1
|
Sokolov S, Kalmykov A, Frolov E, Atopkin D. Taxonomic myths and phylogenetic realities in the systematics of the Opisthorchiidae (Trematoda). ZOOL SCR 2021. [DOI: 10.1111/zsc.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey Sokolov
- A.N. Severtsov Institute of Ecology and Evolution Moscow Russia
| | | | - Evgeniy Frolov
- Institute of Fisheries and Oceanography Sakhalin Branch (SakhNIRO) Yuzhno‐Sakhalinsk Russia
| | - Dmitry Atopkin
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of the RAS Vladivostok Russia
- Institute of World Ocean Far Eastern Federal University Vladivostok Russia
| |
Collapse
|
2
|
Duflot M, Gay M, Midelet G, Kania PW, Buchmann K. Morphological and molecular identification of Cryptocotyle lingua metacercariae isolated from Atlantic cod (Gadus morhua) from Danish seas and whiting (Merlangius merlangus) from the English Channel. Parasitol Res 2021; 120:3417-3427. [PMID: 34448921 PMCID: PMC8460567 DOI: 10.1007/s00436-021-07278-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Trematode larvae (metacercariae) causing black spot disease occur frequently in gills, fins, skin and the superficial muscle layers of marine fish. Species within the genus Cryptocotyle Lühe, 1899 are frequently associated with this disease. Descriptions of the metacercarial stage are relatively limited and none has hitherto been reported from fish from the English Channel. The present study reports the morphological and molecular identifications of encysted black spot-inducing parasites from whiting (Merlangius merlangus) and Atlantic cod (Gadus morhua) caught respectively from the north coast of France (English Channel) and from Danish sea waters. Metacercariae were characterised morphologically based on microscopic observations and molecularly using Sanger sequencing of fragments of the mitochondrial cox1 gene and rDNA ITS region. Morphological data were compared with available data in the literature. Phylogenetic trees including reference sequences were built to confirm morphological and molecular identifications. This survey constitutes the first description of C. lingua metacercariae in the English Channel ecosystems.
Collapse
Affiliation(s)
- Maureen Duflot
- Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France.,University of Littoral Côte d'Opale, Boulogne-sur-Mer, France
| | - Mélanie Gay
- Laboratory for Food Safety, ANSES, Boulogne-sur-Mer, France.
| | | | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
A review of molecular identification tools for the opisthorchioidea. J Microbiol Methods 2021; 187:106258. [PMID: 34082051 DOI: 10.1016/j.mimet.2021.106258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
The superfamily Opisthorchioidea encompasses the families Cryptogonimidae, Opisthorchiidae and Heterophyidae. These parasites depend on the aquatic environment and include marine and freshwater species. Some species, such as Clonorchis sinensis and Opisthorchis viverrini, have a high impact on public health with millions of infected people worldwide and have thus been the object of many studies and tool developments. However, for many species, tools for identification and detection are scarce. Although morphological descriptions have been used and are still important, they are often not efficient on the immature stages of these parasites. Thus, during the past few decades, molecular approaches for parasite identification have become commonplace. These approaches are efficient, quick and reliable. Nonetheless, for some parasites of the superfamily Opisthorchioidea, reference genomic data are limited. This study reviews available genetic data and molecular tools for the identification and/or the detection of this superfamily. Molecular data on this superfamily are mostly based on mitochondrial and ribosomal gene sequence analyses, especially on the cytochrome c oxidase subunit 1 gene and internal transcribed spacer regions respectively.
Collapse
|
4
|
Xu G, Zhu P, Zhu W, Ma B, Li X, Li W. Characterization of the complete mitochondrial genome of Notocotylus sp. (Trematoda, Notocotylidae) and its phylogenetic implications. Parasitol Res 2021; 120:1291-1301. [PMID: 33559042 DOI: 10.1007/s00436-021-07075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
The parasite genus Notocotylus comprises at least 50 species colonizing mainly aquatic birds and to a lesser extent some mammals, particularly rodents. Here trematode specimens isolated from a wild black swan were characterized and identified to belong to the genus Notocotylus via morphological and molecular analyses. Phylogenetic position of the isolate among other trematodes was determined based on the ribosomal internal transcribed spacer (ITS) 1 and 2. The complete mitochondrial (mt) genome of the isolate was amplified, sequenced, assembled, analyzed, and annotated. The isolate has an AT-rich mt genome (14,317 bp in length) that comprises 12 protein-coding genes (PCGs), 22 transfer RNA genes, and two ribosomal RNA genes. The Notocotylus isolate identified in this study has relatively high mt genome sequence identity and identical gene content and arrangement to a known Notocotylidae species, Ogmocotyle sikae. The isolate formed a genetic clade with O. sikae in phylogenetic analysis of the concatenated PCG amino acid sequences. Compared to the ITS, the trematode mt genome appears more informative for resolving high-level phylogenies. To the best of our knowledge, this is the first study exploring the complete mt genome for the genus Notocotylus, and it offers a novel genomic resource that has important implications for trematode phylogenetics.
Collapse
Affiliation(s)
- Guoliang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.,Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Peng Zhu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weining Zhu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Ma
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoyun Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
5
|
Suleman, Muhammad N, Khan MS, Tkach VV, Ullah H, Ehsan M, Ma J, Zhu XQ. Mitochondrial genomes of two eucotylids as the first representatives from the superfamily Microphalloidea (Trematoda) and phylogenetic implications. Parasit Vectors 2021; 14:48. [PMID: 33446249 PMCID: PMC7807500 DOI: 10.1186/s13071-020-04547-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The Eucotylidae Cohn, 1904 (Superfamily: Microphalloidea), is a family of digeneans parasitic in kidneys of birds as adults. The group is characterized by the high level of morphological similarities among genera and unclear systematic value of morphological characters traditionally used for their differentiation. In the present study, we sequenced the complete or nearly complete mitogenomes (mt genome) of two eucotylids representing the genera Tamerlania (T. zarudnyi) and Tanaisia (Tanaisia sp.). They represent the first sequenced mt genomes of any member of the superfamily Microphalloidea. Methods A comparative mitogenomic analysis of the two newly sequenced eucotylids was conducted for the investigation of mitochondrial gene arrangement, contents and genetic distance. Phylogenetic position of the family Eucotylidae within the order Plagiorchiida was examined using nucleotide sequences of mitochondrial protein-coding genes (PCGs) plus RNAs using maximum likelihood (ML) and Bayesian inference (BI) methods. BI phylogeny based on concatenated amino acids sequences of PCGs was also conducted to determine possible effects of silent mutations. Results The complete mt genome of T. zarudnyi was 16,188 bp and the nearly complete mt genome of Tanaisia sp. was 13,953 bp in length. A long string of additional amino acids (about 123 aa) at the 5′ end of the cox1 gene in both studied eucotylid mt genomes has resulted in the cox1 gene of eucotylids being longer than in all previously sequenced digeneans. The rrnL gene was also longer than previously reported in any digenean mitogenome sequenced so far. The TΨC and DHU loops of the tRNAs varied greatly between the two eucotylids while the anticodon loop was highly conserved. Phylogenetic analyses based on mtDNA nucleotide and amino acids sequences (as a separate set) positioned eucotylids as a sister group to all remaining members of the order Plagiorchiida. Both ML and BI phylogenies revealed the paraphyletic nature of the superfamily Gorgoderoidea and the suborder Xiphidiata. Conclusions The average sequence identity, combined nucleotide diversity and Kimura-2 parameter distances between the two eucotylid mitogenomes demonstrated that atp6, nad5, nad4L and nad6 genes are better markers than the traditionally used cox1 or nad1 for the species differentiation and population-level studies of eucotylids because of their higher variability. The position of the Dicrocoeliidae and Eucotylidae outside the clade uniting other xiphidiatan trematodes strengthened the argument for the need for re-evaluation of the taxonomic content of the Xiphidiata.![]()
Collapse
Affiliation(s)
- Suleman
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.,Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Nehaz Muhammad
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Mian Sayed Khan
- Department of Zoology, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202-9019, USA.
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Shanghai, 20041, People's Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|