1
|
Wang Q, Wang Y, Wang J, Tian W, Zhang N, Long S, Wang S. Functional dissection of prenyltransferases reveals roles in endocytosis and secretory vacuolar sorting in type 2-ME49 strain of Toxoplasma gondii. Virulence 2024; 15:2432681. [PMID: 39569525 PMCID: PMC11601059 DOI: 10.1080/21505594.2024.2432681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024] Open
Abstract
Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in Toxoplasma gondii (T.gondii). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in T. gondii. However, the cellular effects of prenyltransferases on type 2-ME49 strain of Toxoplasma are largely unknown. To address this gap, CRISPR/Cas9-based gene-editing technology was employed to construct conditional knockdown strains of prenyltransferases in ME49 strain. Subsequent observation of ingestion ability of host cytosolic molecules (e.g, green fluorescent protein [GFP]) and status of secretory vacuolar sorting post-knockdown of prenyltransferases revealed significant findings. Our study demonstrated that degradation of FTase and GGTase-II notably affected the trafficking of endocytic GFP and vacuolar secretory trafficking to rhoptry bulb. Additionally, depletion of GGTase-II led to disordered endoplasmic reticulum and microtubules, as well as impaired gliding motility. The integrity of mitochondrion was damaged after degradation of GGTase-I. These findings underscore the critical functions of prenyltransferases in endocytosis and secretory vacuolar sorting in ME49 strain of T. gondii, thereby enhancing our understanding of prenyltransferases as potential drug targets.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanfeng Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jinghui Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Wenjie Tian
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Naiwen Zhang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, PR China
| | - Shaojun Long
- School of public health, Sun Yat-sen University, Shenzhen, Guangdong, PR China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
2
|
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023; 12:pathogens12050679. [PMID: 37242349 DOI: 10.3390/pathogens12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Toxoplasma gondii is an obligatory intracellular protozoan in the family Apicomplexa. It infects almost one-third of the world's population and causes toxoplasmosis, a prevalent disease. The parasite's egress from infected cells is a key step in the pathology caused by T. gondii. Moreover, T. gondii's continuous infection relies heavily on its capacity to migrate from one cell to another. Many pathways are involved in T. gondii egress. Individual routes may be modified to respond to various environmental stimuli, and many paths can converge. Regardless of the stimuli, the relevance of Ca2+ as a second messenger in transducing these signals, and the convergence of various signaling pathways in the control of motility and, ultimately, egress, is well recognized. This review attempts to outline intra- and extra-parasitic regulators that mediate T. gondii egress, and provides insight into potential clinical interventions and research.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Müller J, Boubaker G, Imhof D, Hänggeli K, Haudenschild N, Uldry AC, Braga-Lagache S, Heller M, Ortega-Mora LM, Hemphill A. Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin. Biomedicines 2022; 10:biomedicines10112675. [PMID: 36359195 PMCID: PMC9687860 DOI: 10.3390/biomedicines10112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Noé Haudenschild
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
4
|
A comprehensive ultrastructural analysis of the Toxoplasma gondii cytoskeleton. Parasitol Res 2022; 121:2065-2078. [PMID: 35524789 DOI: 10.1007/s00436-022-07534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
The invasive nature of Toxoplasma gondii is closely related to the properties of its cytoskeleton, which is constituted by a group of diverse structural and dynamic components that play key roles during the infection. Even if there have been numerous reports about the composition and function of the Toxoplasma cytoskeleton, the ultrastructural organization of some of these components has not yet been fully characterized. This study used a detergent extraction process and several electron microscopy contrast methods that allowed the successful isolation of the cytoskeleton of Toxoplasma tachyzoites. This process allowed for the conservation of the structures known to date and several new structures that had not been characterized at the ultrastructural level. For the first time, characterization was achieved for a group of nanofibers that allow the association between the polar apical ring and the conoid as well as the ultrastructural characterization of the apical cap of the parasite. The ultrastructure and precise location of the peripheral rings were also found, and the annular components of the basal complex were characterized. Finally, through immunoelectron microscopy, the exact spatial location of the subpellicular network inside the internal membrane system that forms the pellicle was found. The findings regarding these new structures contribute to the knowledge concerning the biology of the Toxoplasma gondii cytoskeleton. They also provide new opportunities in the search for therapeutic strategies aimed at these components with the purpose of inhibiting invasion and thus parasitism.
Collapse
|
5
|
Orosz F. Apicortin, a Constituent of Apicomplexan Conoid/Apical Complex and Its Tentative Role in Pathogen-Host Interaction. Trop Med Infect Dis 2021; 6:tropicalmed6030118. [PMID: 34209186 PMCID: PMC8293464 DOI: 10.3390/tropicalmed6030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
In 2009, apicortin was identified in silico as a characteristic protein of apicomplexans that also occurs in the placozoa, Trichoplax adhaerens. Since then, it has been found that apicortin also occurs in free-living cousins of apicomplexans (chromerids) and in flagellated fungi. It contains a partial p25-α domain and a doublecortin (DCX) domain, both of which have tubulin/microtubule binding properties. Apicortin has been studied experimentally in two very important apicomplexan pathogens, Toxoplasma gondii and Plasmodium falciparum. It is localized in the apical complex in both parasites. In T. gondii, apicortin plays a key role in shaping the structure of a special tubulin polymer, conoid. In both parasites, its absence or downregulation has been shown to impair pathogen–host interactions. Based on these facts, it has been suggested as a therapeutic target for treatment of malaria and toxoplasmosis.
Collapse
Affiliation(s)
- Ferenc Orosz
- Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
6
|
Dehydroepiandrosterone Effect on Toxoplasma gondii: Molecular Mechanisms Associated to Parasite Death. Microorganisms 2021; 9:microorganisms9030513. [PMID: 33801356 PMCID: PMC8000356 DOI: 10.3390/microorganisms9030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date, the role of DHEA on T. gondii has not been explored. Here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and the passive invasion process. Two-dimensional (2D) SDS-PAGE analysis revealed that in the presence of the hormone, a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.
Collapse
|
7
|
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M, Marion S. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 2020; 16:e1008106. [PMID: 32463830 PMCID: PMC7255593 DOI: 10.1371/journal.ppat.1008106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells. Toxoplasma gondii (T. gondii) is a highly prevalent parasite infecting a wide range of animals as well as humans. T. gondii secretes numerous virulent factors contained in specific organelles, termed the rhoptries, micronemes and dense granules. These factors are released upon host cell recognition and enable parasite invasion and subsequent development into an intracellular vacuole. In particular, dense granules contain critical effectors that modulate intrinsic defenses of infected host cells ensuring parasite survival and dissemination. The mechanisms regulating dense granule secretion have not been elucidated. In this study, we unraveled a novel role for the T. gondii GTPase Rab11A in promoting dense granule transport along the parasite cytoskeleton and their content release into the vacuolar space during parasite replication. We also found that T. gondii Rab11A regulates extracellular parasite motility and adhesion to host cells suggesting a broader role in distinct secretory pathways essential for parasite virulence.
Collapse
Affiliation(s)
- Kannan Venugopal
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Javier Periz
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes—Sorbonne Paris Cité, France, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Markus Meissner
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
8
|
Duong HD, Appiah-Kwarteng C, Takashima Y, Aye KM, Nagayasu E, Yoshida A. A novel luciferase-linked antibody capture assay (LACA) for the diagnosis of Toxoplasma gondii infection in chickens. Parasitol Int 2020; 77:102125. [PMID: 32311471 DOI: 10.1016/j.parint.2020.102125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that causes the most common parasitic zoonosis worldwide in multiples species of mammals and birds. Although free-range chickens may play a role as an important reservoir for T. gondii, there is no reliable and commercially available diagnostic test for this disease in chickens. In this study, we aimed to develop a novel Luciferase-linked Antibody Capture Assay (LACA) for the serodiagnosis of Toxoplasma infection in chickens. Recombinant nanoluciferase fused-T. gondii dense granule antigen 8 (rNluc-GRA8) was produced and applied to LACA assay as a diagnostic antigen. GRA8-LACA was tested with the sera from uninfected and experimentally infected chickens with T. gondii and other parasitic pathogens and showed unexpectedly high sensitivity (90.5%) and specificity (95.4%). Interestingly, E. coli lysate expressing rNluc-GRA8 could be applied in GRA8-LACA with 85.7% sensitivity and an increased specificity (96.9%) that gave better diagnostic performance compared to conventional ELISA. We applied our diagnostic system to examine 267 free-range chicken sera collected from 12 farms and 100 closed-house broiler chicken sera from local poultry abattoirs. The overall seroprevalence of toxoplasmosis in free-range chickens was 10.9% (95% CI: 10.6%-11.1%), while no positive case was found in broiler chickens. GRA8-LACA could be a useful diagnostic technique for T. gondii infection in chickens. The detection of T. gondii seropositive chickens in this study warns a potential risk of Toxoplasma transmission by the consumption of raw or undercooked chicken meat.
Collapse
Affiliation(s)
- Hieu Duc Duong
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | - Cornelia Appiah-Kwarteng
- Department of Veterinary Parasitology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yasuhiro Takashima
- Department of Veterinary Parasitology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Khin Myo Aye
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Parasitology Research Division, Department of Medical Research, Yangon, Myanmar
| | - Eiji Nagayasu
- Division of Parasitology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Yoshida
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan; Centre for Animal Diseases Control (CADIC), University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
9
|
Guevara RB, Fox BA, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Regulate Maturation of the Cyst Wall. mSphere 2020; 5:e00851-19. [PMID: 31941814 PMCID: PMC6968655 DOI: 10.1128/msphere.00851-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
After differentiation is triggered, the tachyzoite-stage Toxoplasma gondii parasitophorous vacuole membrane (PVM) has been hypothesized to transition into the cyst membrane that surrounds the cyst wall and encloses bradyzoites. Here, we tracked the localization of two PVM dense granule (GRA) proteins (GRA5 and GRA7) after in vitro differentiation of the tachyzoite stage parasitophorous vacuole into the mature cyst. GRA5 and GRA7 were visible at the cyst periphery at 6 h and at all later times after differentiation, suggesting that the PVM remained intact as it transitioned into the cyst membrane. By day 3 postdifferentiation, GRA5 and GRA7 were visible in a continuous pattern at the cyst periphery. In mature 7- and 10-day-old cysts permeabilized with a saponin pulse, GRA5 and GRA7 were localized to the cyst membrane and the cyst wall regions. Cysts at different stages of cyst development exhibited differential susceptibility to saponin permeabilization, and, correspondingly, saponin selectively removed GRA5 from the cyst membrane and cyst wall region in 10-day-old cysts. GRA5 and GRA7 were localized at the cyst membrane and cyst wall region at all times after differentiation of the parasitophorous vacuole, which supports a previous model proposing that the PVM develops into the cyst membrane. In addition, evaluation of Δgra3, Δgra5, Δgra7, Δgra8, and Δgra14 mutants revealed that PVM-localized GRAs were crucial to support the normal rate of accumulation of cyst wall proteins at the cyst periphery.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. Once host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Furthermore, how the cyst membrane and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma parasitophorous vacuole membrane (PVM) dense granules (GRA) proteins during cyst development in vitro. PVM-localized GRA5 and GRA7 were found at the cyst membrane and cyst wall region throughout cyst development, suggesting that the PVM remains intact and develops into the cyst membrane. In addition, our results show that genetic deletion of PVM GRAs reduced the rate of accumulation of cyst wall cargo at the cyst periphery and suggest that PVM-localized GRAs mediate the development and maturation of the cyst wall and cyst membrane.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
10
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|