1
|
Elimam H, Zaki MB, Abd-Elmawla MA, Darwish HA, Hatawsh A, Aborehab NM, Mageed SSA, Moussa R, Mohammed OA, Abdel-Reheim MA, Doghish AS. Natural products and long non-coding RNAs in prostate cancer: insights into etiology and treatment resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6349-6368. [PMID: 39825964 DOI: 10.1007/s00210-024-03736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy. The capacity of phytochemical and nutraceutical chemicals to repress oncogenic lncRNAs and activate tumor suppressor lncRNAs has garnered significant attention as a possible strategy to diminish the development, proliferation, metastasis, and invasion of cancer cells. A potential technique to treat cancer and enhance the sensitivity of cancer cells to existing conventional therapies is the use of phytochemicals with anticancer characteristics. Functional studies indicate that lncRNAs modulate drug resistance, stemness, invasion, metastasis, angiogenesis, and proliferation via interactions with tumor suppressors and oncoproteins. Among them, numerous lncRNAs, such as HOTAIR, PlncRNA1, GAS5, MEG3, LincRNA-21, and POTEF-AS1, support the development of PCa through many molecular mechanisms, including modulation of tumor suppressors and regulation of various signal pathways like PI3K/Akt, Bax/Caspase 3, P53, MAPK cascade, and TGF-β1. Other lncRNAs, in particular, MALAT-1, CCAT2, DANCR, LncRNA-ATB, PlncRNA1, LincRNA-21, POTEF-AS1, ZEB1-AS1, SChLAP1, and H19, are key players in regulating the aforementioned processes. Natural substances have shown promising anticancer benefits against PCa by altering essential signaling pathways. The overexpression of some lncRNAs is associated with advanced TNM stage, metastasis, chemoresistance, and reduced survival. LncRNAs possess crucial clinical and transitional implications in PCa, as diagnostic and prognostic biomarkers, as well as medicinal targets. To impede the progression of PCa, it is beneficial to target aberrant long non-coding RNAs using antisense oligonucleotides or small interfering RNAs (siRNAs). This prevents them from transmitting harmful messages. In summary, several precision medicine approaches may be used to rectify dysfunctional lncRNA regulatory circuits, so improving early PCa detection and eventually facilitating the conquest of this lethal disease. Due to their presence in biological fluids and tissues, they may serve as novel biomarkers. Enhancing PCa treatments mitigates resistance to chemotherapy and radiation.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26Th of July Corridor, Sheikh Zayed City, 12588, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Zhou K, Cai H, Zhou Z, Yi D, Yao Y, Jin Z, Huang P. m6A methylation modification of RNA plays a significant role in the occurrence and development of colorectal cancer. Int J Biol Macromol 2025; 315:144666. [PMID: 40424908 DOI: 10.1016/j.ijbiomac.2025.144666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/23/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
Colorectal cancer is the third most common malignant tumor worldwide and ranks second in terms of mortality. N6-methyladenosine (m6A) modification is the most prevalent internal covalent modification in eukaryotic mRNA and is involved in various stages of RNA processing, including splicing, degradation, and export, playing a crucial role in the onset and progression of many diseases. The m6A modification is co-regulated by methyltransferases, demethylases, and methyl-binding proteins, and it has become a hot topic in cancer research. Based on a systematic review of existing studies on the role of m6A modification in colorectal cancer, this article further expands the research horizon in this field and effectively overcomes the limitations of existing reviews that only focus on discussing a single or a class of methylation regulators.
Collapse
Affiliation(s)
- Ke Zhou
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Huazhong Cai
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Dehao Yi
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Yuan Yao
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Zhesi Jin
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China
| | - Pan Huang
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, PR China; School of Medicine, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
3
|
Gao Y, Zandieh K, Zhao K, Khizanishvili N, Fazio PD, Yu X, Schulte L, Aillaud M, Chung HR, Ball Z, Meixner M, Bauer UM, Bartsch DK, Buchholz M, Lauth M, Nimsky C, Cook L, Bartsch JW. The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. Cell Oncol (Dordr) 2025; 48:391-409. [PMID: 39412616 PMCID: PMC11996950 DOI: 10.1007/s13402-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 12/05/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kimia Zandieh
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Leon Schulte
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, 35033, Marburg, Germany
| | - Zachary Ball
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
4
|
Su Y, Liu J, Wu Q, Gao Z, Wang J, Li H, Zheng C. AMPFLDAP: Adaptive Message Passing and Feature Fusion on Heterogeneous Network for LncRNA-Disease Associations Prediction. Interdiscip Sci 2024; 16:608-622. [PMID: 38581626 DOI: 10.1007/s12539-024-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 04/08/2024]
Abstract
Exploration of the intricate connections between long noncoding RNA (lncRNA) and diseases, referred to as lncRNA-disease associations (LDAs), plays a pivotal and indispensable role in unraveling the underlying molecular mechanisms of diseases and devising practical treatment approaches. It is imperative to employ computational methods for predicting lncRNA-disease associations to circumvent the need for superfluous experimental endeavors. Graph-based learning models have gained substantial popularity in predicting these associations, primarily because of their capacity to leverage node attributes and relationships within the network. Nevertheless, there remains much room for enhancing the performance of these techniques by incorporating and harmonizing the node attributes more effectively. In this context, we introduce a novel model, i.e., Adaptive Message Passing and Feature Fusion (AMPFLDAP), for forecasting lncRNA-disease associations within a heterogeneous network. Firstly, we constructed a heterogeneous network involving lncRNA, microRNA (miRNA), and diseases based on established associations and employing Gaussian interaction profile kernel similarity as a measure. Then, an adaptive topological message passing mechanism is suggested to address the information aggregation for heterogeneous networks. The topological features of nodes in the heterogeneous network were extracted based on the adaptive topological message passing mechanism. Moreover, an attention mechanism is applied to integrate both topological and semantic information to achieve the multimodal features of biomolecules, which are further used to predict potential LDAs. The experimental results demonstrated that the performance of the proposed AMPFLDAP is superior to seven state-of-the-art methods. Furthermore, to validate its efficacy in practical scenarios, we conducted detailed case studies involving three distinct diseases, which conclusively demonstrated AMPFLDAP's effectiveness in the prediction of LDAs.
Collapse
Affiliation(s)
- Yansen Su
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Jingjing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Qingwen Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Zhen Gao
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Jing Wang
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Haitao Li
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
5
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
6
|
Tashakori N, Kolour SSP, Ghafouri K, Ahmed SI, Kahrizi MS, Gerami R, Altafi M, Nazari A. Critical role of the long non-coding RNAs (lncRNAs) in radiotherapy (RT)-resistance of gastrointestinal (GI) cancer: Is there a way to defeat this resistance? Pathol Res Pract 2024; 258:155289. [PMID: 38703607 DOI: 10.1016/j.prp.2024.155289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Radiotherapy (RT) is a frequently used treatment for cervical cancer, effectively decreasing the likelihood of the disease returning in the same area and extending the lifespan of individuals with cervical cancer. Nevertheless, the primary reason for treatment failure in cancer patients is the cancer cells' resistance to radiation therapy (RT). Long non-coding RNAs (LncRNAs) are a subset of RNA molecules that do not code for proteins and are longer than 200 nucleotides. They have a significant impact on the regulation of gastrointestinal (GI) cancers biological processes. Recent research has shown that lncRNAs have a significant impact in controlling the responsiveness of GI cancer to radiation. This review provides a concise overview of the composition and operation of lncRNAs as well as the intricate molecular process behind radiosensitivity in GI cancer. Additionally, it compiles a comprehensive list of lncRNAs that are linked to radiosensitivity in such cancers. Furthermore, it delves into the potential practical implementation of these lncRNAs in modulating radiosensitivity in GI cancer.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Internal Medicine, Faculty of Medicine, Tehran branch, Islamic Azad University, Tehran, Iran
| | | | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Ibrahem Ahmed
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Mana Altafi
- Department of Radiology, Faculty of Biological Science and Technology, Shiraz Pardis Branch, Islamic Azad University, Shiraz, Iran.
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| |
Collapse
|
7
|
Chen D, Wang J, Li Y, Xu C, Fanzheng M, Zhang P, Liu L. LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11-dependent repression of CDKN2A. Clin Transl Med 2023; 13:e1418. [PMID: 37752791 PMCID: PMC10522973 DOI: 10.1002/ctm2.1418] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Therapeutic options for advanced HCC are limited, which is due to a lack of full understanding of pathogenesis. Cellular senescence is a state of cell cycle arrest, which plays important roles in the pathogenesis of HCC. Mechanisms underlying hepatocellular senescence are not fully understood. LncRNA NEAT1 acts as an oncogene and contributes to the development of HCC. Whether NEAT1 modulates hepatocellular senescence in HCC is unknown. METHODS The role of NEAT1 and KIF11 in cellular senescence and tumor growth in HCC was assessed both in vitro and in vivo. RNA pulldown, mass spectrometry, Chromatin immunoprecipitation (ChIP), luciferase reporter assays, RNA FISH and immunofluorescence (IF) staining were used to explore the detailed molecular mechanism of NEAT1 and KIF11 in cellular senescence of HCC. RESULTS We found that NEAT1 was upregulated in tumor tissues and hepatoma cells, which negatively correlated with a senescence biomarker CDKN2A encoding p16INK4a and p14ARF proteins. NEAT1 was reduced in senescent hepatoma cells induced by doxorubicin (DOXO) or serum starvation. Furthermore, NEAT1 deficiency caused senescence in cultured hepatoma cells, and protected against the progression of HCC in a mouse model. During senescence, NEAT1 translocated into cytosol and interacted with a motor protein KIF11, resulting in KIF11 protein degradation and subsequent increased expression of CDKN2A in cultured hepatoma cells. Furthermore, KIF11 knockdown caused senescence in cultured hepatoma cells. Genetic deletion of Kif11 in hepatocytes inhibited the development of HCC in a mouse model. CONCLUSIONS Conclusively, NEAT1 overexpression reduces senescence and promotes tumor progression in HCC tissues and hepatoma cells, whereas NEAT1 deficiency causes senescence and inhibits tumor progression in HCC. This is associated with KIF11-dependent repression of CDKN2A. These findings lay the foundation to develop potential therapies for HCC by inhibiting NEAT1 and KIF11 or inducing senescence.
Collapse
Affiliation(s)
- Danlei Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| | - Jinghao Wang
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Yang Li
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Chenglin Xu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Meng Fanzheng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| | - Pengfei Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Zhejiang Cancer HospitalHangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiangChina
| | - Lianxin Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhuiChina
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhuiChina
| |
Collapse
|
8
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
9
|
Farzaneh M, Masoodi T, Ghaedrahmati F, Radoszkiewicz K, Anbiyaiee A, Sheykhi-Sabzehpoush M, Rad NK, Uddin S, Jooybari SPM, Khoshnam SE, Azizidoost S. An updated review of contribution of long noncoding RNA-NEAT1 to the progression of human cancers. Pathol Res Pract 2023; 245:154380. [PMID: 37043964 DOI: 10.1016/j.prp.2023.154380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Seyedeh Pardis Motiee Jooybari
- Department of Biology, Faculty of Basic Sciences and Engineering, University of Gonbad Kavous, Gonbad Kavus, Golestan, Iran
| | - Seyed Esmaeil Khoshnam
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
11
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
12
|
Haghighi N, Doosti A, Kiani J. Evaluation of Apoptosis, Cell Proliferation and Cell Cycle Progression by Inactivation of the NEAT1 Long Noncoding RNA in a Renal Carcinoma Cell Line Using CRISPR/Cas9. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3180. [PMID: 36811109 PMCID: PMC9938936 DOI: 10.30498/ijb.2022.310632.3180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/06/2022] [Indexed: 02/24/2023]
Abstract
Background Long noncoding RNAs (lncRNAs) play an important role in cellular mechanisms including transcription, translation, and apoptosis. NEAT1 is one of the essential types of lncRNAs in humans that can bind to active genes and modify their transcription. NEAT1 upregulation in various forms of cancer such as kidney cancer has been reported. Kidney cancer accounts for approximately 3% of all cancers worldwide and occurs almost twice as often in men as in women. Objectives This study has been performed to knockout the NEAT1 gene using the CRISPR/Cas9 technique in the Renal Cell Carcinoma ACHN cell line and to evaluate its effects on cancer progression and apoptosis. Material and Methods Two specific (single guide RNA (sgRNA) sequences for the NEAT1 gene were designed by CHOPCHOP software. These sequences were then cloned into plasmid pSpcas9, and recombinant vectors PX459-sgRNA1 and PX459-sgRNA2 were generated. ACHN cells were transfected using recombinant vectors carrying sgRNA1 and sgRNA2. The expression level of apoptosis-related genes was assessed by real-time PCR. Annexin, MTT and cell scratch tests were performed to evaluate the survival, proliferation, and migration of the knocked out cells, respectively. Results The results have shown successful knockout of the NEAT1 gene in the cells of the treatment group. Expressions of P53, BAK, BAX and FAS genes in the cells of the treatment group (NEAT1 knockout) showed significant increases in expression compared to the cells of the control group (P <0.01). Additionally, decreased expression of BCL2 and survivin genes was observed in knockout cells compared to the control group (p <0.05). In addition, in the cells of the treatment group compared to control cells, a significant decrease in cell viability, ability to migrate and cell growth and proliferation was observed. Conclusion Inactivation of the NEAT1 gene in ACHN cell line using CRISPR/Cas9 technology elevated apoptosis and reduced cell survival and proliferation which makes it a novel target for kidney cancer therapeutics.
Collapse
Affiliation(s)
- Nastaran Haghighi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Jafar Kiani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
13
|
The lncRNA NEAT1 Inhibits miRNA-216b and Promotes Colorectal Cancer Progression by Indirectly Activating YY1. JOURNAL OF ONCOLOGY 2022; 2022:8130132. [PMID: 36262350 PMCID: PMC9576420 DOI: 10.1155/2022/8130132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
Background Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) is commonly considered an oncogene in various cancers. The long noncoding RNA NEAT1 has been reported to be overexpressed in colorectal cancer (CRC). However, the exact role of NEAT1 in CRC remains unknown. Our research aimed to explore the function of NEAT1 in the tumorigenesis and the development of CRC. Methods Real-time quantitative PCR (qRT-PCR) was used to detect the NEAT1, miR-216b, and YIN-YANG-1 (YY1) mRNA levels in CRC tissues and cells, then immunohistochemistry (IHC) was used to detect the expression of YY1 in CRC tissues. Luciferase reporter, qPCR, western blot, and DNA pulldown assays were conducted to study the relationships between NEAT1, miR-216b, and YY1. Flow cytometry analysis was performed for cell cycle and apoptosis analyses, and a colony formation assay was performed to test cell proliferation. Transwell assays were performed to detect cell invasion and migration. Results The NEAT1 expression was significantly upregulated in CRC tissues compared with its expression in normal tissues, and downregulation of NEAT1 suppressed the proliferation, migration, and invasion of CRC cells. Moreover, we found NEAT1 decreased the miR-216b level directly, and the suppression of miR-216b could inhibit the function of downstream YY1. However, overexpression of YY1 accelerated CRC cell proliferation, migration, and invasion. Conclusion Our results indicated that NEAT1 acted as an oncogene in CRC and promoted the progression of CRC by directly sponging miR-216 b expression to activate the expression of YY1. The NEAT1/miR-216b/YY1 axis may be a novel therapeutic target for CRC.
Collapse
|
14
|
The Long and the Short of It: NEAT1 and Cancer Cell Metabolism. Cancers (Basel) 2022; 14:cancers14184388. [PMID: 36139550 PMCID: PMC9497099 DOI: 10.3390/cancers14184388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Altered metabolism is a hallmark of most cancers. The way that cancer cells regulate their energy production to fuel constant proliferation has been of interest with the hope that it may be exploited therapeutically. The long noncoding RNA, NEAT1, is often dysregulated in tumours. NEAT1 RNA can be transcribed as two isoforms with different lengths, with each variant responsible for different functions. This review explores how the isoforms contribute to cancer metabolism. Abstract The long noncoding RNA NEAT1 is known to be heavily dysregulated in many cancers. A single exon gene produces two isoforms, NEAT1_1 and NEAT1_2, through alternative 3′-end processing. As the longer isoform, NEAT1_2 is an essential scaffold for nuclear paraspeckle formation. It was previously thought that the short NEAT1_1 isoform only exists to keep the NEAT1 locus active for rapid paraspeckle formation. However, a recent glycolysis-enhancing function for NEAT1_1, contributing to cancer cell proliferation and the Warburg effect, has been demonstrated. Previous studies have mainly focused on quantifying total NEAT1 and NEAT1_2 expression levels. However, in light of the NEAT1_1 role in cancer cell metabolism, the contribution from specific NEAT1 isoforms is no longer clear. Here, the roles of NEAT1_1 and NEAT1_2 in metabolism and cancer progression are discussed.
Collapse
|
15
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
16
|
Yeermaike A, Gu P, Liu D, Nadire T. LncRNA NEAT1 sponges miR-214 to promoted tumor growth in hepatocellular carcinoma. Mamm Genome 2022; 33:525-533. [PMID: 35357550 DOI: 10.1007/s00335-022-09952-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 12/24/2022]
Abstract
Live cancer is the sixth most prevalent diagnosed malignant tumor and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the main histological type of liver cancer. Here, we attempt to evaluate the role of long non coding RNA NEAT1 in HCC, and explore its potential mechanism in this disease. Initially, we detected the expression of NEAT1 in HCC cell lines (SMMC-7721 and Huh7 cells) using qRT-PCR. Then we transfected si-NC or si-NEAT1 into SMMC-7721 and Huh7 cells by RNA interference. CCK-8 assay, transwell assay, flow cytometry, qRT-PCR and western blotting were used to evaluate the role of NEAT1 in the biological behavior of SMMC-7721 and Huh7 cells. The rescue experiment, RIP assay and MeRIP were devoted to the underlying mechanism. NEAT1 expression level was significantly elevated in SMMC-7721 and Huh7 cells. Knockdown of NEAT1 inhibited proliferation and migration, induced apoptosis of HCC cell lines. NEAT1 serves as a sponge for miR-214. Besides, PSMB8 was a direct target of miR-214. Furthermore, ALKBH5 could up-regulate NEAT1 expression by inhibiting m6A enrichment. ALKBH5-induced NEAT1 promoted cell proliferation and migration of HCC by sponging miR-214 in vitro, which may provide a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ahati Yeermaike
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Peng Gu
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Dengyao Liu
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Tieliewuhan Nadire
- Ultrasonic Department, Affiliated Tumor Hospital of Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan South Road, Xincheng District, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
17
|
Peng K, Xia RP, Zhao F, Xiao Y, Ma TD, Li M, Feng Y, Zhou CG. ALKBH5 promotes the progression of infantile hemangioma through regulating the NEAT1/miR-378b/FOSL1 axis. Mol Cell Biochem 2022; 477:1527-1540. [PMID: 35182329 DOI: 10.1007/s11010-022-04388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Our work aims to investigate long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification and its role in infantile hemangioma (IH). The mRNA and protein expression levels were assessed using quantitative real-time polymerase chain reaction, western blot and immunohistochemistry. Me-RIP assay was performed to evaluate lncRNA NEAT1 m6A levels. Cell proliferation, migration and invasion were evaluated using cell counting kit-8 assay, transwell migration and invasion assay, respectively. Photo-activatable ribonucleoside-enhanced crosslinking and immunoprecipitation assay was conducted to verify the binding relationship between lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) and ALKBH5 (an RNA demethylase). The binding relationship between lncRNA NEAT1, microRNA (miR)-378b and FOS-like antigen 1 (FOSL1) was verified using dual-luciferase reporter gene assay and/or RNA immunoprecipitation assay. ALKBH5, lncRNA NEAT1 and FOLS1 expression was elevated in IH tissues, while miR-378b was downregulated. ALKBH5 knockdown suppressed cell proliferation, migration and invasion of IH cells, while promoting cell apoptosis. ALKBH5 promoted lncRNA NEAT1 expression by reducing the m6A modification of lncRNA NEAT1. In addition, miR-378b was the target of lncRNA NEAT1, and its overexpression reversed the promotion effect of lncRNA NEAT1 overexpression on IH cell tumor-like behaviors. Moreover, FOLS1 was the target of miR-378b, and its overexpression reversed the inhibitory effect of miR-378b overexpression on IH cell tumor-like behaviors in vitro. ALKBH5 might have great potential as therapeutic target for IH, since ALKBH5 silencing suppressed IH progression by regulation of the NEAT1/miR-378b/FOSL1 axis.
Collapse
Affiliation(s)
- Kun Peng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ren-Peng Xia
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Fan Zhao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Xiao
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ti-Dong Ma
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Ming Li
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Yong Feng
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Chong-Gao Zhou
- Department of Fetal and Neonatal Surgery, Hunan Children's Hospital, No.86, Ziyuan Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
18
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
19
|
Prognostic Role of Long Noncoding RNAs in Oral Squamous Cell Carcinoma: A Meta-Analysis. DISEASE MARKERS 2022; 2021:6407528. [PMID: 34987674 PMCID: PMC8720611 DOI: 10.1155/2021/6407528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of tumor progression, and lncRNA expression levels could serve as a potential molecular biomarker for the prognosis and diagnosis of some cancers. However, the prognostic value of lncRNAs in oral squamous cell carcinoma (OSCC) remains unclear. Thus, a meta-analysis was conducted to explore the potential prognostic value of lncRNAs in OSCC. We systematically searched PubMed, EBSCO, Web of Science, and Elsevier from 2005 to 2021 to identify all published studies that reported the association between lncRNAs and prognosis in OSCC. Then, we used meta-analytic methods to identify the actual effect size of lncRNAs on cancer prognosis. The hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated to assess the strength of the association. The reliability of those results was then examined using measures of heterogeneity and testing for selective reporting biases. According to the inclusion and exclusion criteria, a total of 17 studies were eligible in our meta-analysis, involving 1384 Asian patients. The results identified a statistically significant association of high lncRNA expression with poor overall survival [adjusted pooled hazard ratio (AHR) = 1.52; 95% confidence interval (CI): [1.26–1.84], p ≤ 0.001]. The present meta-analysis demonstrated that lncRNA expression might be used as a predictive prognostic biomarker for Asian patients with OSCC.
Collapse
|
20
|
Chen J, Liao X, Cheng J, Su G, Yuan F, Zhang Z, Wu J, Mei H, Tan W. Targeted Methylation of the LncRNA NEAT1 Suppresses Malignancy of Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:777349. [PMID: 34957107 PMCID: PMC8696001 DOI: 10.3389/fcell.2021.777349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Long-chain non-coding RNA (LncRNA) has been found to play an important role in the regulation of the occurrence and progression of renal cell carcinoma (RCC). In this study, we demonstrated that LncRNA NEAT1 expression and m6A methylation level was decreased in RCC tissues. Further, the downregulated expression level of LncRNA NEAT1 was associated with poor prognosis for RCC patients. Then we used CRIPSR/dCas13b-METTL3 to methylate LncRNA NEAT1 in RCC cells. The results showed that the expression level of LncRNA NEAT1 was upregulated after methylated by dCas13b-METTL3 in RCC cells. And the proliferation and migration ability of RCC cells was decreased after methylated LncRNA NEAT1. Finally, we examined the effect of LncRNA NEAT1 hypermethylation on the transcriptome. We found differentially expressed genes in RCC cells were associated with “cGMP-PKG signaling pathway”, “Cell adhesion molecules” and “Pathways in cancer”. In conclusion, CRISPR/Cas13b-METTL3 targeting LncRNA NEAT1 m6A methylation activates LncRNA NEAT1 expression and provides a new target for treatment of RCC.
Collapse
Affiliation(s)
- Jieqing Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianli Cheng
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ganglin Su
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fen Yuan
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhongfu Zhang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianting Wu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Rao X, Liu X, Liu N, Zhang Y, Zhang Z, Zhou L, Han G, Cen R, Shi N, Zhu H, Gong H, Huang C, Ji Q, Li Q. Long noncoding RNA NEAT1 promotes tumorigenesis in H. pylori gastric cancer by sponging miR-30a to regulate COX-2/BCL9 pathway. Helicobacter 2021; 26:e12847. [PMID: 34396632 DOI: 10.1111/hel.12847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a carcinogenic factor for gastric cancer. Our previous study demonstrated that H. pylori decreased the expression of micro-RNA (miRNA)-30a to promote the tumorigenesis of gastric cancer. However, the upstream regulatory molecules of miR-30a are not well elucidated. In this study, we found the long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) may sponge miR-30a to regulate COX-2/BCL9 pathway. METHODS The expression of NEAT1 was detected in gastric cancer tissues and tumor-adjacent tissues by fluorescence in situ hybridization (FISH) analysis and RT-qPCR. LncRNA-miRNA interaction networks were constructed using the RNAhybrid and starBase v.2.0. and then validated using a dual-luciferase reporter assay. The effects of NEAT1 dysregulation on the proliferative, migratory, and invasive abilities of H. pylori filtrate-infected gastric cancer cells were observed by cell counting kit-8 (CCK-8), colony formation, wound healing test, and transwell assays. Western blot and RT-qPCR were performed to detect protein and RNA expression. Immunohistochemistry (IHC) was carried out to analyze the localization and expression of COX-2 and BCL9. RESULTS FISH and RT-qPCR demonstrated that the expression of NEAT1 was up-regulated in gastric cancer tissues, especially in H. pylori-infected gastric cancer tissues, and the expression of NEAT1 was negatively correlated with miR-30a (miR-30a-3p and miR-30a-5p). The upregulation of NEAT1 enhanced proliferation, migration, and invasion of H. pylori filtrate-infected gastric cancer cells, while the downregulation of NEAT1 decreased these abilities, and miR-30a could reverse the effect of NEAT1 on these abilities. The dual-luciferase reporter assay identified that NEAT1 directly targeted miR-30a (miR-30a-3p and miR-30a-5p). Because miR-30a (miR-30a-3p and miR-30a-5p) negatively regulates the expression of downstream COX-2 and BCL9, NEAT1 was identified to upregulate indirectly the expression of COX-2 and BCL9. IHC showed that the expression of COX-2 and BCL9 was increased in H. pylori gastric cancer tissues. CONCLUSION The study demonstrated that lncRNA NEAT1 may act as a promoter of tumorigenesis in H. pylori gastric cancer, by sponging miR-30a (miR-30a-3p and miR-30a-5p) to regulate the COX-2/BCL9 pathway.
Collapse
Affiliation(s)
- Xiwu Rao
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zhang
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaozhou Zhang
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Han
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Cen
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nuolin Shi
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hangjun Gong
- Department of Gastrointestinal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Suo RY, Wang ZY, Wang JS, Zhang GJ, Zhang J. Role of long non-coding RNA in regulating polarization of gastric cancer macrophages. Shijie Huaren Xiaohua Zazhi 2021; 29:1096-1101. [DOI: 10.11569/wcjd.v29.i19.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are an important part of the tumor microenvironment. They are distributed in tumor tissues and distant metastatic sites, and are related to tumor progression and prognosis. TAMs M2 can promote tumor biological processes such as tumor proliferation, invasion, and metastasis, and inhibit apoptosis, and are obviously related to the poor prognosis of tumor patients. In recent years, the role of long non-coding RNAs (lncRNAs) in regulating the polarization of macrophages has gradually been revealed, which can affect the occurrence and development of tumors by adjusting the polarization of macrophages. Studies have shown that lncRNAs play an important role in the polarization process of gastric cancer macrophages. This article summarizes the related research reports, hoping to provide ideas for studies that interfere with the polarization process of TAMs to inhibit tumor progression.
Collapse
Affiliation(s)
- Rui-Yang Suo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhi-Yu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China,Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian-Sheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guang-Jian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
23
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Haghighi N, Doosti A, Kiani J. Evaluation of CRISPR/Cas9 System Effects on Knocking Out NEAT1 Gene in AGS Gastric Cancer Cell Line with Therapeutic Perspective. J Gastrointest Cancer 2021; 53:623-631. [PMID: 34357544 DOI: 10.1007/s12029-021-00669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
AIM Gastric cancer (GC) is one of the most common malignant tumors globally, with an increasing incidence rate. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNAs) responsible for regulating cell cycle progression, apoptosis, cell growth, proliferation, and migration in various cells. The present survey was performed to assess the effects of NEAT1 gene knocking out by CRISPR/Cas9 system in human gastric cancer cells. METHODS The CRISPR/Cas9 genome editing technique was used to knockout NEAT1 in AGS cells as a gastric cancer model. After the design and construction of the vector, transfection was performed. The expression levels of mRNA, the survival of cells, apoptosis, and cell migration were evaluated by real-time quantitative polymerase chain reaction, flow cytometry, and scratch wound. RESULTS Degradation of NEAT1 by CRISPR/cas9 significantly suppressed the gene's expression rate, arrested cell cycle in the G0/G1 phase, and a significant reduction in cell number in the S phase (P < 0.05). Degradation of NEAT1 by CRISPR/cas9 also restrained the ability to migrate in transfected cells compared to the control group (P < 0.01). Knockout of NEAT1 via impact on miR-34a gene expression induced apoptosis of AGS cells (P < 0.05) with increasing in the FAS level and total apoptosis (P < 0.001). CONCLUSIONS Findings suggest that NEAT1 plays a vital role in cellular mechanisms of GC's occurrence and can serve as a new treatment target in GC.
Collapse
Affiliation(s)
- Nastaran Haghighi
- Department of Genetics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
25
|
Li Y, Wang X, Zhao Z, Shang J, Li G, Zhang R. LncRNA NEAT1 promotes glioma cancer progression via regulation of miR-98-5p/BZW1. Biosci Rep 2021; 41:BSR20200767. [PMID: 33393590 PMCID: PMC8314435 DOI: 10.1042/bsr20200767] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor in the human central nervous system. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) promotes oncogenesis in various tumors. In the present study, we aimed to examine the role of NEAT1 in altering the properties of gliomas. METHODS Quantitative real-time PCR technology was used to determine the expression levels of relevant genes in tumor tissues and cell lines. The protein expression levels were validated by Western blotting. Cell counting kit-8 (CCK-8) and colony formation assays were used to test the cell proliferation ability. A luciferase reporter assay was used to determine the interactions of the genes. Tumor xenografts were used to detect the role of NEAT1 in gliomas in vivo. RESULTS We demonstrated that NEAT1 up-regulated glioma cells and negatively correlated with miR-98-5p in glioma tissues. A potential binding region between NEAT1 and miR-98-5p was confirmed by dual-luciferase assays. NEAT1 knockdown inhibited glioma cell proliferation. The inhibition of miR-98-5p rescued the knockdown of NEAT1 in glioma cells. Basic leucine zipper and W2 domain containing protein 1 (BZW1) was identified as a direct target of miR-98-5p. We also identified that BZW1 was positively correlated with NEAT1 in glioma tissues. NEAT1 knockdown inhibited glioma cell proliferation in vivo via miR-98-5p/BZW1. CONCLUSION Our results suggest that NEAT1 plays an oncogenic function in glioma progression. Targeting NEAT1/miR-98-5p/BZW1 may be a novel therapeutic treatment approach for glioma patients.
Collapse
Affiliation(s)
- Yabin Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Xirui Wang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Zhihuang Zhao
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Jinxing Shang
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Gang Li
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, P.R. China
| | - Ruijian Zhang
- Department of Neurosurgery, People’s Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
26
|
Lu H, Zhang Z, Lu Y, Xiu W, Cui J. LncRNA NEAT1 Acts as an miR-148b-3p Sponge to Regulate ROCK1 Inhibition of Retinoblastoma Growth. Cancer Manag Res 2021; 13:5587-5597. [PMID: 34285579 PMCID: PMC8285126 DOI: 10.2147/cmar.s271326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
Background It is reported that long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) is involved in the occurrence and development of various cancers. However, the detailed biological function and mechanism of LncRNA NEAT1 in retinoblastoma are still unclear. So we will explore the biological function and possible mechanism of LncRNA NEAT1 in retinoblastoma. Materials and Methods Quantitative real-time PCR (qRT-PCR) was used to detect LncRNA NEAT1 in retinoblastoma tissues and cell lines. Cell counting kit 8, Transwell and flow cytometry were applied to explore cell proliferation, invasion and apoptosis. The target miRNAs (miR) of LncRNA NEAT1 and miR and downstream target genes were predicted using Starbase3.0 software and confirmed by double luciferase reporting test and RNA binding protein immunoprecipitation (RIP). Western Blot was applied to explore ROCK1 in cells, and tumor allogeneic experiment was applied to study the role of LncRNA NEAT1 on tumor growth. Results It was found that LncRNA NEAT1 was up-regulated in retinoblastoma tissues, cells and serum, and the prognosis of patients with high expression of LNC RNA NEAT 1 was poor. Functional analysis showed that knocking down LncRNA NEAT1 could weaken proliferation and invasion, and accelerate apoptosis. Tumor allogeneic experiment showed that sh-NEAT1 injection can inhibit tumor growth. In addition, LncRNA NEAT1 inhibited proliferation and invasion, and promoted apoptosis through miR-148b-3p/ROCK1 axis. Conclusion LncRNA NEAT1 can mediate miR-148b-3p/ROCK1 axis to weaken the proliferation and invasion of retinoblastoma.
Collapse
Affiliation(s)
- Hang Lu
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Zhenjun Zhang
- Ophthalmology Department, Beiman Hongpeng Hospital of Qiqihar, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Yao Lu
- International Education College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, People's Republic of China
| | - Weiwei Xiu
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Jinglin Cui
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| |
Collapse
|
27
|
Hu Y, Zhang Y, Ding M, Xu R. Long noncoding RNA TMPO-AS1/miR-126-5p/BRCC3 axis accelerates gastric cancer progression and angiogenesis via activating PI3K/Akt/mTOR pathway. J Gastroenterol Hepatol 2021; 36:1877-1888. [PMID: 33295056 DOI: 10.1111/jgh.15362] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Gastric cancer (GC) is an aggressive tumor featured by uncontrolled cell proliferation and metastasis. In recent years, long noncoding RNAs (lncRNAs) act as crucial regulators and biological markers in multiple cancers. LncRNA TMPO-AS1 has been revealed to be an oncogene in some cancers. Nevertheless, there is little known about the biological role of TMPO-AS1 in GC. METHODS Reverse transcription-quantitative polymerase chain reaction analysis was used to examine the expression level of TMPO-AS1 in GC tissues and cells. Cell Counting Kit-8, colony formation, wound healing assays, and western blot analysis were performed to determine the role of TMPO-AS1 in GC cells. RNA pull-down, luciferase reporter, and RNA immunoprecipitation assays were used to test the interaction among TMPO-AS1, miR-126-5p, and BRCC3. RESULTS TMPO-AS1 was highly expressed in GC tissues and cells. Upregulated TMPO-AS1 was closely associated with adverse prognosis of GC patients. Functional assays showed that TMPO-AS1 promoted GC cell proliferation, migration, and angiogenesis. Furthermore, it was found that TMPO-AS1 acted as a competing endogenous RNA for miR-126-5p to upregulate BRCC3 expression. Rescue assays revealed that TMPO-AS1 facilitated cellular progression of GC by sponging miR-126-5p and upregulating BRCC3. In addition, we found that the effects of the TMPO-AS1/miR-126-5p/BRCC3 axis on GC cell progression were related to the PI3K/Akt/mTOR pathway. CONCLUSIONS Our study demonstrated that the TMPO-AS1/miR-126-5p/BRCC3 axis was involved in GC progression via the regulation of PI3K/Akt/mTOR pathway, which might provide a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Ding
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruisi Xu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Li Y, Lu L, Wu X, Li Q, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Wu Z, Hu W, Cho CH, Li M. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int J Biol Sci 2021; 17:2737-2755. [PMID: 34345204 PMCID: PMC8326121 DOI: 10.7150/ijbs.61410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer (GC) is one of the major public health concerns. Long non-coding RNAs (lncRNAs) have been increasingly demonstrated to possess a strong correlation with GC and play a critical role in GC occurrence, progression, metastasis and drug resistance. Many studies have shed light on the understanding of the underlying mechanisms of lncRNAs in GC. In this review, we summarized the updated research about lncRNAs in GC, focusing on their roles in Helicobacter pylori infection, GC metastasis, tumor microenvironment regulation, drug resistance and associated signaling pathways. LncRNAs may serve as novel biomarkers for diagnosis and prognosis of GC and potential therapeutic targets. The research gaps and future directions were also discussed.
Collapse
Affiliation(s)
- Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province,Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.,Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.,South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| |
Collapse
|
29
|
Zhang Y, Chang L, Wu Q, Zuo F. Long non-coding RNA NEAT1 increases the aggressiveness of gastric cancer by regulating the microRNA-142-5p/JAG1 axis. Exp Ther Med 2021; 22:862. [PMID: 34178135 PMCID: PMC8220654 DOI: 10.3892/etm.2021.10294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer has been indicated to have a high recurrence rate in China. Previous studies have revealed that long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) exerted critical roles in cancers. Therefore, the present study aimed to determine the function of NEAT1 and explore the unknown molecular mechanisms of gastric cancer pathogenesis. Reverse transcription-quantitative PCR assay was used to examine the expression of NEAT1, microRNA (miR)-142-5p and jagged1 (JAG1) in gastric cancer. Cell Counting Kit-8 and Transwell assays were conducted to examine cell proliferation, migration and invasion. The protein expression levels of N-cadherin, Vimentin, E-cadherin and JAG1 were quantified by western blot assay. The associations among NEAT1, miR-142-5p and JAG1 were confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. The effects of NEAT1 silencing on tumor growth were evaluated by tumor xenografts. The results indicated that NEAT1 was highly expressed in tumor tissues and cells compared with that in paracancerous tissues and the normal gastric epithelial cell line GES-1 and significantly associated with poor prognosis in gastric cancer. Functional analyses further demonstrated that NEAT1 knockdown suppressed proliferation, motility and tumor growth in vitro and in vivo. Mechanistically, NEAT1 sponged miR-142-5p to regulate JAG1 expression. In addition, the effects of NEAT1 knockdown on the proliferation, migration and invasion of gastric cancer cells could be rescued by miR-142-5p inhibitor, and JAG1 overexpression reversed the miR-142-5p-mediated effects on gastric cancer cells. These findings demonstrated that long non-coding RNA NEAT1 regulated gastric cancer progression by targeting the miR-142-5p/JAG1 axis.
Collapse
Affiliation(s)
- Yanming Zhang
- Department of General Medicine, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Liying Chang
- Health Management Center, Qingdao Tumor Hospital, Qingdao, Shandong 266042, P.R. China
| | - Qunmei Wu
- Health Management Center, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Fang Zuo
- Department of Gastroenterology, Jinan Central Hospital, Jinan, Shandong 250010, P.R. China
| |
Collapse
|
30
|
Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021; 13:715-743. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of myocardial ischemia-reperfusion injury (MIRI) have increased in modern society. Noncoding RNAs (ncRNAs), including lncRNAs, circRNAs, piRNAs and miRNAs, have been reported in a variety of studies to be involved in pathological initiation and developments of MIRI. Hence this review focuses on the current research regarding these ncRNAs in MIRI. We comprehensively introduce the important features of lncRNAs, circRNAs, piRNA and miRNAs and then summarize the published studies of ncRNAs in MIRI. A clarification of lncRNA-miRNA-mRNA, lncRNA-transcription factor-mRNA and circRNA-miRNA-mRNA axes in MIRI follows, to further elucidate the crucial roles of ncRNAs in MIRI. Bioinformatics analysis has revealed the biological correlation of mRNAs with MIRI. We provide a comprehensive perspective for the roles of these ncRNAs and their related networks in MIRI, providing a theoretical basis for preclinical and clinical studies on ncRNA-based gene therapy for MIRI treatment.
Collapse
Affiliation(s)
- Xiang-Feng Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xu-Dong Pan
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Wang
- Department of Animal Zoology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lu-Qiao Wang
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Li-Zhong Sun
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
31
|
Shen H, Zhu H, Chen Y, Shen Z, Qiu W, Qian C, Zhang J. ZEB1-induced LINC01559 expedites cell proliferation, migration and EMT process in gastric cancer through recruiting IGF2BP2 to stabilize ZEB1 expression. Cell Death Dis 2021; 12:349. [PMID: 33824282 PMCID: PMC8024305 DOI: 10.1038/s41419-021-03571-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is a common type of tumor that is characterized with high metastatic rate. In recent years, increasing studies have indicated that lncRNAs are involved in the regulation on cancer cell proliferation and migration. However, the functional role of long intergenic non-protein coding RNA 1559 (LINC01559) in GC is still unclear. In this study, we applied quantitative real-time polymerase chain reaction (RT-qPCR) and examined that LINC01559 expression was significantly enhanced in GC cells. Functional assays such as EdU, colony formation, JC-1 and transwell assays displayed that silencing LINC01559 inhibited cell proliferation and migration while promoted cell apoptosis in GC. Besides, western blot analysis and immunofluorescence assays examined the expression of factors related to epithelial-mesenchymal transition (EMT) and indicated that EMT process was blocked by LINC01559 knockdown in GC cells. Besides, LINC01559 silencing inhibited tumor growth in vivo. In addition, Chromatin immunoprecipitation (ChIP) assays demonstrated that zinc finger E-box binding homeobox 1 (ZEB1) served as a transcription factor to combine with LINC01559 promoter and activated the expression of LINC01559 in GC cells. In return, LINC01559 recruited insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) to stabilize ZEB1 mRNA to up-regulate ZEB1 in GC cells. In short, the findings in this research might provide a novel target for GC treatment.
Collapse
Affiliation(s)
- Huojian Shen
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Hongyi Zhu
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Yuanwen Chen
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Zhiyong Shen
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Weiqing Qiu
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Changlin Qian
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China
| | - Jie Zhang
- Renji Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, 200025, China.
| |
Collapse
|
32
|
Nitusca D, Marcu A, Dema A, Balacescu L, Balacescu O, Bardan R, Cumpanas AA, Sirbu IO, Petrut B, Seclaman E, Marian C. Long Noncoding RNA NEAT1 as a Potential Candidate Biomarker for Prostate Cancer. Life (Basel) 2021; 11:life11040320. [PMID: 33917553 PMCID: PMC8067529 DOI: 10.3390/life11040320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Prostate cancer (PCa) remains one of the leading causes of cancer-related mortality in men worldwide, mainly due to unsatisfactory diagnostic methods used at present, which lead to overdiagnosis, unnecessary biopsies and treatment, or misdiagnosis in early asymptomatic stages. New diagnostic biomarkers are needed for a correct and early diagnosis. Long noncoding RNAs (lncRNAs) have been broadly studied for their involvement in PCa biology, as well as for their potential role as diagnostic biomarkers. Methods: We conducted lncRNA profiling in plasma and microdissected formalin-fixed paraffin-embedded (FFPE) tissues of PCa patients and attempted validation for commonly dysregulated individual lncRNAs. Results: Plasma profiling revealed eight dysregulated lncRNAs, while microarray analysis revealed 717 significantly dysregulated lncRNAs, out of which only nuclear-enriched abundant transcript 1 (NEAT1) was commonly upregulated in plasma samples and FFPE tissues. NEAT1’s individual validation revealed statistically significant upregulation (FC = 2.101, p = 0.009). Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) value of 0.7298 for NEAT1 (95% CI = 0.5812–0.8785), suggesting a relatively high diagnostic value, thus having a potential biomarker role for this malignancy. Conclusions: We present herein data suggesting that NEAT1 could serve as a diagnostic biomarker for PCa. Additional studies of larger cohorts are needed to confirm our findings, as well as the oncogenic mechanism of NEAT1 in the development of PCa.
Collapse
Affiliation(s)
- Diana Nitusca
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Anca Marcu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Alis Dema
- Department of Pathology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania;
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Razvan Bardan
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
- Correspondence:
| |
Collapse
|
33
|
Ji X, Yan Y, Ma N, He G, Wang K, Zhang Y, Yin J, Song C, Wang P, Ye H, Dai L, Zhang J, Wang K. Variant of SNPs at lncRNA NEAT1 contributes to gastric cancer susceptibility in Chinese Han population. Int J Clin Oncol 2021; 26:694-700. [PMID: 33464437 DOI: 10.1007/s10147-020-01852-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) has been implicated in many tumors risk including gastric cancer. However, the association of single nucleotide polymorphisms (SNPs) at NEAT1 with gastric cancer risk has not been studied. The aim of this study was to investigate the association between SNPs in NEAT1 and gastric cancer susceptibility. METHODS In this study, four SNPs in lncRNA NEAT1 were selected for genotyping in 484 gastric cancer patients and 484 controls in Chinese Han population. Quantitative real-time PCR (qRT-PCR) was conducted to evaluate the potential function of rs3825071. Attributable risk percentage (ARP) and population attributable risk percentage (PARP) were used to assess the epidemiological effect. RESULTS In the dominant model (GG), the genotypes AG + AA of rs3825071 and rs7943779 were associated with an increased risk of gastric cancer (OR = 1.72, 95%CI = 1.27-2.32 and OR = 1.63, 95%CI = 1.19-2.22). Individuals harboring ≥ 3 risk alleles have higher risk of gastric cancer (OR = 1.88, 95% CI = 1.26-2.80, P = 0.002). ARP and PARP associated with gastric cancer were 42.53% and 10.88% for rs3825071, and were 33.78% and 6.26% for rs7943779, respectively. Furthermore, compared with the genotype GG of rs3825071, the genotypes AG and AA had higher expression of NEAT1. CONCLUSIONS We found that the genetic variations in NEAT1 were significantly associated with risk of gastric cancer. The G > A variant of rs3825071 may confer gastric cancer susceptibility by changed biological effects to increase the expression of NEAT1.
Collapse
Affiliation(s)
- Xuanke Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Yali Yan
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Nan Ma
- Henan Academy of Medical Sciences, Zhengzhou, 450003, Henan Province, China
| | - Gui He
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Kunyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Yuehua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Jingjing Yin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Chunhua Song
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Jianying Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Kaijuan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No 100 Kexue Avenue, Zhengzhou City, 450001, China.
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
34
|
Liu Z, Gu Y, Cheng X, Jiang H, Huang Y, Zhang Y, Yu G, Cheng Y, Zhou L. Upregulation lnc-NEAT1 contributes to colorectal cancer progression through sponging miR-486-5p and activating NR4A1/Wnt/β-catenin pathway. Cancer Biomark 2021; 30:309-319. [PMID: 33337350 DOI: 10.3233/cbm-201733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer is a major public health problem and fourth guiding cause of cancer-induced mortality worldwide. The five-year survival rate for patients with colorectal cancer remains poor, and almost half of colorectal cancer patients present recurrence and die within five years. The increasing studies showed that long non-coding RNA (lncRNA) was involved in colorectal cancer. Therefore, this study was used to explore molecular mechanisms of nuclear paraspeckle assembly transcript 1 (NEAT1) in colorectal cancer. The real-time quantitative polymerase chain reaction (RT-qPCR) was employed to estimate the expression levels of NEAT1, Nuclear receptor 4 A1 (NR4A1), and miR-486-5p in colorectal cancer tissues and cells. Kaplan-Meier curve was conducted to analyze relationship between survival time of colorectal cancer patients and level of NEAT1. The protein levels of NR4A1, β-catenin, c-Myc, and cyclinD1 were assessed with western blot assay. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and flow cytometry assays were performed to evaluate proliferation and apoptosis of colorectal cancer cells, respectively. The migration and invasion abilities of cells were examined by transwell assay. The relationship between miR-486-5p and NEAT1 or NR4A1 was confirmed by dual-luciferase reporter assay. We found NEAT1 and NR4A1 were highly expressed in colorectal cancer tissues and cell lines compared with controls. Loss-functional experiments revealed that knockdown of NEAT1 or NR4A1 repressed proliferation and motility, while inducing apoptosis of colorectal cancer cells. The gain of NR4A1 could abolish NEAT1 silencing-induced effects in colorectal cancer cells. In addition, NEAT1 contributed to colorectal cancer progression through mediating NR4A1/Wnt/β-catenin signaling pathway. In conclusion, NEAT1 stimulated colorectal cancer progression via acting as competing endogenous RNA to sponge miR-486-5p and regulate NR4A1/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhining Liu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yimei Gu
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaohu Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Heng Jiang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Huang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingfeng Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Gang Yu
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianbang Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
35
|
Zhou JR, You ZH, Cheng L, Ji BY. Prediction of lncRNA-disease associations via an embedding learning HOPE in heterogeneous information networks. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:277-285. [PMID: 33425486 PMCID: PMC7773765 DOI: 10.1016/j.omtn.2020.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022]
Abstract
Uncovering additional long non-coding RNA (lncRNA)-disease associations has become increasingly important for developing treatments for complex human diseases. Identification of lncRNA biomarkers and lncRNA-disease associations is central to diagnoses and treatment. However, traditional experimental methods are expensive and time-consuming. Enormous amounts of data present in public biological databases are available for computational methods used to predict lncRNA-disease associations. In this study, we propose a novel computational method to predict lncRNA-disease associations. More specifically, a heterogeneous network is first constructed by integrating the associations among microRNA (miRNA), lncRNA, protein, drug, and disease, Second, high-order proximity preserved embedding (HOPE) was used to embed nodes into a network. Finally, the rotation forest classifier was adopted to train the prediction model. In the 5-fold cross-validation experiment, the area under the curve (AUC) of our method achieved 0.8328 ± 0.0236. We compare it with the other four classifiers, in which the proposed method remarkably outperformed other comparison methods. Otherwise, we constructed three case studies for three excess death rate cancers, respectively. The results show that 9 (lung cancer, gastric cancer, and hepatocellular carcinomas) out of the top 15 predicted disease-related lncRNAs were confirmed by our method. In conclusion, our method could predict the unknown lncRNA-disease associations effectively.
Collapse
Affiliation(s)
- Ji-Ren Zhou
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhu-Hong You
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Li Cheng
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Bo-Ya Ji
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Guo L, Tang Y, Wang Y, Xu H. Prognostic Value of lncRNA NEAT1 as a New Biomarker in Digestive System Tumors: a Systematic Study and Meta-analysis. Expert Rev Mol Diagn 2021; 21:91-99. [PMID: 33550874 DOI: 10.1080/14737159.2021.1874921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Nuclear paraspeckle assembly transcript 1 (NEAT1), a newly found lncRNA, is found abnormally expressed in digestive system tumors. This meta-analysis aims to evaluate the effect of NEAT1 on digestive system tumors. METHODS An analysis was conducted to investigate NEAT1 expression in digestive system tumors from the PubMed, Embase, and Web of Science databases. The relationship between NEAT1 expression and patient overall survival (OS) and clinicopathology was evaluated by correlation analysis with the pooled hazard ratio (HR), 95% confidence interval (CI), and odds ratio (OR). RESULTS A total of 12 published studies were enrolled in this meta-analysis. The NEAT1 overexpression was significantly associated with poor OS (HR = 1.64, 95% CI:1.41-1.91, p < 0.05), lymphatic metastasis (OR = 2.70, 95% CI: 2.02-3.61, p < 0.05), distal metastasis (OR = 3.01, 95% CI: 1.97-4.59, p < 0.05) and advanced tumor stage (OR = 3.04, 95% CI: 2.32-3.99, p < 0.05). However, digestive system tumor patients with high NEAT1 expression was not related to the patients' age (OR = 0.91, 95% CI: 0.65-1.26, p = 0.561), gender (OR = 1.04, 95% CI: 0.81-1.33, p = 0.761), tumor size (OR = 1.84, 95% CI: 0.88-3.88, p = 0.106), and tumor differentiation (OR = 0.86, 95% CI: 0.51-1.44, p = 0.570). CONCLUSION Collectively, NEAT1 can be used as a potential biomarker to predict the prognosis of patients with digestive system tumors, which is worth verifying in clinical practice.
Collapse
Affiliation(s)
- Lu Guo
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yukai Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
Dai W, Wang M, Wang P, Wen J, Wang J, Cha S, Xiao X, He Y, Shu R, Bai D. lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med 2021; 47:607-620. [PMID: 33416115 PMCID: PMC7797466 DOI: 10.3892/ijmm.2020.4827] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of inflammation in bone and joint tissue are complex and involve long non‑coding RNAs (lncRNAs), which play an important role in this process. The aim of the present study was to screen out differentially expressed genes in human osteoblasts stimulated by inflammation, and to further explore the mechanisms underlying inflammatory responses and the functional activity of human osteoblasts through bioinformatics methods and in vitro experiments. For this purpose, MG63 cells were stimulated with various concentrations of lipopolysaccharide (LPS) for different periods of time to construct an optimal inflammatory model and RNA sequencing was then performed on these cells. The levels of nuclear enriched abundant transcript 1 (NEAT1), various inflammatory factors, Nod‑like receptor protein 3 (NLRP3) protein and osteogenesis‑related proteins, as well as the levels of cell apoptosis‑ and cell cycle‑related markers were measured in MG63 cells stimulated with LPS, transfected with NEAT1 overexpression plasmid and treated with bexarotene by western blot analysis, RT‑qPCR, immunofluorescence, FISH, TEM and flow cytometry. There were 427 differentially expressed genes in the LPS‑stimulated MG63 cells, in which NEAT1 was significantly downregulated. LPS upregulated the expression of inflammatory cytokines and NLRP3, inhibited the expression of autophagy‑related and osteogenesis‑related proteins, promoted apoptosis and altered the cell cycle, which was partially inhibited by NEAT1 overexpression and promoted by bexarotene. LPS stimulated inflammation in the MG63 cells and inhibited the retinoid X receptor (RXR)‑α to downregulate the expression of NEAT1 and decrease levels of autophagy, which promoted the activation of NLRP3 and the release of inflammatory factors, and impaired the functional activity of osteoblasts, thus promoting the development of inflammation.
Collapse
Affiliation(s)
- Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510599, P.R. China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Ji Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Sa Cha
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yiruo He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
38
|
Li O, Jiang B, Yi WM, Zhang Y, Yang PZ, Guo C, Sun ZP, Peng C. LncRNA NEAT1 promotes cell proliferation, migration, and invasion via the miR-186-5p/PTP4A1 axis in cholangiocarcinoma. Kaohsiung J Med Sci 2021; 37:379-391. [PMID: 33502823 DOI: 10.1002/kjm2.12354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 01/04/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and malignant tumor. In this study, the effect and molecular mechanism of nuclear enriched abundant transcript 1 (NEAT1) in CCA were elucidated. The expressions of NEAT1, microRNA-186-5p (miR-186-5p), and PTP4A1 were measured by quantitative real-time PCR. The protein levels were measured by Western blotting. Kaplan-Meier analysis was performed to create survival curves. The interactions between NEAT1, miR-186-5p, and PTP4A1 were assessed through the dual luciferase reporter assay. Additionally, the cell proliferation, apoptosis, migration, and invasion were measured by colony formation, flow cytometry, the Transwell assay, and the wound healing assay, respectively. NEAT1 and PTP4A1 were significantly upregulated in CCA tissues and cells, but miR-186-5p was downregulated. NEAT1 expression was negatively correlated with the survival of CCA patients and has remarkable correlation with serum CA199 levels and lymph node metastasis. Besides, NEAT1 could act as a molecular sponge for miR-186-5p to upregulate PTP4A1 expression. More importantly, the knockdown of NEAT1 or overexpression of miR-186-5p inhibited the proliferation, migration and invasion of CCA cells, and the inhibition of miR-186-5p reversed the effects of the knockdown of NEAT1. In addition, NEAT1 could also activate the PI3K/AKT signaling pathway and regulate the epithelial-mesenchymal transition (EMT) through the miR-186-5p/PTP4A1 axis. In conclusion, NEAT1 was involved in cell proliferation, migration and invasion in CCA, and the NEAT1/miR-186-5p/PTP4A1/PI3K/AKT axis indicated novel regulatory mechanisms and therapeutics for the treatment of CCA.
Collapse
Affiliation(s)
- Ou Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei-Min Yi
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Pin-Zhou Yang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zeng-Peng Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First-affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
39
|
Jiang Y, Jin S, Tan S, Xue Y, Cao X. Long noncoding RNA NEAT1 regulates radio-sensitivity via microRNA-27b-3p in gastric cancer. Cancer Cell Int 2020; 20:581. [PMID: 33292252 PMCID: PMC7716475 DOI: 10.1186/s12935-020-01655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) exhibits an oncogenic role in multiple cancers, including gastric cancer (GC). But, the functions of NEAT1 in modulating radio-sensitivity of GC and its potential molecular mechanisms have not been totally elucidated. METHODS qRT-PCR was performed to detect the expressions of NEAT1 and microRNA-27b-3p (miR-27b-3p). Kaplan-Meier survival curves for NEAT1 expression in GC created using KM Plotter. Colony formation assay was used to determine the survival fraction. Cell apoptosis was evaluated by flow cytometry. Luciferase reporter assay was used to verify the relationship between miR-27b-3p and NEAT1. RESULTS NEAT1 was highly expressed while miR-27b-3p was downregulated in GC tissues and cells. NEAT1 was negatively correlated with that of miR-27b-3p and associated with poor overall survival. Moreover, NEAT1 and miR-27b-3p varied inversely after radiation in GC tissues and cells. Loss of NEAT1 or upregulation of miR-27b-3p increased the effect of radiation on cell survival fraction inhibition and apoptosis promotion. In addition, NEAT1 negatively regulated the expression of miR-27b-3p in GC cells. Interestingly, the depletion of miR-27b-3p dramatically attenuated the NEAT1 knockdown-mediated function in AGS and MKN-45 cells treated with radiation in vitro. Similarly, downregulation of NEAT1 enhanced the radiation-mediated inhibition of tumor growth, which was mitigated by decrease of miR-27b-3p. CONCLUSION NEAT1 depletion enhanced radio-sensitivity of GC by negatively regulating miR-27b-3p in vitro and in vivo.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, The People's Hospital of Guizhou, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Shan Jin
- Department of Oncology, The People's Hospital of Guizhou, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Shisheng Tan
- Department of Oncology, The People's Hospital of Guizhou, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Yingbo Xue
- Department of Oncology, The People's Hospital of Guizhou, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Xue Cao
- Department of Oncology, The People's Hospital of Guizhou, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
40
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
41
|
Wu D, Li H, Wang J, Li H, Xiao Q, Zhao X, Huo Z. LncRNA NEAT1 promotes gastric cancer progression via miR-1294/AKT1 axis. Open Med (Wars) 2020; 15:1028-1038. [PMID: 33336058 PMCID: PMC7718639 DOI: 10.1515/med-2020-0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/17/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to promote the development of gastric cancer (GC). Nuclear-enriched abundant transcript 1 (NEAT1) played a great role in diverse cancers, but the mechanism of NEAT1 in GC remains indistinct. NEAT1 and AKT1 were distinctly up-regulated and miR-1294 was down-regulated in GC tissues and cells. Cell proliferation and metastasis were refrained but apoptosis was promoted in GC cells after knockdown of NEAT1. NEAT1 negatively regulated miR-1294 expression, and the miR-1294 inhibitor reverted the si-NEAT1-induced effect on GC cells. NEAT1 modulated AKT1 expression through miR-1294, and the si-NEAT1-induced effect was relieved by AKT1. NEAT1 affected phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway via regulating miR-1294 and AKT1. NEAT1 could modulate cell proliferation, apoptosis, and metastasis in GC cells by regulating the PI3K/AKT/mTOR signaling pathway via the miR-1294/AKT1 axis, showing the great potential for NEAT1 as a valid biomarker in the progression and treatment of GC.
Collapse
Affiliation(s)
- Dianchao Wu
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Hui Li
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Junfeng Wang
- Department of Colorectal Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Li
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Qihai Xiao
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Xiaofeng Zhao
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| | - Zhibin Huo
- Department of Surgical Oncology, Xingtai People’s Hospital, No.16, Hongxing Street, Xingtai, 054031, Hebei, China
| |
Collapse
|
42
|
Luo M, Zhang L, Yang H, Luo K, Qing C. Long non‑coding RNA NEAT1 promotes ovarian cancer cell invasion and migration by interacting with miR‑1321 and regulating tight junction protein 3 expression. Mol Med Rep 2020; 22:3429-3439. [PMID: 32945443 PMCID: PMC7453588 DOI: 10.3892/mmr.2020.11428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that long non‑coding RNAs (lncRNAs) have a significant role in the metastasis of tumors, including ovarian cancer (OC). The aim of the present study was to demonstrate the function and working mechanism of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in OC. The expressions of NEAT1 in OC were measured by reverse transcription‑quantitativePCR (RT‑qPCR). The effects of NEAT1 on cell proliferation, invasion, migration and epithelial‑mesenchymal transition (EMT) were detected by Cell Counting Kit‑8, transwell and wound healing assays, and western blotting. Dual‑luciferase reporter assays were performed to confirm the correlated between NEAT and miR‑1321, miR‑1321 and TJP3. The effect of NEAT1 on miR‑1321 and TJP3 was confirmed by RT‑qPCR and western blotting. Elevated expression of NEAT1 was observed in OC cell lines, and NEAT1 expression was found to be positively related to the expression of tight junction protein 3 (TJP3), which is important in cancer development. Moreover, the present results indicated that NEAT1 and TJP3 expression levels were negatively correlated with microRNA (miR)‑1321 expression in OC. Knockdown of NEAT1 attenuated the migration and invasion of OC cells, as well as increased miR‑1321 expression and in turn led to the reduction of TJP3. Thus, the present study demonstrated that NEAT1 regulates TJP3 expression by sponging miR‑1321 and enhances the epithelial‑mesenchymal transition, invasion and migration of OC cells. Overall, the present study identified the function and mechanism of NEAT1 in OC, suggesting that NEAT1 may be a promising therapeutic target for OC metastasis.
Collapse
Affiliation(s)
- Min Luo
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, P.R. China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Key Laboratory of Quality Standards for Traditional Chinese Medicine and National Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
43
|
Huang J, Sachdeva M, Xu E, Robinson TJ, Luo L, Ma Y, Williams NT, Lopez O, Cervia LD, Yuan F, Qin X, Zhang D, Owzar K, Gokgoz N, Seto A, Okada T, Singer S, Andrulis IL, Wunder JS, Lazar AJ, Rubin BP, Pipho K, Mello SS, Giudice J, Kirsch DG. The Long Noncoding RNA NEAT1 Promotes Sarcoma Metastasis by Regulating RNA Splicing Pathways. Mol Cancer Res 2020; 18:1534-1544. [PMID: 32561656 PMCID: PMC7541426 DOI: 10.1158/1541-7786.mcr-19-1170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Soft-tissue sarcomas (STS) are rare malignancies showing lineage differentiation toward diverse mesenchymal tissues. Half of all high-grade STSs develop lung metastasis with a median survival of 15 months. Here, we used a genetically engineered mouse model that mimics undifferentiated pleomorphic sarcoma (UPS) to study the molecular mechanisms driving metastasis. High-grade sarcomas were generated with Cre recombinase technology using mice with conditional mutations in Kras and Trp53 (KP) genes. After amputation of the limb bearing the primary tumor, mice were followed for the development of lung metastasis. Using RNA-sequencing of matched primary KP tumors and lung metastases, we found that the long noncoding RNA (lncRNA) Nuclear Enriched Abundant Transcript 1 (Neat1) is significantly upregulated in lung metastases. Furthermore, NEAT1 RNA ISH of human UPS showed that NEAT1 is upregulated within a subset of lung metastases compared with paired primary UPS. Remarkably, CRISPR/Cas9-mediated knockout of Neat1 suppressed the ability of KP tumor cells to colonize the lungs. To gain insight into the underlying mechanisms by which the lncRNA Neat1 promotes sarcoma metastasis, we pulled down Neat1 RNA and used mass spectrometry to identify interacting proteins. Interestingly, most Neat1 interacting proteins are involved in RNA splicing regulation. In particular, KH-Type Splicing Regulatory Protein (KHSRP) interacts with Neat1 and is associated with poor prognosis of human STS. Moreover, depletion of KHSRP suppressed the ability of KP tumor cells to colonize the lungs. Collectively, these results suggest that Neat1 and its interacting proteins, which regulate RNA splicing, are involved in mediating sarcoma metastasis. IMPLICATIONS: Understanding that lncRNA NEAT1 promotes sarcoma metastasis, at least in part, through interacting with the RNA splicing regulator KHSRP may translate into new therapeutic approaches for sarcoma.
Collapse
Affiliation(s)
- Jianguo Huang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mohit Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Eric Xu
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Timothy J Robinson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Nerissa T Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Omar Lopez
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Lisa D Cervia
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Dadong Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andrew Seto
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tomoyo Okada
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Jay S Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- University of Toronto Musculoskeletal Oncology Unit, and Department of Surgery, University of Toronto, Toronto, Canada
| | - Alexander J Lazar
- Departments of Pathology, Genomic Medicine, and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Krista Pipho
- University of Rochester Medical Center, Rochester, New York
| | | | - Jimena Giudice
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
44
|
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing Endogenous RNA Networks in the Epithelial to Mesenchymal Transition in Diffuse-Type of Gastric Cancer. Cancers (Basel) 2020; 12:cancers12102741. [PMID: 32987716 PMCID: PMC7598708 DOI: 10.3390/cancers12102741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The diffuse-type of gastric cancer is associated with epithelial to mesenchymal transition. Loss of E-cadherin expression is the hallmark of this process and is largely due to the upregulation of the transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, miRNA and lncRNAs can also participate through these transcription factors which directly target E-cadherin. The competing endogenous RNA (ceRNA) network hypothesis state that lncRNA can sponge the miRNA pool that targets these transcripts. Based on the lack of said networks in the epithelial to mesenchymal transition, we performed a prediction analysis that resulted in novel ceRNA networks which will expand our knowledge of the molecular basis of the diffuse-type of gastric cancer. Abstract The diffuse-type of gastric cancer (DGC), molecularly associated with epithelial to mesenchymal transition (EMT), is increasing in incidence. Loss of E-cadherin expression is the hallmark of the EMT process and is largely due to the upregulation of the EMT-inducing transcription factors ZEB1/2, Snail, Slug, and Twist1/2. However, ncRNA, such as miRNA and lncRNAs, can also participate in the EMT process through the direct targeting of E-cadherin and other EMT-inducing transcription factors. Additionally, lncRNA can sponge the miRNA pool that targets these transcripts through competing endogenous RNA (ceRNA) networks. In this review, we focus on the role of ncRNA in the direct deregulation of E-cadherin, as well as EMT-inducing transcription factors. Based on the relevance of the ceRNA network hypothesis, and the lack of said networks in EMT, we performed a prediction analysis for all miRNAs and lncRNAs that target E-cadherin, as well as EMT-inducing transcription factors. This analysis resulted in novel predicted ceRNA networks for E-cadherin and EMT-inducing transcription factors (EMT-TFs), as well as the expansion of the molecular basis of the DGC.
Collapse
Affiliation(s)
- Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Pablo M. Santoro
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Hospital Clinico Universidad de Chile and Clinica Las Condes, Santiago 7550000, Chile;
| | - Alejandro H. Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile; (N.L.); (P.M.S.)
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-2235-48289
| |
Collapse
|
45
|
Tan H, Zhang S, Zhang J, Zhu L, Chen Y, Yang H, Chen Y, An Y, Liu B. Long non-coding RNAs in gastric cancer: New emerging biological functions and therapeutic implications. Am J Cancer Res 2020; 10:8880-8902. [PMID: 32754285 PMCID: PMC7392009 DOI: 10.7150/thno.47548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is currently the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs), transcriptional products with more than 200 nucleotides, are not as well-characterized as protein-coding RNAs. Accumulating evidence has recently revealed that maladjustments of diverse lncRNAs may play key roles in multiple genetic and epigenetic phenomena in GC, affecting all aspects of cellular homeostasis, such as proliferation, migration, and stemness. However, the full extent of their functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets, future research should be focused on unravelling the intricate relationships between lncRNAs and GC that can be translated from bench to clinic. Here, we summarized the state-of-the-art advances in lncRNAs and their biological functions in GC, and we further discuss their potential diagnostic and therapeutic roles. We aim to shed light on the interrelationships between lncRNAs and GC with respect to their potential therapeutic applications. With better understanding of these relationships, the biological functions of lncRNAs in GC development will be exploitable, and promising new strategies developed for the prevention and treatment of GC.
Collapse
|
46
|
Kozłowska J, Kozioł K, Stasiak M, Obacz J, Guglas K, Poter P, Mackiewicz A, Kolenda T. The role of NEAT1 lncRNA in squamous cell carcinoma of the head and neck is still difficult to define. Contemp Oncol (Pozn) 2020; 24:96-105. [PMID: 32774134 PMCID: PMC7403767 DOI: 10.5114/wo.2020.97635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Nuclear paraspeckle assembly transcript 1 (NEAT1) is considered an oncogene in various cancers, but the role in head and neck squamous cell carcinomas (HNSCC) is not clear. MATERIAL AND METHODS Expression of NEAT1 in HNSCC patients' samples and cell lines was analysed using qRT-PCR. The TCGA expression data of NEAT1 were analysed depending on the clinicopathological parameters and tumour localisation. Correlation and gene set enrichment analysis (GSEA) were conducted, and the results were analysed using the REACTOME and GeneMANIA tools. All statistical analyses were carried out using GraphPad Prism 5 and Statistica 13. RESULTS The NEAT1 was up-regulated in some patients' samples and HNSCC cell lines. Moreover, TCGA data analysis indicated that the expression of NEAT1 was up-regulated in tumour tissue in most of the analysed TCGA cancers, including HNSCC. There were no significant differences in levels of NEAT1 between various tumour localisations. Overall survival of individuals with high expression of NEAT1 was slightly longer than in the low-expression group (p = 0.0553). Analysis of genes that positively and negatively correlated with NEAT1 indicated that they are involved in mRNA metabolism and cellular transport. Moreover, the GSEA revealed that in patients with low NEAT1, the most up-regulated genes were in clusters associated with the cAMP-dependent pathway, the MYC pathway, unfolded protein response, the MTORC1 signalling pathway, oxidative phosphorylation, and DNA repair. CONCLUSIONS Patients with low expression of NEAT1 display worse overall survival, presumably due to up-regulation of certain oncogenic signalling pathways that are important for cancerogenesis.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kinga Kozioł
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Stasiak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna Obacz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Poter
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centre, Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Kolenda
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
47
|
LINC00689 promotes prostate cancer progression via regulating miR-496/CTNNB1 to activate Wnt pathway. Cancer Cell Int 2020; 20:215. [PMID: 32518524 PMCID: PMC7275594 DOI: 10.1186/s12935-020-01280-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidence has proved the significant influence of long non-coding RNAs (lncRNAs) in cancer formation and development, including PCa. Methods The role of LINC00689 in PCa was confirmed by RT-qPCR, MTT, colony formation, flow cytometry, western blot and transwell assays. Besides, the binding ability between LINC00689 and miR-496 was validated by using luciferase reporter assay. Then RT-qPCR, RIP and luciferase reporter and western blot assays were employed to verify the interactions among LINC00689, miR-496 and CTNNB1. Furthermore, the rescuing role of CTNNB1 in Wnt pathway was proved by RT-qPCR, TOP/FOP Flash and western blot assays. Results LINC00689 was upregulated in PCa tissues and cells as well as at the terminal stage. Further, knock down of LINC00689 repressed PCa cell proliferation, migration and invasion, and initiated PCa cell apoptosis. Additionally, miR-496 inhibitor and pcDNA3.1/CTNNB1 could neutralize the prohibitive effects of LINC00689 silencing on cell proliferation, migration and invasion, meanwhile, could offset the encouraging role of knocking down LINC00689 in cell apoptosis. Moreover, CTNNB1 upregulation exerted redemptive function in Wnt pathway inhibited by LINC00689 depletion. Conclusions To sum up, LINC00689 promotes PCa progression via regulating miR-496/CTNNB1 to activate Wnt pathway, which may contribute to research about new targets for PCa treatment. ![]()
Collapse
|
48
|
Long Noncoding RNA NEAT1 Regulates TGF- β2-Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells through the miR-34a/Snail1 and miR-204/Zeb1 Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8352579. [PMID: 32596382 PMCID: PMC7284955 DOI: 10.1155/2020/8352579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to explore whether the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs (HLECs) were separated and cultured. Our results identified that TGF-β2 induces NEAT1 overexpression in a dose-dependent manner and a time-dependent manner. Additionally, TGF-β2 induced downregulation of E-cadherin and upregulation of fibronectin in primary HLECs through a NEAT1-dependent mechanism. Microarray analysis showed that NEAT1 overexpression inhibited the miR-34a and miR-204 levels in the LECs. The expression of miR-34a and miR-204 was decreased, and the levels of Snail1 and Zeb1 were elevated in human posterior capsule opacification- (PCO-) attached LECs and the LECs obtained from anterior subcapsular cataract (ASC) by quantitative RT-PCR (qRT-PCR). Mechanistic studies revealed that NEAT1 negatively regulates miR-34a or miR-204, and miR-34a or miR-204 directly targets Snail1 or Zeb1 by luciferase assay and RNA-binding protein immunoprecipitation assay, respectively. Overall, the NEAT1/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in TGF-β2-induced EMT of HLECs. In summary, TGF-β2 induces NEAT1 overexpression, which in turn suggests that NEAT1 acts as a ceRNA targeting Snail1 or Zeb1 by binding miR-34a or miR-204, and promotes the progression of EMT of LECs.
Collapse
|
49
|
Li B, Lu X, Ma C, Sun S, Shu X, Wang Z, Sun W. Long non-coding RNA NEAT1 promotes human glioma tumor progression via miR-152-3p/CCT6A pathway. Neurosci Lett 2020; 732:135086. [PMID: 32454145 DOI: 10.1016/j.neulet.2020.135086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) has been documented to implicate in diverse tumor progression. However, the mechanism of NEAT1 in glioma was rarely reported. METHODS The levels of NEAT1, microRNA-152-3p (miR-152-3p) and chaperonin containing TCP1 subunit 6A (CCT6A) in glioma tissues and cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability, apoptotic rate, the migrated and invaded abilities of A172 and U251 cells were evaluated via cell counting kit-8 (CCK-8), flow cytometry and Transwell assay, respectively. The mice xenograft model was constructed to further verify the effect of NEAT1. The interactions between miR-152-3p and NEAT1 or CCT6A were predicted by starBase v2.0 or TargetScan, then luciferase reporter assay, RNA immunoprecipitation (RIP) and RNA pull-down assay were performed to validate the interaction. The protein level of CCT6A was detected by Western blot assay. RESULTS The levels of NEAT1, CCT6A were highly expressed, but miR-152-3p was decreased in glioma tissues and cells. NEAT1 depletion or miR-152-3p mimics suppressed cell viability, migrated and invaded abilities but induced apoptotic rate in A172 and U251 cells, while the introduction of CCT6A partly counteracted these impacts. In addition, NEAT1 silencing impeded xenograft tumor growth in vivo. MiR-152-3p was verified as a direct target of NEAT1 and directly targeted CCT6A. CCT6A expression was upregulated by NEAT1 and reversed by miR-152-3p. CONCLUSION NEAT1 enhanced glioma progression, partially through miR-152-3p/CCT6A pathway. The novel regulatory network might contribute to the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Bin Li
- Department of Pathology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China
| | - Xiangui Lu
- Department of Neurosurgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China
| | - Cong Ma
- Department of Endocrinology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China
| | - Shujie Sun
- Department of Neurosurgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China
| | - Xiaoyan Shu
- Department of Neurosurgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China
| | - Zhiyu Wang
- Department of Neurosurgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China.
| | - Wanqun Sun
- Department of Science and Education, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clincal Center, CAS, Shanghai, PR China.
| |
Collapse
|
50
|
Yan L, Zhang Z, Yin X, Li Y. lncRNA NEAT1 Facilitates Cell Proliferation, Invasion and Migration by Regulating CBX7 and RTCB in Breast Cancer. Onco Targets Ther 2020; 13:2449-2458. [PMID: 32273717 PMCID: PMC7102915 DOI: 10.2147/ott.s240769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To investigate the association between the lncRNA NEAT1 and breast cancer, and to determine the influence of NEAT1 on regulation of other signaling molecules in breast cancer. Methods In the present study, we measured levels of the lncRNA NEAT1 in 106 breast cancer patients and in a human breast cancer cell line by qRT-PCR. The correlation between NEAT1 expression and patients’ clinical characteristics was analyzed with in-house and TCGA data. We used cellular functioning assays and cell immunofluorescence assay to evaluate the role of NEAT1 and its target molecules in proliferation, invasion and migration in breast cancer. We used Western blotting to explore possible targets of NEAT1 and a subcellular fractionation assay to locate NEAT1 expression. Results NEAT1 was overexpressed in breast cancer tissue and also closely related to advanced clinical stages and positive lymph node metastases. NEAT1 levels were also tightly correlated to prognosis for breast cancer patients in survival analyses. Cellular function assays revealed that downregulation of NEAT1 could inhibit breast cancer cell viability, invasion and migration. Western blotting revealed down-regulation of CBX7 and up-regulation of RTCB following NEAT1 inhibition. Based on the cytoplasmic and nuclear expression of NEAT1, we investigated the possible regulation of CBX7 and RTCB by NEAT1. Results showed that NEAT1 regulated the expression of CBX7 and RTCB, possibly by binding of NEAT1 to DNA in the nucleus, which facilitates cell proliferation, invasion and migration. Conclusion The current results suggest that the lncRNA NEAT1 is upregulated in breast cancer and facilitates tumor cell viability, invasion and migration via CBX7 and RTCB.
Collapse
Affiliation(s)
- Lixia Yan
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Ze Zhang
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Xingmei Yin
- Department of Breast and Thyroid Surgery, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| | - Yongxia Li
- Department of Stomatology and Eye, Dongying People's Hospital, Dongying, Shandong 257091, People's Republic of China
| |
Collapse
|