1
|
Xu L, Fukuda Y, Murakoshi F, Alviola P, Masangkay J, Recuenco FC, Shehata A, Omatsu T, Bando H, Fujii H, Une Y, Kato K. Molecular characterization and zoonotic risk assessment of Cryptosporidium spp. in Philippine bats. Food Waterborne Parasitol 2025; 38:e00249. [PMID: 39801709 PMCID: PMC11718318 DOI: 10.1016/j.fawpar.2024.e00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Cryptosporidium is a genus of parasitic protozoa known to cause diarrheal disease that impacts both humans and animals through infection of various vertebrate species. Bats are recognized as reservoirs for zoonotic pathogens, including Cryptosporidium. The Philippines, renowned for its rich biodiversity, is home to diverse bat species, providing a unique ecological setting to investigate Cryptosporidium infection dynamics. Understanding the prevalence and genetic diversity of Cryptosporidium in Philippine bats is crucial for assessing their potential role in zoonotic disease transmission and associated public health risks. We investigated the prevalence and genotypic diversity of Cryptosporidium in bats in the Philippines. From January 2019 to March 2024, a total of 569 bats were captured and analyzed, with 14 of the bat samples testing positive for the 18 s rRNA gene of Cryptosporidium, yielding an overall infection rate of 2.46 %. One sample exhibited co-infection, with 18 s rRNA sequence analysis indicating mixed infection with a species closely related to Cryptosporidium parvum (intestinal Cryptosporidium) and Cryptosporidium sp. (gastric Cryptosporidium). Phylogenetic analysis of the 18S rRNA gene revealed that intestinal and gastric Cryptosporidium spp. form two distinct clades. Intestinal Cryptosporidium includes C. parvum, C. hominis, and most bat genotypes, while gastric Cryptosporidium, such as C. andersoni and C. serpentis, is typically found in reptiles and cattle. An unidentified Cryptosporidium species was also detected in one sample, whose sequence matched that of Cryptosporidium previously isolated from a human patient with diarrhea. Nine other samples exhibited genotypes related to C. parvum, indicating a potential for transmission to humans. The remaining three samples exhibited Cryptosporidium bat genotypes II and VI, which have previously been detected in Philippine bats. Our findings underscore the role of bats in the Philippines as potential reservoirs for Cryptosporidium and highlight the diversity of Cryptosporidium species in Philippine bats.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Phillip Alviola
- University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | - Joseph Masangkay
- University of the Philippines Los Baños, College, Laguna, 4031, Philippines
| | - Frances Cagayat Recuenco
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- De La Salle University, Taft Avenue, Manila 0922, Philippines
| | - Ayman Shehata
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hironori Bando
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hikaru Fujii
- The Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yumi Une
- The Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| |
Collapse
|
2
|
López-López P, Cruz AVS, Santos-Silva S, Rivero-Juárez A, Rebelo H, Mesquita JR. Molecular Survey of Protist Enteroparasites in Bats (Order Chiroptera) from Portugal. Acta Parasitol 2025; 70:24. [PMID: 39853462 DOI: 10.1007/s11686-024-00985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE Bats constitute 20% of all mammal species, playing a vital role in ecosystem health as pollinators, seed dispersers, and regulators of insect populations. However, these animals can also be reservoirs for infectious agents, including viruses, bacteria, and enteroparasites such as Cryptosporidium spp., Giardia duodenalis, and Balantioides coli, raising questions about their role in the epidemiology of these agents. Our study analyses bat faecal samples from Portugal with the aim of assessing the prevalence, distribution and diversity of enteroparasitic protozoa. METHODS We conducted a retrospective study that included 380 bat faecal samples collected between 2014 and 2018 in northern and central Portugal. RESULTS In our study, a Cryptosporidium spp. prevalence of 3.2% was identified, with genetic diversity observed and strains grouped with known bat genotypes. Giardia duodenalis was detected in 0.5% of the samples, exhibiting distinct genetic characteristics that may suggest a potential new assembly group encompassing bats and rodents. Finally, B. coli was detected in 0.26% of samples, representing the first observation of this ciliate in bats, with the identified genetic variant belonging to genotype B. CONCLUSION Our results provide valuable molecular epidemiological insights that underscore the importance of bats in the epidemiology of these enteroparasites. Furthermore, this is the first report of Cryptosporidium spp. and G. duodenalis in bat faeces samples from Portugal, and the first study worldwide to show that bats can shed B. coli in their faeces.
Collapse
Affiliation(s)
- Pedro López-López
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andreia V S Cruz
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sérgio Santos-Silva
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Antonio Rivero-Juárez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Hugo Rebelo
- Centro de Investigação em Bioaffiliationersidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João R Mesquita
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, Porto, Portugal.
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
3
|
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals (Basel) 2024; 14:3043. [PMID: 39457973 PMCID: PMC11504201 DOI: 10.3390/ani14203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide.
Collapse
Affiliation(s)
- Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
| | - Marco Pittau
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, 70010 Bari, Italy;
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (E.B.); (R.Z.); (M.P.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| |
Collapse
|
4
|
Zhao W, Ren G, Mao J, Huang H, Lu G, Liang S. Enterocytozoon bieneusi and Cryptosporidium bat genotype XXI and bat genotype XXII in fruit bats (Rousettus leschenaultii) inhabiting a tropical park in Hainan Province, China. Acta Trop 2024; 254:107186. [PMID: 38513912 DOI: 10.1016/j.actatropica.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Bats stand as one of the most diverse groups in the animal kingdom and are key players in the global transmission of emerging pathogens. However, their role in transmitting Enterocytozoon bieneusi and Cryptosporidium spp. remains unclear. This study aimed to evaluate the occurrence and genetic diversity of the two pathogens in fruit bats (Rousettus leschenaultii) in Hainan, China. Ten fresh fecal specimens of fruit bats were collected from Wanlvyuan Gardens, Haikou, China. The fecal samples were tested for E. bieneusi and Cryptosporidium spp. using Polymerase Chain Reaction (PCR) analysis and sequencing the internal transcribed spacer (ITS) region and partial small subunit of ribosomal RNA (SSU rRNA) gene, respectively. Genetic heterogeneity across Cryptosporidium spp. isolates was assessed by sequencing 4 microsatellite/minisatellite loci (MS1, MS2, MS3, and MS16). The findings showed that out of the ten specimens analyzed, 2 (20 %) and seven (70.0 %) were tested positive for E. bieneusi and Cryptosporidium spp., respectively. DNA sequence analysis revealed the presence of two novel Cryptosporidium genotypes with 94.4 to 98.6 % sequence similarity to C. andersoni, named as Cryptosporidium bat-genotype-XXI and bat-genotype-XXII. Three novel sequences of MS1, MS2 and MS16 loci identified here had 95.4 to 96.9 % similarity to the known sequences, which were deposited in the GenBank. Two genotypes of E. bieneusi were identified, including a novel genotype named HNB-I and a zoonotic genotype PigEbITS7. The discovery of these novel sequences provides meaningful data for epidemiological studies of the both pathogens. Meanwhile our results are also presented that the fruit bats infected with E. bieneusi, but not with Cryptosporidium, should be considered potential public health threats.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pathogenic Biology, Hainan Medical University, Haikou, Hainan, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Guangxu Ren
- Department of Pathogenic Biology, Hainan Medical University, Haikou, Hainan, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Jialiang Mao
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huicong Huang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gang Lu
- Department of Pathogenic Biology, Hainan Medical University, Haikou, Hainan, China; Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| | - Shaohui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Dhivahar J, Parthasarathy A, Krishnan K, Kovi BS, Pandian GN. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023; 9:e22351. [PMID: 38125540 PMCID: PMC10730444 DOI: 10.1016/j.heliyon.2023.e22351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
The potential biotechnological uses of bat-associated bacteria are discussed briefly, indicating avenues for biotechnological applications of bat-associated microbes. The uniqueness of bats in terms of their lifestyle, genomes and molecular immunology may predispose bats to act as disease reservoirs. Molecular phylogenetic analysis has shown several instances of bats harbouring the ancestral lineages of bacterial (Bartonella), protozoal (Plasmodium, Trypanosoma cruzi) and viral (SARS-CoV2) pathogens infecting humans. Along with the transmission of viruses from bats, we also discuss the potential roles of bat-associated bacteria, fungi, and protozoan parasites in emerging diseases. Current evidence suggests that environmental changes and interactions between wildlife, livestock, and humans contribute to the spill-over of infectious agents from bats to other hosts. Domestic animals including livestock may act as intermediate amplifying hosts for bat-origin pathogens to transmit to humans. An increasing number of studies investigating bat pathogen diversity and infection dynamics have been published. However, whether or how these infectious agents are transmitted both within bat populations and to other hosts, including humans, often remains unknown. Metagenomic approaches are uncovering the dynamics and distribution of potential pathogens in bat microbiomes, which might improve the understanding of disease emergence and transmission. Here, we summarize the current knowledge on bat zoonoses of public health concern and flag the gaps in the knowledge to enable further research and allocation of resources for tackling future outbreaks.
Collapse
Affiliation(s)
- J. Dhivahar
- Research Department of Zoology, St. Johns College, Palayamkottai, 627002, India
- Department of Plant Biology and Biotechnology, Laboratory of Microbial Ecology, Loyola College, Chennai, 600034, India
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Anutthaman Parthasarathy
- Department of Chemistry and Biosciences, Richmond Building, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kathiravan Krishnan
- Department of Biotechnology, Laboratory of Virology, University of Madras, Chennai, 600025, India
| | - Basavaraj S. Kovi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Yoshida Ushinomiyacho, 69, Sakyo Ward, 606-8501, Kyoto, Japan
| |
Collapse
|
6
|
Barbosa AD, Egan S, Feng Y, Xiao L, Ryan U. How significant are bats as potential carriers of zoonotic Cryptosporidium and Giardia? CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100155. [PMID: 38149267 PMCID: PMC10750029 DOI: 10.1016/j.crpvbd.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
Bats are known to harbour various pathogens and are increasingly recognised as potential reservoirs for zoonotic diseases. This paper reviews the genetic diversity and zoonotic potential of Cryptosporidium and Giardia in bats. The risk of zoonotic transmission of Cryptosporidium from bats to humans appears low, with bat-specific Cryptosporidium genotypes accounting for 91.5% of Cryptosporidium-positive samples genotyped from bats worldwide, and C. parvum and C. hominis accounting for 3.4% each of typed positives, respectively. To date, there have only been sporadic detections of Giardia in bats, with no genetic characterisation of the parasite to species or assemblage level. Therefore, the role bats play as reservoirs of zoonotic Giardia spp. is unknown. To mitigate potential risks of zoonotic transmission and their public health implications, comprehensive research on Cryptosporidium and Giardia in bats is imperative. Future studies should encompass additional locations across the globe and a broader spectrum of bat species, with a focus on those adapted to urban environments.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
7
|
Silva-Ramos CR, Noriega J, Fajardo RF, Chala-Quintero SM, Del Pilar Pulido-Villamarín A, Pérez-Torres J, Castañeda-Salazar R, Cuervo C. Molecular Detection and Genotyping of Cryptosporidium spp. Isolates from Bats in Colombia. Acta Parasitol 2023; 68:676-682. [PMID: 37531008 PMCID: PMC10462512 DOI: 10.1007/s11686-023-00697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Cryptosporidiosis is a zoonotic infectious disease caused by the protozoan parasite Cryptosporidium spp., frequently found in several animal species, including bats. Several Cryptosporidium genotypes have been described in bats worldwide, suggesting that bats are infected by host-specific Cryptosporidium spp. To date, there are no published reports about Cryptosporidium spp. in bats from Colombia. Therefore, this study aimed to determine the presence and molecular diversity of Cryptosporidium spp. in Colombian bats. METHODS A total of 63 gut samples from three bat species served for molecular detection of Cryptosporidium spp. 18S rDNA gene by qPCR. The sequenced amplicons were used in subsequent phylogenetic analyses to identify them as species or genotypes. RESULTS Cryptosporidium spp. qPCR detection occurred in 9.5% (6/63) of bat intestines, and four sequences represented two new genotypes, called Cryptosporidium bat genotypes XIX and XX, were identified. CONCLUSIONS This study describes the detection of two novel Cryptosporidium bat genotypes, in two species of bats from a region of Colombia, requiring further studies to determine the relationhip between Cryptosporidium and bats in Colombia.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juliana Noriega
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rafael F Fajardo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sandra M Chala-Quintero
- Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Del Pilar Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jairo Pérez-Torres
- Unidad de Ecología y Sistemática (UNESIS), Laboratorio de Ecología Funcional, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rubiela Castañeda-Salazar
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
8
|
Carbonara M, Mendonza-Roldan JA, Perles L, Alfaro-Alarcon A, Romero LM, Murillo DB, Piche-Ovares M, Corrales-Aguilar E, Iatta R, Walochnik J, Santoro M, Otranto D. Parasitic fauna of bats from Costa Rica. Int J Parasitol Parasites Wildl 2022; 20:63-72. [PMID: 36655207 PMCID: PMC9841367 DOI: 10.1016/j.ijppaw.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Bats are important reservoirs and spreaders of pathogens, including those of zoonotic concern. Though Costa Rica hosts one of the highest bat species' diversity, no information is available about their parasites. In order to investigate the occurrence of vector-borne pathogens (VBPs) and gastrointestinal (GI) parasites of chiropterans from this neotropical area, ectoparasites (n = 231) and stools (n = 64) were collected from 113 bats sampled in Santa Cruz (site 1) and Talamanca (site 2). Mites, fleas and ticks were morphologically and molecularly identified, as well as pathogens transmitted by vectors (VBPs, i.e., Borrelia spp., Rickettsia spp., Bartonella spp.) and from feces, such as Giardia spp., Cryptosporidium spp. and Eimeria spp. were molecularly investigated. Overall, 21 bat species belonging to 15 genera and 5 families were identified of which 42.5% were infested by ectoparasites, with a higher percentage of mites (38.9%, i.e., Cameronieta sp. and Mitonyssoides sp.) followed by flies (2.6%, i.e., Joblingia sp.) and tick larvae (1.7%, i.e., Ornithodoros sp.). Rickettsia spp. was identified in one immature tick and phylogenetically clustered with two Rickettsia species of the Spotted Fever Group (i.e., R. massiliae and R. rhipicephali). The frequency of GI parasite infection was 14%, being 3.1% of bats infected by Giardia spp. (un-identified non-duodenalis species), 1.5% by Eimeria spp. and 9.4% by Cryptosporidium spp. (bat and rodent genotypes; one C. parvum-related human genotype). The wide range of ectoparasites collected coupled with the detection of Rickettsia sp., Giardia and Cryptosporidium in bats from Costa Rica highlight the role these mammals may play as spreaders of pathogens and the need to further investigate the pathogenic potential of these parasites.
Collapse
Affiliation(s)
| | | | - Lívia Perles
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | | | - Daniel Barrantes Murillo
- Pathology Department, National University, Heredia, Costa Rica,Department of Pathobiology, College of Veterinary Medicine, Alabama, USA
| | - Marta Piche-Ovares
- Research Center for Tropical Diseases, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica,Department of Virology, School of Veterinary Medicine, National University, Heredia, Costa Rica
| | | | - Roberta Iatta
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, University of Vienna, Vienna, Austria
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy,Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran,Corresponding author. Department of Veterinary Medicine, University of Bari, Valenzano, 70010, Bari, Italy.
| |
Collapse
|
9
|
Federici L, Masulli M, De Laurenzi V, Allocati N. An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 2022; 13:1012189. [PMID: 36338090 PMCID: PMC9631491 DOI: 10.3389/fmicb.2022.1012189] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Recent pandemic events have raised the attention of the public on the interactions between human and environment, with particular regard to the more and more feasible transmission to humans of micro-organisms hosted by wild-type species, due to the increasing interspecies contacts originating from human’s activities. Bats, due to their being flying mammals and their increasing promiscuity with humans, have been recognized as hosts frequently capable of transmitting disease-causing microorganisms. Therefore, it is of considerable interest and importance to have a picture as clear as possible of the microorganisms that are hosted by bats. Here we focus on our current knowledge on bats microbiota. We review the most recent literature on this subject, also in view of the bat’s body compartments, their dietary preferences and their habitat. Several pathogenic bacteria, including many carrying multidrug resistance, are indeed common guests of these small mammals, underlining the importance of preserving their habitat, not only to protect them from anthropogenic activities, but also to minimize the spreading of infectious diseases.
Collapse
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University “G. d' Annunzio”, Chieti, Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d' Annunzio”, Chieti, Italy
- *Correspondence: Nerino Allocati,
| |
Collapse
|
10
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Duszynski DW. Biodiversity of the Coccidia (Apicomplexa: Conoidasida) in vertebrates: what we know, what we do not know, and what needs to be done. Folia Parasitol (Praha) 2021; 68. [PMID: 33527909 DOI: 10.14411/fp.2021.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
Collapse
|
12
|
Prevalence of Gastrointestinal Parasites in the Frugivorous and the Insectivorous Bats in Southcentral Nepal. J Parasitol Res 2020; 2020:8880033. [PMID: 33414955 PMCID: PMC7752302 DOI: 10.1155/2020/8880033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Bats are the only active flying placental mammals and are traditionally classified into mega- and microbats, which are, respectively, herbivorous and insectivorous in feeding habit. Though deforestation, habitat destruction, natural calamities, illegal hunting, and climate changes are the challenging threats for bats, the role of existing gastrointestinal (GI) parasites have not been evaluated yet in Nepal. Thus, the current study aims to determine the prevalence of GI parasites in bats from the Shaktikhor area at the Chitwan district of Southcentral Nepal. From July 2018 to February 2019, a total of 60 fecal samples of bats (30 from frugivorous bats and 30 from the insectivorous bats) were collected. These samples were preserved at 2.5% potassium dichromate solution. The fecal examination was carried out by the direct wet mount, concentrations, acid-fast staining, and sporulation techniques. Overall results showed the prevalence rate of 80% GI parasites. The parasites detected in the insectivorous bats were Ascarid spp., Capillarid sp., Cryptosporidium sp., Eimeria spp., Entamoeba sp., Giardia sp., Hymenolepis spp., Isospora sp., Oxyurid sp., Strongyle, and Strongyloides sp. In contrast, Eimeria sp., Entamoeba sp., and Hymenolepis sp. were detected in the frugivorous bats. Based on a wide diversity of parasite richness and parasitic concurrency measured by the prevalence rates, we suggest that GI parasitism might be a threatening factor in the insectivorous bats in the current study area.
Collapse
|
13
|
Batista JMN, de Carvalho C, Pedro WA, Santana BN, Camargo VS, Ferrari ED, Nascimento IG, Meireles MV. Identification of Cryptosporidium bat genotypes XVI-XVIII in bats from Brazil. Parasitol Res 2019; 118:2183-2191. [PMID: 31076871 DOI: 10.1007/s00436-019-06342-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Cryptosporidiosis is an emergent zoonotic disease caused by the globally distributed protozoa Cryptosporidium spp. Although several Cryptosporidium studies related to humans and many animal species have been published, there are still limited studies on the epidemiology of Cryptosporidium infection in bats. The aim of this study was to determine the occurrence of Cryptosporidium spp. and to perform the molecular characterization of Cryptosporidium species and genotypes in fecal samples from bats in an urban area of the municipality of Araçatuba, state of São Paulo, Brazil. Nested PCR targeting the 18S rRNA, actin, and HSP-70 genes was performed to screen 141 fecal samples from bats and detected Cryptosporidium spp. in 16.3% (23/141) of the samples. Bidirectional sequencing identified three novel Cryptosporidium bat genotypes (XVI, XVII, and XVIII) and a new genotype (18SH) genetically similar to Cryptosporidium avium in six species of bats. This is the first report on the occurrence and molecular characterization of Cryptosporidium spp. in Brazilian bats. Zoonotic Cryptosporidium species were not found in fecal samples from bats living in an urban area in the municipality of Araçatuba, state of São Paulo, Brazil.
Collapse
Affiliation(s)
- Juliana Maria N Batista
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Cristiano de Carvalho
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Wagner A Pedro
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Bruna N Santana
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Vinícius S Camargo
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Elis D Ferrari
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Isabela G Nascimento
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Marcelo V Meireles
- Faculdade de Medicina Veterinária, Universidade Estadual Paulista (UNESP), Araçatuba, Clóvis Pestana St., 793, 16050-680, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
14
|
Li N, Ayinmode AB, Zhang H, Feng Y, Xiao L. Host-adapted Cryptosporidium and Enterocytozoon bieneusi genotypes in straw-colored fruit bats in Nigeria. Int J Parasitol Parasites Wildl 2019; 8:19-24. [PMID: 30560054 PMCID: PMC6289945 DOI: 10.1016/j.ijppaw.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Few data are available on the distribution and human infective potential of Cryptosporidium and Enterocytozoon bieneusi genotypes in bats. In this preliminary study, we collected 109 fecal specimens during April-July 2011 from a colony of straw-colored fruit bats (Eidolon helvum) in an urban park (Agodi Gardens) of Ibadan, Nigeria, and analyzed for Cryptosporidium spp., Giardia duodenalis and E. bieneusi using PCR targeting the small subunit rRNA gene, triosephosphate isomerase gene, and ribosomal internal transcribed spacer, respectively. Genotypes of these enteric parasites were determined by DNA sequencing of the PCR products. Altogether, 6 (5.5%), 0 and 16 (14.7%) specimens were positive for Cryptosporidium spp., G. duodenalis, and E. bieneusi, respectively. DNA sequence analysis of the PCR products indicated the presence of two novel Cryptosporidium genotypes named as bat genotype XIV (in 5 specimens) and bat genotype XV (in 1 specimen) and one known E. bieneusi genotype (Type IV in 1 specimen) and two novel E. bieneusi genotypes (Bat1 in 13 specimens and Bat2 in 2 specimens). In phylogenetic analysis of DNA sequences, the two novel Cryptosporidium genotypes were genetically related to Bat genotype II previously identified in fruit bats in China and Philippines, whereas the two novel E. bieneusi genotypes were genetically related to Group 5, which contains several known genotypes from primates. With the exception of Type IV, none of the Cryptosporidium and E. bieneusi genotypes found in bats in this study are known human pathogens. Thus, straw-colored fruit bats in Nigeria are mainly infected with host-adapted Cryptosporidium and E. bieneusi genotypes.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Adekunle B. Ayinmode
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hongwei Zhang
- Institute of Parasite Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, Henan, 450016, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
15
|
Plutzer J, Lassen B, Jokelainen P, Djurković-Djaković O, Kucsera I, Dorbek-Kolin E, Šoba B, Sréter T, Imre K, Omeragić J, Nikolić A, Bobić B, Živičnjak T, Lučinger S, Stefanović LL, Kučinar J, Sroka J, Deksne G, Keidāne D, Kváč M, Hůzová Z, Karanis P. Review of Cryptosporidium and Giardia in the eastern part of Europe, 2016. ACTA ACUST UNITED AC 2019; 23. [PMID: 29382412 PMCID: PMC5801338 DOI: 10.2807/1560-7917.es.2018.23.4.16-00825] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This paper reviews the current knowledge and understanding of Cryptosporidium spp. and Giardia spp. in humans, animals and the environment in 10 countries in the eastern part of Europe: Bosnia and Herzegovina, Croatia, Czech Republic, Estonia, Hungary, Latvia, Poland, Romania, Serbia and Slovenia. Methods: Published scientific papers and conference proceedings from the international and local literature, official national health service reports, national databases and doctoral theses in local languages were reviewed to provide an extensive overview on the epidemiology, diagnostics and research on these pathogens, as well as analyse knowledge gaps and areas for further research. Results: Cryptosporidium spp. and Giardia spp. were found to be common in eastern Europe, but the results from different countries are difficult to compare because of variations in reporting practices and detection methodologies used. Conclusion: Upgrading and making the diagnosis/detection procedures more uniform is recommended throughout the region. Public health authorities should actively work towards increasing reporting and standardising reporting practices as these prerequisites for the reported data to be valid and therefore necessary for appropriate control plans.
Collapse
Affiliation(s)
- Judit Plutzer
- Department of Water Hygiene, National Public Health Institute, Budapest, Hungary
| | - Brian Lassen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.,Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Pikka Jokelainen
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.,Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Olgica Djurković-Djaković
- Centre of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - István Kucsera
- Department of Parasitology, National Public Health Institute, Budapest, Hungary
| | - Elisabeth Dorbek-Kolin
- Department of Basic Veterinary Sciences and Population Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Barbara Šoba
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tamás Sréter
- National Food Chain Safety Office, Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Kálmán Imre
- Banat's University of Agricultural Sciences and Veterinary Medicine 'King Michael I of Romania' from Timişoara, Faculty of Veterinary Medicine, Department of Animal Production and Veterinary Public Health, Timişoara, Romania
| | - Jasmin Omeragić
- University of Sarajevo, Veterinary Faculty, Department of Parasitology and Invasive Diseases of Animals, Sarajevo, Bosnia and Herzegovina
| | - Aleksandra Nikolić
- Centre of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Branko Bobić
- Centre of Excellence for Food- and Vector-borne Zoonoses, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Tatjana Živičnjak
- Department for Parasitology and Parasitic Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Snježana Lučinger
- Department for Parasitology and Parasitic Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Jasmina Kučinar
- Department of Microbiology, Public Health Institute of Istrian Region, Pula, Croatia
| | - Jacek Sroka
- Department of Parasitology, National Veterinary Research Institute, Puławy, Poland
| | - Gunita Deksne
- Institute of Food Safety, Animal Health and Environment - 'BIOR', Riga, Latvia
| | - Dace Keidāne
- Faculty of Veterinary Medicine, Latvia University of Agriculture, Jelgava, Latvia
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Zuzana Hůzová
- Health Institute in Ústí nad Labem, Prague, Czech Republic
| | - Panagiotis Karanis
- Medical School, University of Cologne, Cologne, Germany.,State Key Laboratory for Plateau Ecology and Agriculture, Centre for Biomedicine and Infectious Diseases Qinghai University, Xining, China
| |
Collapse
|
16
|
Santana Lima VF, Rocha PA, Dias Silva MA, Beltrão-Mendes R, Ramos RAN, Giannelli A, Rinaldi L, Cringoli G, Estrela PC, Alves LC. Survey on helminths and protozoa of free-living Neotropical bats from Northeastern Brazil. Acta Trop 2018; 185:267-272. [PMID: 29883575 DOI: 10.1016/j.actatropica.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
Bats are considered important reservoirs of pathogens of veterinary and medical relevance worldwide. However, despite the increasing attention paid towards the central role of bats in the spreading of some zoonotic infections, studies on their own parasites remain patchy especially in Neotropical regions. Understanding the relationships occurring between bats and their pathogens is a crucial step to determine the implications undermining the ecology and biology of these animals. The present study aims to assess the endoparasitic fauna of Neotropical bats from Northeastern Brazil, with a particular focus on helminths and protozoa. From October 2016 to March 2017, 54 fresh faecal samples were collected in stable shelters inhabited by three different bat species (i.e., Molossus molossus, Myotis lavali and Noctilio albiventris). Samples were analysed using four different techniques (i.e., Centrifugal Sedimentation, Flotation Technique, Spontaneous Sedimentation Technique and FLOTAC®). A total of 96.29% (52/54) samples were positive for at least one gastrointestinal parasite and 11 different families were identified. In particular, 63.6% (7/11) of the families were of helminths and 36.4% (4/11) of protozoa. Helminths were classified into two different classes (Nematoda and Cestoda) and seven families, whereas the four protozoa classes detected (i.e., Coccidia, Gregarinomorphe, Lobosea and Zoomastigophora) into four families. Eggs of Ancylostomatidae and Hymenolepididae were the most abundan. The findings of this present study demonstrate that Neotropical bats from Northeastern Brazil are parasitized by a wide number of parasites, and some of them may have important implications for Public Health.
Collapse
|
17
|
Murakoshi F, Koyama K, Akasaka T, Horiuchi N, Kato K. Molecular and histopathological characterization of Cryptosporidium and Eimeria species in bats in Japan. J Vet Med Sci 2018; 80:1395-1399. [PMID: 30012934 PMCID: PMC6160890 DOI: 10.1292/jvms.18-0130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bats are potential reservoirs of Cryptosporidium and Eimeria. The genus Cryptosporidium infects various vertebrates and causes a diarrheal disease known as cryptosporidiosis. Many epidemiological studies in wild animals have been performed; however, most of them relied on only PCR-based detection because of the difficulty of performing pathological analyses. Accordingly, the natural host and pathogenicity of Cryptosporidium bat genotypes remain unclear. In this study, we captured Eptesicus nilssonii (Northern bats) in Hokkaido, Japan. Of the three intestinal samples obtained, two were positive for Cryptosporidium spp. and one was positive for Eimeria spp. The corresponding microorganisms were also confirmed histopathologically. We detected the novel Cryptosporidium bat genotype XII and Eimeria rioarribaensis in bat intestine.
Collapse
Affiliation(s)
- Fumi Murakoshi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Koyama
- Laboratory of Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Takumi Akasaka
- Laboratory of Wildlife Ecology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Noriyuki Horiuchi
- Laboratory of Veterinary Pathology, Research Center for Global Agro-Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
18
|
Bamaiyi PH, Redhuan NEM. Prevalence and risk factors for cryptosporidiosis: a global, emerging, neglected zoonosis. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.1004.493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Cryptosporidiosis is a zoonotic disease caused by the important parasitic diarrheal agent Cryptosporidium spp. Cryptosporidiosis occurs in all classes of animals and man with a rapidly expanding host range and increased importance since the occurrence of human immunodeficiency virus/acquired immunodeficiency syndrome in man.
Objectives
To review the global picture of cryptosporidiosis in man and animals with emphasis on prevalence and risk factors.
Methods
Current relevant literature on cryptosporidiosis was reviewed.
Results
Cryptosporidiosis is widely distributed and the risk factors vary from one region to another with hygiene and immune status as important risk factors.
Conclusions
Cryptosporidium spp. associated mortality has not only been reported in immune-compromised patients, but also in immune-competent patients. Yet in many countries not much attention is paid to the control and prevention of this infection in animals and man. The neglect of this disease despite the serious threat it poses to animals, their husbandry, and humans, has led the World Health Organization to list it among globally neglected diseases. To control and prevent this infection more effort needs to be directed at controlling the risk factors of the infection in man and animals.
Collapse
Affiliation(s)
- Pwaveno Huladeino Bamaiyi
- Faculty of Veterinary Medicine , Universiti Malaysia Kelantan , Kelantan 16100 , Malaysia
- Department of Public Health , School of Allied Health Sciences , Kampala International University , Kampala Uganda
| | | |
Collapse
|
19
|
Schiller SE, Webster KN, Power M. Detection of Cryptosporidium hominis and novel Cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. INFECTION GENETICS AND EVOLUTION 2016; 44:254-260. [DOI: 10.1016/j.meegid.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 11/17/2022]
|
20
|
Murakoshi F, Recuenco FC, Omatsu T, Sano K, Taniguchi S, Masangkay JS, Alviola P, Eres E, Cosico E, Alvarez J, Une Y, Kyuwa S, Sugiura Y, Kato K. Detection and molecular characterization of Cryptosporidium and Eimeria species in Philippine bats. Parasitol Res 2016; 115:1863-9. [PMID: 26833326 DOI: 10.1007/s00436-016-4926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
Abstract
The genus Cryptosporidium, which is an obligate intracellular parasite, infects various vertebrates and causes a diarrheal disease known as cryptosporidiosis. Bats are naturally infected with zoonotic pathogens; thus, they are potential reservoirs of parasites. We investigated the species and genotype distribution as well as prevalence of Cryptosporidium and Eimeria in Philippine bats. We captured and examined 45 bats; four were positive for Cryptosporidium spp. and seven were positive for Eimeria spp. We detected Cryptosporidium bat genotype II from Ptenochirus jagori. Three other Cryptosporidium sequences, detected from Rhinolophus inops, Cynopterus brachyotis, and Eonycteris spelaea, could not be classified as any known species or genotype; we therefore propose the novel genotype Cryptosporidium bat genotypes V, VI, and VII. Bat genotype V is associated with human cryptosporidiosis clade, and therefore, this genotype may be transmissible to humans. Among the Eimeria sequences, BE3 detected from Scotophilus kuhlii was classified with known bat and rodent clades; however, other sequences detected from C. brachyotis, E. spelaea, Rousettus amplexicaudatus, and R. inops could not be classified with known Eimeria species. These isolates might represent a new genotype. Our findings demonstrate that the bats of the Philippines represent a reservoir of multiple Cryptosporidium and Eimeria spp.
Collapse
Affiliation(s)
- Fumi Murakoshi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Frances C Recuenco
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo, 183-8509, Japan
| | - Satoshi Taniguchi
- Department of Virology I, Special Pathogens Laboratory, National Institute of Infectious Diseases, Musashimurayama, Tokyo, 208-0011, Japan
| | - Joseph S Masangkay
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - Philip Alviola
- Museum of Natural History, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - Eduardo Eres
- Museum of Natural History, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - Edison Cosico
- Museum of Natural History, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - James Alvarez
- Museum of Natural History, University of the Philippines Los Baños, Los Baños, Laguna, 4031, Philippines
| | - Yumi Une
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shigeru Kyuwa
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuki Sugiura
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
21
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|