1
|
Chan AHE, Saralamba N, Saralamba S, Ruangsittichai J, Thaenkham U. The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BMC Genomics 2022; 23:104. [PMID: 35130837 PMCID: PMC8822746 DOI: 10.1186/s12864-022-08302-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic markers like the nuclear ribosomal RNA (rRNA) genes, internal transcribed spacer regions, mitochondrial protein-coding genes, and genomes have been utilized for molecular identification of parasitic trematodes. However, challenges such as the design of broadly applicable primers for the vast number of species within Digenea and the genetic markers’ ability to provide sufficient species-level resolution limited their utility. This study presented novel and broadly applicable primers using the mitochondrial 12S and 16S rRNA genes for Digenea and aimed to show their suitability as alternative genetic markers for molecular identification of orders Plagiorchiida, Echinostomida, and Strigeida. Results Our results revealed that the mitochondrial 12S and 16S rRNA genes are suitable for trematode molecular identification, with sufficient resolution to discriminate closely related species and achieve accurate species identification through phylogenetic placements. Moreover, the robustness of our newly designed primers to amplify medically important parasitic trematodes encompassing three orders was demonstrated through successful amplification. The convenience and applicability of the newly designed primers and adequate genetic variation of the mitochondrial rRNA genes can be useful as complementary markers for trematode molecular-based studies. Conclusions We demonstrated that the mitochondrial rRNA genes could be alternative genetic markers robust for trematode molecular identification and potentially helpful for DNA barcoding where our primers can be widely applied across the major Digenea orders. Furthermore, the potential of the mitochondrial rRNA genes for molecular systematics can be explored, enhancing their appeal for trematode molecular-based studies. The novelty of utilizing the mitochondrial rRNA genes and the designed primers in this study can potentially open avenues for species identification, discovery, and systematics in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08302-4.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jiraporn Ruangsittichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Chan AHE, Chaisiri K, Morand S, Saralamba N, Thaenkham U. Evaluation and utility of mitochondrial ribosomal genes for molecular systematics of parasitic nematodes. Parasit Vectors 2020; 13:364. [PMID: 32690073 PMCID: PMC7372814 DOI: 10.1186/s13071-020-04242-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Molecular advances have accelerated our understanding of nematode systematics and taxonomy. However, comparative analyzes between various genetic markers have led to discrepancies in nematode phylogenies. This study aimed to evaluate the suitability of using mitochondrial 12S and 16S ribosomal RNA genes for nematode molecular systematics. METHODS To study the suitability of mitochondrial 12S and 16S ribosomal RNA genes as genetic markers for nematode molecular systematics, we compared them with the other commonly used genetic markers, nuclear internal transcribed spacer 1 and 2 regions, nuclear 18S and 28S ribosomal RNA genes, and mitochondrial cytochrome c oxidase subunit 1 gene. After that, phylum-wide primers for mitochondrial 12S and 16S ribosomal RNA genes were designed, and parasitic nematodes of humans and animals from 75 taxa with 21 representative species were inferred through phylogenetic analyzes. Phylogenetic analyzes were carried out using maximum likelihood and Bayesian inference algorithms. RESULTS The phylogenetic relationships of nematodes based on the mitochondrial 12S rRNA gene supported the monophyly of nematodes in clades I, IV, and V, reinforcing the potential of this gene as a genetic marker for nematode systematics. In contrast, the mitochondrial 16S rRNA gene only supported the monophyly of clades I and V, providing evidence that the 12S rRNA gene is more suitable for nematode molecular systematics. In this study, subclades of clade III containing various nematode families were not monophyletic when the 16S or 12S rRNA gene was used as the genetic marker. This is similar to the phylogenetic relationship revealed by previous studies using whole mitochondrial genomes as genetic markers. CONCLUSIONS This study supports the use of the 12S rRNA gene as a genetic marker for studying the molecular systematics of nematodes to understand intra-phyla relationships. Phylum-wide primers for nematodes using mitochondrial ribosomal genes were prepared, which may enhance future studies. Furthermore, sufficient genetic variation in the mitochondrial 12S and 16S rRNA genes between species also allowed for accurate taxonomy to species level, revealing the potential of these two genes as genetic markers for DNA barcoding.
Collapse
Affiliation(s)
- Abigail Hui En Chan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Serge Morand
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- CNRS ISEM-CIRAD ASTRE, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Li J, Chen ZH, Jiang L, Wu CY, Liao SQ, Lin XH, Xiang R, Lv MN, Qi NS, Zhang JF, Chen QL, Sun MF. Characterization of cattle-origin ticks from Southern China. Acta Trop 2018; 187:92-98. [PMID: 30055177 DOI: 10.1016/j.actatropica.2018.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
To characterize ticks in cattle from Guangdong Province and Guangxi Zhuang Nationality Autonomous Region, Southern China, 783 cattle in four localities were examined. Among them, 232 (29.63%) cattle were positive for tick infection. A total of 503 ticks collected in these cattle were further investigated. Two Rhipicephalus species, namely R. microplus and R. sanguineus, were firstly identified by morphological features. Thereinto, R. microplus is the prevalent species in cattle in southern China, with high prevalent in summer and autumn annually. Mixed infection of R. microplus and R. sanguineus was just found in yellow cattle. To further confirm the morphological identification of these cattle-origin ticks, a phylogeographic analysis inferred from the sequences of the ribosomal internal transcribed spacer-2 (ITS-2) was performed, and R. microplus and R. sanguineus were identified. However, the morphological taxonomy of R. microplus has been challenged in recent years. The mitochondrial cytochrome c oxidase subunit 1 (cox1) marker was then used to provide higher resolution of R. mircoplus complex. The re-constructed cox1 phylogenetic tree further identified these R. mircoplus tick samples as R. microplus Clade A. These findings illustrated the prevalence and characterization of cattle-origin ticks in Southern China for the first time, and provided base-line information for further control of tick and tick-borne disease in these areas.
Collapse
|
4
|
Wang D, Young ND, Koehler AV, Tan P, Sohn WM, Korhonen PK, Gasser RB. Mitochondrial genomic comparison of Clonorchis sinensis from South Korea with other isolates of this species. INFECTION GENETICS AND EVOLUTION 2017; 51:160-166. [DOI: 10.1016/j.meegid.2017.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
|
5
|
Blasco-Costa I, Cutmore SC, Miller TL, Nolan MJ. Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Syst Parasitol 2016; 93:295-306. [DOI: 10.1007/s11230-016-9631-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/09/2016] [Indexed: 11/29/2022]
|
6
|
Molecular Diagnostics: Huge Impact on the Improvement of Public Health in China. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Bian QQ, Li XY, Fang YQ, Jia YQ, Mu XD. Molecular identification of Pomacea canaliculata and P. insularum from rice paddy in different origins in China using mitochondrial adenosine triphosphate subunit 6 gene. ACTA ACUST UNITED AC 2013; 26:11-4. [DOI: 10.3109/19401736.2013.830302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qing-Qing Bian
- Department of Seed Science, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China and
| | - Xiao-Yan Li
- Department of Seed Science, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China and
| | - Yan-Qin Fang
- Department of Seed Science, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China and
| | - Yan-Qing Jia
- Department of Seed Science, Northwest A&F University, Yangling, Shaanxi Province, People’s Republic of China and
| | - Xi-Dong Mu
- Department of Ornamental Fish Research, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Chen F, Li J, Sugiyama H, Zhou DH, Song HQ, Zhao GH, Zhu XQ. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes. ACTA ACUST UNITED AC 2013; 26:35-40. [DOI: 10.3109/19401736.2013.814110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Fen Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China,
- Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan Province, PR China,
| | - Juan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China,
- Department of Parasitology, Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, PR China,
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan,
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China,
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China,
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, PR China, and
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China,
- Department of Parasitology, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, PR China
| |
Collapse
|
9
|
Zhao GH, Li J, Blair D, Li XY, Elsheikha HM, Lin RQ, Zou FC, Zhu XQ. Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnol Adv 2012; 30:1381-9. [DOI: 10.1016/j.biotechadv.2012.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/08/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
|
10
|
Molecular phylogeny of species of Ligophorus (Monogenea: Dactylogyridae) and their affinities within the Dactylogyridae. Parasitol Int 2012; 61:619-27. [PMID: 22742900 DOI: 10.1016/j.parint.2012.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 11/23/2022]
Abstract
The taxonomic framework of Ligophorus, monogenean specialists of the gills of grey mullets (Mugilidae), is evaluated and its interspecific relationships are assessed for the first time using molecular data. The position of Ligophorus within the paraphyletic Ancyrocephalinae is re-assessed based on newly sequenced species. Furthermore, the relationship between morphometric and genetic interspecific similarities is evaluated. Partial 28S and complete ITS1 rDNA sequences from representatives of 14 of the 16 nominal species of Ligophorus from the Mediterranean, Black and Azov Seas were analysed together with published sequences of members of the Dactylogyridae. The phylogenetic analyses of the Dactylogyridae (i) confirmed the position of Ligophorus within the marine Ancyrocephalinae; (ii) revealed a sister relationship between Ergenstrema and Ligophorus, whose species are all exclusive parasites of grey mullets; and (iii) substantiated the affinities of Ergenstrema with the marine Ancyrocephalinae. The phylogenetic analysis restricted to Ligophorus confirmed the distinct status of the included species. The ITS1 region provided the highest divergence between species and phylograms with the strongest branch support. Both the 28S and ITS1 phylograms revealed two main clades. One included species from hosts with Mediterranean and NE Atlantic distribution and another was formed by species parasitising several Liza spp., including Lz. haematocheilus from the Northwestern Pacific, and Mugil cephalus, which suggests an origin outside the Mediterranean for the latter clade. The phylogenetic evidence presented herein indicated that a combination of host-switching and lineage duplication events accounted for the diversification of this genus in the Mediterranean basin. The agreement between molecular and morphological interspecific similarities observed in Ligophorus supports the validity of morphometric characters used for species identification.
Collapse
|
11
|
The second transcribed spacer rDNA sequence: an effective genetic marker for inter-species phylogenetic analysis of trematodes in the order Strigeata. Parasitol Res 2012; 111:1467-72. [PMID: 22669693 DOI: 10.1007/s00436-012-2981-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
In the present study, the second nuclear internal transcribed spacer (ITS-2) rDNA of Schistosoma japonicum isolates in mainland China was amplified, sequenced, and assessed for inferring the intra- and inter-species phylogenetic relationships of trematodes in the order Strigeata. The fragment containing ITS-2 rDNA was obtained from 24 S. japonicum isolates from eight epidemic provinces in mainland China. The length polymorphisms were observed among these ITS-2 rDNA sequences, ranging from 343 to 346 bp, and the intra- and inter-population variations in ITS-2 sequence were 0.0-2.1% among S. japonicum isolates in China. Phylogenetic analyses using the maximum parsimony and maximum likelihood methods revealed that the ITS-2 rDNA sequence is not a suitable marker for studying inter- and intra-population variation in S. japonicum. However, phylogenetic analysis of trematodes in the order Strigeata indicated that the ITS-2 rDNA sequence provides an effective molecular marker for studying inter-species phylogenetic relationships among trematodes in this order.
Collapse
|
12
|
Molecular characterization and phylogenetic analysis of ascarid nematodes from twenty-one species of captive wild mammals based on mitochondrial and nuclear sequences. Parasitology 2012; 139:1329-38. [DOI: 10.1017/s003118201200056x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYAlthough ascarid nematodes are important parasites of wild animals of public health concern, few species of ascarids from wild animals have been studied at the molecular level so far. Here, the classification and phylogenetic relationships of roundworms from 21 species of captive wild animals have been studied by sequencing and analysis of parts of the ribosomal 18S and 28S genes and the mitochondrial (mt) 12S gene. Phylogenetic relationships were inferred by 3 methods (NJ/MP/ML) based on the data of single gene sequences and concatenated sequences. Homology analysis indicated that the 18S sequences were conserved among roundworms from all 21 species and that 28S showed interspecies variability. Divergence levels displayed in 12S suggested that 12S appears to be either intra- or interspecifically variable. Evolutionary trees indicated that the ascarids split into 2 families, 4 genera and 7 species, with high bootstrap support for each clade. Combined trees suggested that Baylisascaris ailuri is more closely related to B. transfuga than to B. schroederi. This study provides useful molecular markers for the classification, phylogenetic analysis and epidemiological investigation of roundworms from wild animals.
Collapse
|
13
|
Machida RJ, Kweskin M, Knowlton N. PCR primers for metazoan mitochondrial 12S ribosomal DNA sequences. PLoS One 2012; 7:e35887. [PMID: 22536450 PMCID: PMC3334914 DOI: 10.1371/journal.pone.0035887] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. METHODOLOGY/PRINCIPAL FINDINGS A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. CONCLUSIONS/SIGNIFICANCE Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.
Collapse
Affiliation(s)
- Ryuji J Machida
- National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America.
| | | | | |
Collapse
|
14
|
Zhao GH, Li J, Song HQ, Li XY, Chen F, Lin RQ, Yuan ZG, Weng YB, Hu M, Zou FC, Zhu XQ. A specific PCR assay for the identification and differentiation of Schistosoma japonicum geographical isolates in mainland China based on analysis of mitochondrial genome sequences. INFECTION GENETICS AND EVOLUTION 2012; 12:1027-36. [PMID: 22446475 DOI: 10.1016/j.meegid.2012.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 12/01/2022]
Abstract
In the present study, near-complete mt genome sequences for eight representative Schistosoma japonicum samples from seven endemic provinces in mainland China were analyzed. Sequence differences among the eight mt genomes of S. japonicum samples were 0.20-2.51%. Variation in protein-coding genes was greater than that in rRNA genes. The mt DNA sequences of S. japonicum samples from south-western (SW) China were 2 bp [position 11727-11728 within tRNA-Cys, microsatellite (AG) indel] longer than those of the parasites from the lower Yangtze/Zhejiang areas. Representative DNA sequencing confirmed that such (AG) indel could be exploited for identification and differentiation of S. japonicum populations in SW China's Yunnan and Sichuan province which have two (AG) repeats from those in all remaining endemic provinces along the Yangtze River below the Three Gorges regions or close to the east coast of China (e.g., Zhejiang) which have only one (AG) repeat. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes also showed that samples from SW China (Sichuan and Yunnan provinces), above the Three Gorges Dam, formed a distinct cluster. Based on this indel polymorphism, a pair of specific primers was designed and used to develop a specific-PCR polyacrylamide gel detection assay. There was an obvious length difference in the amplified PCR products between S. japonicum samples from the two endemic types. The specific-PCR assay allowed the specific identification of S. japonicum, with no amplicons being amplified from other closely related trematodes, and the minimum amount of DNA detectable was 0.05 ng. This approach is inexpensive, easy to perform and the whole detection process can be completed within 4h. Examination of 81 S. japonicum samples from SW China's Yunnan and Sichuan provinces, and 264 samples from the lower Yangtze provinces (Hubei, Jiangsu, Jiangxi, Anhui and Hunan) and from Zhejiang validated the value of the specific PCR assay and proved its reliability. These findings indicate that the specific PCR assay would provide a useful tool for the epidemiological surveillance and for tracing the source of S. japonicum infection in humans and animals in China.
Collapse
Affiliation(s)
- Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Genetic variation among Clonorchis sinensis isolates from different geographic regions in China revealed by sequence analyses of four mitochondrial genes. J Helminthol 2011; 86:479-84. [DOI: 10.1017/s0022149x11000757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractThe present study examined sequence variation in four mitochondrial (mt) genes, namely cytochrome c oxidase subunits 1 (cox1) and 2 (cox2), and NADH dehydrogenase subunits 1 and 2 (nad1 and nad2) among Clonorchis sinensis isolates from different endemic regions in China, and their phylogenetic relationships with other zoonotic trematodes were reconstructed. A portion of the cox1 and cox2 genes (pcox1 and pcox2), and nad1 and nad2 genes (pnad1 and pnad2) were amplified separately from individual liver flukes by polymerase chain reaction (PCR) and the amplicons were subjected to sequencing from both directions. The intra-specific sequence variations within C. sinensis were 0–1.6% for pcox1, 0–1.4% for pcox2, 0–0.9% for pnad1 and 0–1.0% for pnad2. Phylogenetic analyses based on the combined sequences of pcox1, pcox2, pnad1 and pnad2 revealed that all the C. sinensis isolates grouped together and were closely related to Opisthorchis felineus. These findings revealed the existence of intra-specific variation in mitochondrial DNA (mtDNA) sequences among C. sinensis isolates from different geographic regions, and demonstrated that mtDNA sequences provide reliable genetic markers for phylogenetic studies of zoonotic trematodes.
Collapse
|