rates associated with this disease. Despite some advances, its ccharacterization and early diagnosis continue to challenge modern oncology, and the goal of improving the prognosis remains to be achieved. Among new early diagnostic tools for OSCC that have been proposed, liquid biopsy appears to be an ideal candidate, as studies have shown that the analysis of blood and saliva provides promising data for the early detection of relapses or second tumours.
Collapse
Affiliation(s)
- Elisabeth Pérez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Oncology Department, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (V.G.); (M.M.); (L.G.-C.)
- Correspondence: (E.P.-R.); (A.R.-D.)
| | - Vanesa Gutiérrez
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Oncology Department, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (V.G.); (M.M.); (L.G.-C.)
| | - Marta Muñoz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Oncology Department, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (V.G.); (M.M.); (L.G.-C.)
| | - Javier Oliver
- Researcher Unit, Unidad de Gestión Clínica Intercentros de Oncología Médica, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (J.O.); or (I.B.)
| | - Marta Sánchez
- Maxillofacial Surgery Department, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
| | - Laura Gálvez-Carvajal
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Oncology Department, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (V.G.); (M.M.); (L.G.-C.)
| | - Antonio Rueda-Domínguez
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Oncology Department, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (V.G.); (M.M.); (L.G.-C.)
- Correspondence: (E.P.-R.); (A.R.-D.)
| | - Isabel Barragán
- Researcher Unit, Unidad de Gestión Clínica Intercentros de Oncología Médica, Institute of Biomedical Investigation of Malaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria, 29010 Malaga, Spain; (J.O.); or (I.B.)
- Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
43
|
Xia Y, Zhou K, Sun M, Shu R, Qian J, Xie Y. The miR-223-3p Regulates Pyroptosis Through NLRP3-Caspase 1-GSDMD Signal Axis in Periodontitis. Inflammation 2021; 44:2531-2542. [PMID: 34637033 DOI: 10.1007/s10753-021-01522-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/20/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Salivary exosomes contain various components and may play important roles in oral diseases. The purpose of this study was to verify the possible function of miR-223-3p from salivary exosomes in periodontitis. We isolated the salivary exosomes and found that the miR-223-3p content of salivary exosomes from periodontitis was less than the healthy control. Furthermore, we performed dual-luciferase reporter assay and real-time PCR to verify that (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) was the target of miR-223-3p. When we knocked down the miR-223-3p expression in THP-1-derived macrophages, the expression of NLRP3 and the downstream inflammatory mediators interleukin-1β (IL-1β) and IL-6 were upregulated. By using integrated bioinformatics analysis, we found that pyroptosis and cytokine secretion participated in inflammatory gingival tissues. In addition, NLRP3, and the pyroptosis executioner, gasdermin D (GSDMD) was highly active in inflammatory gingival tissues compared with healthy controls by western blotting and immunohistochemistry. In summary, we speculated that miR-223-3p in salivary exosomes might regulate GSDMD-mediated pyroptosis by targeting NLRP3 in periodontitis. Detection of miR-223-3p expression in salivary exosomes could be used as an important non-invasive method to diagnose and evaluate the severity of periodontitis.
Collapse
Affiliation(s)
- Yiru Xia
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Kecong Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Mengjun Sun
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Rong Shu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital Research Center, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Jielei Qian
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yufeng Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Cai S, Deng Y, Peng H, Shen J. Role of Tetraspanins in Hepatocellular Carcinoma. Front Oncol 2021; 11:723341. [PMID: 34540692 PMCID: PMC8446639 DOI: 10.3389/fonc.2021.723341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high prevalence, morbidity, and mortality. Liver cancer is the sixth most common cancer worldwide; and its subtype, HCC, accounts for nearly 80% of cases. HCC progresses rapidly, and to date, there is no efficacious treatment for advanced HCC. Tetraspanins belong to a protein family characterized by four transmembrane domains. Thirty-three known tetraspanins are widely expressed on the surface of most nucleated cells and play important roles in different biological processes. In our review, we summarize the functions of tetraspanins and their underlying mechanism in the life cycle of HCC, from its initiation, progression, and finally to treatment. CD9, TSPAN15, and TSPAN31 can promote HCC cell proliferation or suppress apoptosis. CD63, CD151, and TSPAN8 can also facilitate HCC metastasis, while CD82 serves as a suppressor of metastasis. TSPAN1, TSPAN8, and CD151 act as prognosis indicators and are inversely correlated to the overall survival rate of HCC patients. In addition, we discuss the potential of role of the tetraspanin family proteins as novel therapeutic targets and as an approach to overcome drug resistance, and also provide suggestions for further research.
Collapse
Affiliation(s)
- Sicheng Cai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Extracellular Vesicles as a Novel Liquid Biopsy-Based Diagnosis for the Central Nervous System, Head and Neck, Lung, and Gastrointestinal Cancers: Current and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112792. [PMID: 34205183 PMCID: PMC8200014 DOI: 10.3390/cancers13112792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary To improve clinical outcomes, early diagnosis is mandatory in cancer patients. Several diagnostic approaches have been proposed, however, the main drawback relies on the invasive procedures required. Extracellular vesicles (EVs) are bilayer lipid membrane structures released by almost all cells and transferred to remote sites via the bloodstream. The observation that their cargo reflects the cell of origin has opened a new frontier for non-invasive biomarker discovery in oncology. Moreover, since EVs can be recovered from different body fluids, their impact as a Correctdiagnostic tool has gained particular interest. Hence, in the last decade, several studies using different biological fluids have been performed, showing the valuable contributions of EVs as tumour biomarkers, and their improved diagnostic power when combined with currently available tumour markers. In this review, the most relevant data on the diagnostic relevance of EVs, alone or in combination with the well-established tumour markers, are discussed. Abstract Early diagnosis, along with innovative treatment options, are crucial to increase the overall survival of cancer patients. In the last decade, extracellular vesicles (EVs) have gained great interest in biomarker discovery. EVs are bilayer lipid membrane limited structures, released by almost all cell types, including cancer cells. The EV cargo, which consists of RNAs, proteins, DNA, and lipids, directly mirrors the cells of origin. EVs can be recovered from several body fluids, including blood, cerebral spinal fluid (CSF), saliva, and Broncho-Alveolar Lavage Fluid (BALF), by non-invasive or minimally invasive approaches, and are therefore proposed as feasible cancer diagnostic tools. In this review, methodologies for EV isolation and characterization and their impact as diagnostics for the central nervous system, head and neck, lung, and gastrointestinal cancers are outlined. For each of these tumours, recent data on the potential clinical applications of the EV’s unique cargo, alone or in combination with currently available tumour biomarkers, have been deeply discussed.
Collapse
|
46
|
Zhang J, Wang Y. Altered Expression of Extracellular Vesicles miRNAs from Primary Human Trabecular Meshwork Cells Induced by Transforming Growth Factor-β2. DNA Cell Biol 2021; 40:988-997. [PMID: 34061659 DOI: 10.1089/dna.2020.6298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is tightly related with extracellular matrix (ECM) remodeling of human trabecular meshwork cells (HTMCs). Transforming growth factor-β2 (TGF-β2) can induce ECM remodeling. The aim of the study was to investigate the microRNAs (miRNAs) expression changes of extracellular vesicles (EVs) derived from HTMCs treated with TGF-β2. EVs were isolated from HTMCs supernatant cultured for 24 h with TGF-β2. The morphology of EVs pellets was examined by transmission electron microscopy. Nanoparticle tracking analysis used to demonstrate the particle size distribution. Total EVs RNAs were extracted for subsequent miRNA gene chip analysis to investigate differentially expressed miRNAs between the controls and treatment cells. Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to predict potential target and validate possible functions of the miRNAs. There were 23 miRNAs upregulated and 3 miRNAs downregulated and 469,102, and 94 GO terms involved in biological processes, cellular components, and molecular function for the possible functions of the 26 miRNAs. These findings indicate that TGF-β2 may alter EVs miRNAs expression to participate in the pathogenesis of POAG. They may provide significant information for potential biomarkers for POAG diagnosis and treatment.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Wang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
47
|
Sun R, Wang H, Shi Y, Sun Z, Jiang H, Zhang J. Changes in the Morphology, Number, and Pathological Protein Levels of Plasma Exosomes May Help Diagnose Alzheimer's Disease. J Alzheimers Dis 2021; 73:909-917. [PMID: 31884461 DOI: 10.3233/jad-190497] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Exosomes are nano-sized extracellular vesicles that are secreted by cells and usually found in body fluids. Since they freely cross the blood-brain barrier, neuronal exosomes respond directly to changes in the brain's environment. Recent studies have shown that exosomes contain both amyloid-β (Aβ) and tau proteins and have a controversial role in the Alzheimer's disease (AD) process. In this study, enzyme-linked immunosorbent assay was used to detect the levels of P-S396-tau and Aβ1-42 in plasma exosomes. We found that levels of P-S396-tau and Aβ1-42 in plasma exosomes of AD patients were significantly higher compared to those in matched healthy controls. The difference between plasma exosomes of AD patients and those of matched healthy controls was determined using transmission electron microscopy and nanoparticle tracking analysis. Exosomes from AD patients were smaller and lower in quantity. These data together may provide a basis for early diagnosis of AD.
Collapse
Affiliation(s)
- Ruihua Sun
- Department of Neurology, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Huayuan Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhikun Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haisong Jiang
- Institute of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Laurenzana I, Trino S, Lamorte D, Girasole M, Dinarelli S, De Stradis A, Grieco V, Maietti M, Traficante A, Statuto T, Villani O, Musto P, Sgambato A, De Luca L, Caivano A. Analysis of Amount, Size, Protein Phenotype and Molecular Content of Circulating Extracellular Vesicles Identifies New Biomarkers in Multiple Myeloma. Int J Nanomedicine 2021; 16:3141-3160. [PMID: 33994784 PMCID: PMC8114829 DOI: 10.2147/ijn.s303391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Extracellular vesicles (EVs) are naturally secreted cellular lipid bilayer particles, which carry a selected molecular content. Owing to their systemic availability and their role in tumor pathogenesis, circulating EVs (cEVs) can be a valuable source of new biomarkers useful for tumor diagnosis, prognostication and monitoring. However, a precise approach for isolation and characterization of cEVs as tumor biomarkers, exportable in a clinical setting, has not been conclusively established. METHODS We developed a novel and laboratory-made procedure based on a bench centrifuge step which allows the isolation of serum cEVs suitable for subsequent characterization of their size, amount and phenotype by nanoparticle tracking analysis, microscopy and flow cytometry, and for nucleic acid assessment by digital PCR. RESULTS Applied to blood from healthy subjects (HSs) and tumor patients, our approach permitted from a small volume of serum (i) the isolation of a great amount of EVs enriched in small vesicles free from protein contaminants; (ii) a suitable and specific cell origin identification of EVs, and (iii) nucleic acid content assessment. In clonal plasma cell malignancy, like multiple myeloma (MM), our approach allowed us to identify specific MM EVs, and to characterize their size, concentration and microRNA content allowing significant discrimination between MM and HSs. Finally, EV associated biomarkers correlated with MM clinical parameters. CONCLUSION Overall, our cEV based procedure can play an important role in malignancy biomarker discovery and then in real-time tumor monitoring using minimal invasive samples. From a practical point of view, it is smart (small sample volume), rapid (two hours), easy (no specific expertise required) and requirements are widely available in clinical laboratories.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Marco Girasole
- Institute for the Study of the Structure of Matter, National Research Council (CNR), Rome, Italy
| | - Simone Dinarelli
- Institute for the Study of the Structure of Matter, National Research Council (CNR), Rome, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, National Research Council (CNR), Bari, Italy
| | - Vitina Grieco
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Maddalena Maietti
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Antonio Traficante
- Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Teodora Statuto
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Oreste Villani
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Alessandro Sgambato
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Luciana De Luca
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| | - Antonella Caivano
- Laboratory of Clinical Research and Advanced Diagnostics, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, PZ, Italy
| |
Collapse
|
49
|
Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. BIOLOGY 2021; 10:biology10050359. [PMID: 33922446 PMCID: PMC8145169 DOI: 10.3390/biology10050359] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Extracellular vesicles (EVs) are membrane-bound vesicles released by all cell types, differing in biogenesis, physical characteristics, and contents. Due to their central role in intercellular communication and their variable cargo, EVs are involved in several biological processes. The possibility of isolating them from different biofluids makes EVs valuable biomarkers to be analyzed for the diagnosis or prognosis of several conditions. Moreover, these natural nanoparticles have been investigated as therapeutic tools in many pathological conditions. In this context, EVs have shown innate immunosuppressive and anti-inflammatory properties when isolated from stem/progenitor cells and have also been considered vehicles to be edited for drug delivery. The aim of the review is to report some of the pre-clinical and clinical studies distinguishing those in which EVs have been examined as biomarkers from those in which they have been used as therapeutics. Abstract Extracellular vesicles (EVs) are ubiquitous masters of intercellular communication, being detectable in tissues, circulation, and body fluids. Their complex cargo reflects the (patho)physiologic status of the cells from which they originate. Due to these properties, the potential of EVs, and in particular exosomes, to serve as biomarkers or therapeutics has grown exponentially over the past decade. On one side, numerous studies have demonstrated that EV-associated nucleic acids and proteins are implicated in cancer progression, as well as neurodegenerative, infectious, and autoimmune disorders. On the other, the therapeutic use of EVs secreted by various cell types, and in particular stem/progenitor cells, present significant advantages in comparison to the corresponding parental cells, such as the less complex production and storage conditions. In this review, we examine some of the major pre-clinical studies dealing with EVs and exosomes, that led to the development of numerous completed clinical trials.
Collapse
|
50
|
Kaur J, Srivastava R, Borse V. Recent advances in point-of-care diagnostics for oral cancer. Biosens Bioelectron 2021; 178:112995. [PMID: 33515983 DOI: 10.1016/j.bios.2021.112995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Early-stage diagnosis is a crucial step in reducing the mortality rate in oral cancer cases. Point-of-care (POC) devices for oral cancer diagnosis hold great future potential in improving the survival rates as well as the quality of life of oral cancer patients. The conventional oral examination followed by needle biopsy and histopathological analysis have limited diagnostic accuracy. Besides, it involves patient discomfort and is not feasible in resource-limited settings. POC detection of biomarkers and diagnostic adjuncts has emerged as non- or minimally invasive tools for the diagnosis of oral cancer at an early stage. Various biosensors have been developed for the rapid detection of oral cancer biomarkers at the point-of-care. Several optical imaging methods have also been employed as adjuncts to detect alterations in oral tissue indicative of malignancy. This review summarizes the different POC platforms developed for the detection of oral cancer biomarkers, along with various POC imaging and cytological adjuncts that aid in oral cancer diagnosis, especially in low resource settings. Various immunosensors and nucleic acid biosensors developed to detect oral cancer biomarkers are summarized with examples. The different imaging methods used to detect oral tissue malignancy are also discussed herein. Additionally, the currently available commercial devices used as adjuncts in the POC detection of oral cancer are emphasized along with their characteristics. Finally, we discuss the limitations and challenges that persist in translating the developed POC techniques in the clinical settings for oral cancer diagnosis, along with future perspectives.
Collapse
Affiliation(s)
- Jasmeen Kaur
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Rohit Srivastava
- NanoBios Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Vivek Borse
- NanoBioSens Laboratory, Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|