1
|
Nair A, Harshith CY, Narjala A, Shivaprasad PV. Begomoviral βC1 orchestrates organellar genomic instability to augment viral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:934-950. [PMID: 36919198 DOI: 10.1111/tpj.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (βC1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral βC1 directly interferes with the host plastid homeostasis. βC1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that βC1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.
Collapse
Affiliation(s)
- Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Anushree Narjala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
- SASTRA University, Thirumalaisamudram, Thanjavur, 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
2
|
Chakraborty C, Das A, Basak C, Roy S, Agarwal T, Ray S. Chloroplastic RecA protein from Physcomitrium patens is able to repair chloroplastic DNA damage by homologous recombination but unable to repair nuclear DNA damage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2057-2067. [PMID: 36573145 PMCID: PMC9789214 DOI: 10.1007/s12298-022-01264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Plants are unavoidably exposed to a range of environmental stress factors throughout their life. In addition to the external environmental factors, the production of reactive oxygen species as a product of the cellular metabolic process often causes DNA damage and thus affects genome stability. Homologous recombination (HR) is an essential mechanism used for DNA damage repair that helps to maintain genome integrity. Here we report that the recombinase, PpRecA2, a bacterial RecA homolog from moss Physcomitrium patens can partially complement the function of Escherichia coli RecA in the bacterial system. Transcript analysis showed induced expression of PpRecA2 upon experiencing DNA damaging stressors indicating its involvement in DNA damage sensing and repair mechanism. Over-expressing the chloroplast localizing PpRecA2 confers protection to the chloroplast genome against DNA damage by enhancing the chloroplastic HR frequency in transgenic tobacco plants. Although it fails to protect against nuclear DNA damage when engineered for nuclear localization due to the non-availability of interacting partners. Our results indicate that the chloroplastic HR repair mechanism differs from the nucleus, where chloroplastic HR involves RecA as a key player that resembles the bacterial system. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01264-7.
Collapse
Affiliation(s)
- Chandrima Chakraborty
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Arup Das
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Chandra Basak
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Shuddhanjali Roy
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Tanushree Agarwal
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Sudipta Ray
- Plant Functional Genomics Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| |
Collapse
|
3
|
Kaushik V, Tiwari M, Tiwari V. Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. Int J Biol Macromol 2022; 217:931-943. [PMID: 35905765 DOI: 10.1016/j.ijbiomac.2022.07.176] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Antibiotics have a primary mode of actions, and most of them have a common secondary mode of action via reactive species (ROS and RNS) mediated DNA damage. Bacteria have been able to tolerate this DNA damage by SOS (Save-Our-Soul) response. RecA is the universal essential key protein of the DNA damage mediated SOS repair in various bacteria including ESKAPE pathogens. In addition, antibiotics also triggers activation of various other bacterial mechanisms such as biofilm formation, host dependent responses, persister subpopulation formation. These supporting the survival of bacteria in unfriendly natural conditions i.e. antibiotic presence. This review highlights the detailed mechanism of RecA mediated SOS response as well as role of RecA-LexA interaction in SOS response. The review also focuses on inter-connection between DNA damage repair pathway (like SOS response) with other survival mechanisms of bacteria such as host mediated RecA induction, persister-SOS interplay, and biofilm-SOS interplay. This understanding of inter-connection of SOS response with different other survival mechanisms will prove beneficial in targeting the SOS response for prevention and development of therapeutics against recalcitrant bacterial infections. The review also covers the significance of RecA as a promising potent therapeutic target for hindering bacterial SOS response in prevailing successful treatments of bacterial infections and enhancing the conventional antibiotic efficiency.
Collapse
Affiliation(s)
- Vaishali Kaushik
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
4
|
Meng C, Yang M, Wang Y, Chen C, Sui N, Meng Q, Zhuang K, Lv W. SlWHY2 interacts with SlRECA2 to maintain mitochondrial function under drought stress in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110674. [PMID: 33218640 DOI: 10.1016/j.plantsci.2020.110674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 05/24/2023]
Abstract
Drought stress in plants leads to inhibition of photosynthesis and respiration, accumulation of reactive oxygen species (ROS), and reprogramming of gene expression. Here, we established that the tomato (Solanum lycopersicum) WHIRLY2 (SlWHY2) gene, which encodes a mitochondrial single-stranded DNA-binding protein, was significantly induced by drought stress. Under drought conditions, SlWHY2 RNAi plants showed more wilting and lower fresh weight, chlorophyll content, quantum yield of photosystem I (PSI; YI), and maximal photochemical efficiency of PSII (Fv/Fm) than the wild type (WT). Drought treatment also caused the SlWHY2 RNAi lines to accumulate more ROS than the WT, and the silenced lines had lower AOX (alternative oxidase) activity. As expected, the mitochondrial membrane potential (MMP) was less stable in the SlWHY2 RNAi lines. The expression levels of seven genes in the mitochondrial genome (SYCF15, NAD7, NAD4, COS2, COX1, COX2, and COX3) were decreased even more in the SlWHY2 RNAi lines than they were in the WT under drought stress. SlWHY2 interacted directly in vivo and in vitro with SlRECA2, a mitochondrial recombinase A that is important for mitochondrial DNA recombination and repair. These results suggest that SlWHY2 plays an essential role in maintaining mitochondrial function and enhancing drought tolerance in tomato.
Collapse
Affiliation(s)
- Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Yixuan Wang
- Key Lab of Soil & Water Conservation and Desertification Combating, College of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China.
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China.
| |
Collapse
|
5
|
Wynn E, Purfeerst E, Christensen A. Mitochondrial DNA Repair in an Arabidopsis thaliana Uracil N-Glycosylase Mutant. PLANTS (BASEL, SWITZERLAND) 2020; 9:E261. [PMID: 32085412 PMCID: PMC7076443 DOI: 10.3390/plants9020261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments.
Collapse
Affiliation(s)
- Emily Wynn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Emma Purfeerst
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- Athletics Department, Bethany Lutheran College, Mankato, MN 56001, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
| |
Collapse
|
6
|
Factors Affecting Organelle Genome Stability in Physcomitrella patens. PLANTS 2020; 9:plants9020145. [PMID: 31979236 PMCID: PMC7076466 DOI: 10.3390/plants9020145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023]
Abstract
Organelle genomes are essential for plants; however, the mechanisms underlying the maintenance of organelle genomes are incompletely understood. Using the basal land plant Physcomitrella patens as a model, nuclear-encoded homologs of bacterial-type homologous recombination repair (HRR) factors have been shown to play an important role in the maintenance of organelle genome stability by suppressing recombination between short dispersed repeats. In this review, I summarize the factors and pathways involved in the maintenance of genome stability, as well as the repeats that cause genomic instability in organelles in P. patens, and compare them with findings in other plant species. I also discuss the relationship between HRR factors and organelle genome structure from the evolutionary standpoint.
Collapse
|
7
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
8
|
Plant Organelle Genome Replication. PLANTS 2019; 8:plants8100358. [PMID: 31546578 PMCID: PMC6843274 DOI: 10.3390/plants8100358] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and chloroplasts perform essential functions in respiration, ATP production, and photosynthesis, and both organelles contain genomes that encode only some of the proteins that are required for these functions. The proteins and mechanisms for organelle DNA replication are very similar to bacterial or phage systems. The minimal replisome may consist of DNA polymerase, a primase/helicase, and a single-stranded DNA binding protein (SSB), similar to that found in bacteriophage T7. In Arabidopsis, there are two genes for organellar DNA polymerases and multiple potential genes for SSB, but there is only one known primase/helicase protein to date. Genome copy number varies widely between type and age of plant tissues. Replication mechanisms are only poorly understood at present, and may involve multiple processes, including recombination-dependent replication (RDR) in plant mitochondria and perhaps also in chloroplasts. There are still important questions remaining as to how the genomes are maintained in new organelles, and how genome copy number is determined. This review summarizes our current understanding of these processes.
Collapse
|
9
|
Guo Z, Tan H, Lv Z, Ji Q, Huang Y, Liu J, Chen D, Diao Y, Si J, Zhang L. Targeted expression of Vitreoscilla hemoglobin improves the production of tropane alkaloids in Hyoscyamus niger hairy roots. Sci Rep 2018; 8:17969. [PMID: 30568179 PMCID: PMC6299274 DOI: 10.1038/s41598-018-36156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023] Open
Abstract
Under hypoxic conditions, the expression of Vitreoscilla hemoglobin (VHb) in plants is proposed to increase the productivity of certain oxygen-requiring metabolic pathways by promoting the delivery of oxygen. Tropane alkaloids (TAs) are a class of important plant secondary metabolites with significant medicinal value; the final step in their biosynthesis requires oxygen. Whether heterologous expression of VHb, especially in different subcellular compartments, can accelerate the accumulation of TAs is not known. Herein, the effect of heterologous expression of VHb in different subcellular locations on the TA profile of H. niger hairy roots was investigated. The targeted expression of VHb in the plastids (using pVHb-RecA construct), led to the accumulation of 197.68 μg/g hyoscyamine in the transgenic H. niger hairy roots, which was 1.25-fold of the content present in the lines in which VHb expression was not targeted, and 3.66-fold of that present in the wild type (WT) lines. The content of scopolamine was increased by 2.20- and 4.70-fold in the pVHb-RecA transgenic lines compared to that in the VHb transgenic and WT lines. Our results demonstrate that VHb could stimulate the accumulation of TAs in the transgenic H. niger hairy roots. Quantitative RT-PCR analysis revealed that the expression of key genes involved in TA biosynthesis increased significantly in the VHb transgenic lines. We present the first description of a highly efficient strategy to increase TA content in H. niger. Moreover, our results also shed light on how the production of desired metabolites can be efficiently enhanced by using more accurate and appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Zhiying Guo
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zongyou Lv
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Qian Ji
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Yuxiang Huang
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yong Diao
- School of Medicine, School of Biomedical Science, Huaqiao University, Quanzhou, Fujian, 362021, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China. .,Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
10
|
Odahara M, Kobayashi Y, Shikanai T, Nishimura Y. Dynamic Interplay between Nucleoid Segregation and Genome Integrity in Chlamydomonas Chloroplasts. PLANT PHYSIOLOGY 2016; 172:2337-2346. [PMID: 27756821 PMCID: PMC5129732 DOI: 10.1104/pp.16.01533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The chloroplast (cp) genome is organized as nucleoids that are dispersed throughout the cp stroma. Previously, a cp homolog of bacterial recombinase RecA (cpRECA) was shown to be involved in the maintenance of cp genome integrity by repairing damaged chloroplast DNA and by suppressing aberrant recombination between short dispersed repeats in the moss Physcomitrella patens Here, overexpression and knockdown analysis of cpRECA in the green alga Chlamydomonas reinhardtii revealed that cpRECA was involved in cp nucleoid dynamics as well as having a role in maintaining cp genome integrity. Overexpression of cpRECA tagged with yellow fluorescent protein or hemagglutinin resulted in the formation of giant filamentous structures that colocalized exclusively to chloroplast DNA and cpRECA localized to cp nucleoids in a heterogenous manner. Knockdown of cpRECA led to a significant reduction in cp nucleoid number that was accompanied by nucleoid enlargement. This phenotype resembled those of gyrase inhibitor-treated cells and monokaryotic chloroplast mutant cells and suggested that cpRECA was involved in organizing cp nucleoid dynamics. The cp genome also was destabilized by induced recombination between short dispersed repeats in cpRECA-knockdown cells and gyrase inhibitor-treated cells. Taken together, these results suggest that cpRECA and gyrase are both involved in nucleoid dynamics and the maintenance of genome integrity and that the mechanisms underlying these processes may be intimately related in C. reinhardtii cps.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Yusuke Kobayashi
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (M.O., Y.K., T.S., Y.N.); and
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan (M.O.)
| |
Collapse
|
11
|
Hofstatter PG, Tice AK, Kang S, Brown MW, Lahr DJG. Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages. Proc Biol Sci 2016; 283:20161453. [PMID: 27708147 PMCID: PMC5069510 DOI: 10.1098/rspb.2016.1453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Recombinase enzymes promote DNA repair by homologous recombination. The genes that encode them are ancestral to life, occurring in all known dominions: viruses, Eubacteria, Archaea and Eukaryota. Bacterial recombinases are also present in viruses and eukaryotic groups (supergroups), presumably via ancestral events of lateral gene transfer. The eukaryotic recA genes have two distinct origins (mitochondrial and plastidial), whose acquisition by eukaryotes was possible via primary (bacteria-eukaryote) and/or secondary (eukaryote-eukaryote) endosymbiotic gene transfers (EGTs). Here we present a comprehensive phylogenetic analysis of the recA genealogy, with substantially increased taxonomic sampling in the bacteria, viruses, eukaryotes and a special focus on the key eukaryotic supergroup Amoebozoa, earlier represented only by Dictyostelium We demonstrate that several major eukaryotic lineages have lost the bacterial recombinases (including Opisthokonta and Excavata), whereas others have retained them (Amoebozoa, Archaeplastida and the SAR-supergroups). When absent, the bacterial recA homologues may have been lost entirely (secondary loss of canonical mitochondria) or replaced by other eukaryotic recombinases. RecA proteins have a transit peptide for organellar import, where they act. The reconstruction of the RecA phylogeny with its EGT events presented here retells the intertwined evolutionary history of eukaryotes and bacteria, while further illuminating the events of endosymbiosis in eukaryotes by expanding the collection of widespread genes that provide insight to this deep history.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel J G Lahr
- Department of Zoology, Universidade de São Paulo/USP, Cidade Universitária, São Paulo, Brazil
| |
Collapse
|
12
|
Cupp JD, Nielsen BL. Minireview: DNA replication in plant mitochondria. Mitochondrion 2014; 19 Pt B:231-7. [PMID: 24681310 PMCID: PMC4177014 DOI: 10.1016/j.mito.2014.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Higher plant mitochondrial genomes exhibit much greater structural complexity compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms.
Collapse
Affiliation(s)
- John D Cupp
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| | - Brent L Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
13
|
Gualberto JM, Kühn K. DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion 2014; 19 Pt B:323-8. [DOI: 10.1016/j.mito.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/24/2022]
|
14
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
15
|
Abstract
Plant mitochondrial genomes are notorious for their large and variable size, nonconserved open reading frames of unknown function, and high rates of rearrangement. Paradoxically, the mutation rates are very low. However, mutation rates can only be measured in sequences that can be aligned--a very small part of plant mitochondrial genomes. Comparison of the complete mitochondrial genome sequences of two ecotypes of Arabidopsis thaliana allows the alignment of noncoding as well as coding DNA and estimation of the mutation rates in both. A recent chimeric duplication is also analyzed. A hypothesis is proposed that the mechanisms of plant mitochondrial DNA repair account for these features and includes different mechanisms in transcribed and nontranscribed regions. Within genes, a bias toward gene conversion would keep measured mutation rates low, whereas in noncoding regions, break-induced replication (BIR) explains the expansion and rearrangements. Both processes are types of double-strand break repair, but enhanced second-strand capture in transcribed regions versus BIR in nontranscribed regions can explain the two seemingly contradictory features of plant mitochondrial genome evolution--the low mutation rates in genes and the striking expansions of noncoding sequences.
Collapse
Affiliation(s)
- Alan C Christensen
- School of Biological Sciences, E249 Beadle Center, University of Nebraska-Lincoln, USA.
| |
Collapse
|
16
|
Janicka S, Kühn K, Le Ret M, Bonnard G, Imbault P, Augustyniak H, Gualberto JM. A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:423-435. [PMID: 22762281 DOI: 10.1111/j.1365-313x.2012.05097.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant mitochondrial DNA-binding protein ODB1 was identified from a mitochondrial extract after DNA-affinity purification. ODB1 (organellar DNA-binding protein 1) co-purified with WHY2, a mitochondrial member of the WHIRLY family of plant-specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52-1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo-protein complexes. Both proteins co-immunoprecipitated in a DNA-dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single-stranded than for double-stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co-immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52-like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild-type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology-mediated recombination. These observations identify ODB1 as a further component of homologous recombination-dependent DNA repair in plant mitochondria.
Collapse
Affiliation(s)
- Sabina Janicka
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Miller-Messmer M, Kühn K, Bichara M, Le Ret M, Imbault P, Gualberto JM. RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. PLANT PHYSIOLOGY 2012; 159:211-26. [PMID: 22415515 PMCID: PMC3375962 DOI: 10.1104/pp.112.194720] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/13/2012] [Indexed: 05/18/2023]
Abstract
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Bleomycin/pharmacology
- Crossing Over, Genetic
- DNA Breaks
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Enzyme Activation
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Genome, Mitochondrial
- Mitochondria/drug effects
- Mitochondria/enzymology
- Mitochondria/genetics
- Phenotype
- Polymorphism, Genetic
- Rec A Recombinases/genetics
- Rec A Recombinases/metabolism
- Recombinational DNA Repair
- Seedlings/genetics
- Seedlings/metabolism
- Stress, Physiological
Collapse
|
18
|
Cappadocia L, Parent JS, Zampini E, Lepage E, Sygusch J, Brisson N. A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage. Nucleic Acids Res 2011; 40:258-69. [PMID: 21911368 PMCID: PMC3245945 DOI: 10.1093/nar/gkr740] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer–tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Lassen MG, Kochhar S, Kocchar S, Nielsen BL. Identification of a soybean chloroplast DNA replication origin-binding protein. PLANT MOLECULAR BIOLOGY 2011; 76:463-71. [PMID: 21264493 DOI: 10.1007/s11103-011-9736-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Replication of chloroplast DNA (ctDNA) in several plants and in Chlamydomonas reinhardii has been shown to occur by a double displacement loop (D-loop) mechanism and potentially also by a rolling circle mechanism. D-loop replication origins have been mapped in several species. Minimal replication origin sequences used as probes identified two potential binding proteins by southwestern blot analysis. A 28 kDa (apparent molecular weight by SDS-PAGE analysis) soybean protein has been isolated by origin sequence-specific DNA affinity chromatography from total chloroplast proteins. Mass spectrometry analysis identified this protein as the product of the soybean C6SY33 gene (accession number ACU14156), which is annotated as encoding a putative uncharacterized protein with a molecular weight of 25,897 Da, very near the observed molecular weight of the purified protein based on gel electrophoresis. Western blot analysis using an antibody against a homologous Arabidopsis protein indicates that this soybean protein is localized specifically in chloroplasts. The soybean protein shares some homology within a single-stranded DNA binding (SSB) domain of E. coli SSB and an Arabidopsis thaliana mitochondrial-localized SSB of about 21 kDa (mtSSB). However, the soybean protein induces a specific electrophoretic mobility shift only when incubated with a double-stranded fragment containing the previously mapped ctDNA replication oriA region. This protein has no electrophoretic mobility shift activity when incubated with single-stranded DNA. In contrast, the Arabidopsis mtSSB causes a mobility shift only with single-stranded DNA but not with the oriA fragment or with control dsDNA of unrelated sequence. These results suggest that the 26 kDa soybean protein is a specific origin binding protein that may be involved in initiation of ctDNA replication.
Collapse
Affiliation(s)
- Matthew G Lassen
- Department of Microbiology and Molecular Biology, Brigham Young University, 775 WIDB, Provo, UT 84602, USA
| | | | | | | |
Collapse
|
20
|
Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 2010; 28:583-600. [PMID: 20805190 DOI: 10.1093/molbev/msq229] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair.
Collapse
Affiliation(s)
- Mary M Guisinger
- Section of Integrative Biology, University of Texas, Austin, USA.
| | | | | | | |
Collapse
|
21
|
Singh SK, Roy S, Choudhury SR, Sengupta DN. DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BMC Genomics 2010; 11:443. [PMID: 20646326 PMCID: PMC3091640 DOI: 10.1186/1471-2164-11-443] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/21/2010] [Indexed: 11/13/2022] Open
Abstract
Background The DNA repair and recombination (DRR) proteins protect organisms against genetic damage, caused by environmental agents and other genotoxic agents, by removal of DNA lesions or helping to abide them. Results We identified genes potentially involved in DRR mechanisms in Arabidopsis and rice using similarity searches and conserved domain analysis against proteins known to be involved in DRR in human, yeast and E. coli. As expected, many of DRR genes are very similar to those found in other eukaryotes. Beside these eukaryotes specific genes, several prokaryotes specific genes were also found to be well conserved in plants. In Arabidopsis, several functionally important DRR gene duplications are present, which do not occur in rice. Among DRR proteins, we found that proteins belonging to the nucleotide excision repair pathway were relatively more conserved than proteins needed for the other DRR pathways. Sub-cellular localization studies of DRR gene suggests that these proteins are mostly reside in nucleus while gene drain in between nucleus and cell organelles were also found in some cases. Conclusions The similarities and dissimilarities in between plants and other organisms' DRR pathways are discussed. The observed differences broaden our knowledge about DRR in the plants world, and raises the potential question of whether differentiated functions have evolved in some cases. These results, altogether, provide a useful framework for further experimental studies in these organisms.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Botany, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700 009, India.
| | | | | | | |
Collapse
|
22
|
Rowan BA, Oldenburg DJ, Bendich AJ. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2575-88. [PMID: 20406785 PMCID: PMC2882256 DOI: 10.1093/jxb/erq088] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 05/18/2023]
Abstract
Although our understanding of mechanisms of DNA repair in bacteria and eukaryotic nuclei continues to improve, almost nothing is known about the DNA repair process in plant organelles, especially chloroplasts. Since the RecA protein functions in DNA repair for bacteria, an analogous function may exist for chloroplasts. The effects on chloroplast DNA (cpDNA) structure of two nuclear-encoded, chloroplast-targeted homologues of RecA in Arabidopsis were examined. A homozygous T-DNA insertion mutation in one of these genes (cpRecA) resulted in altered structural forms of cpDNA molecules and a reduced amount of cpDNA, while a similar mutation in the other gene (DRT100) had no effect. Double mutants exhibited a similar phenotype to cprecA single mutants. The cprecA mutants also exhibited an increased amount of single-stranded cpDNA, consistent with impaired RecA function. After four generations, the cprecA mutant plants showed signs of reduced chloroplast function: variegation and necrosis. Double-stranded breaks in cpDNA of wild-type plants caused by ciprofloxacin (an inhibitor of Escherichia coli gyrase, a type II topoisomerase) led to an alteration of cpDNA structure that was similar to that seen in cprecA mutants. It is concluded that the process by which damaged DNA is repaired in bacteria has been retained in their endosymbiotic descendent, the chloroplast.
Collapse
Affiliation(s)
| | | | - Arnold J. Bendich
- Department of Biology, University of Washington, Seattle, WA 91895 USA
| |
Collapse
|
23
|
Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. THE NEW PHYTOLOGIST 2010; 186:299-317. [PMID: 20180912 DOI: 10.1111/j.1469-8137.2010.03195.x] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | | |
Collapse
|
24
|
Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae. J Mol Evol 2010; 70:149-66. [PMID: 20091301 PMCID: PMC2825539 DOI: 10.1007/s00239-009-9317-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 12/16/2009] [Indexed: 11/21/2022]
Abstract
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.
Collapse
Affiliation(s)
- Mary M Guisinger
- Section of Integrative Biology, University of Texas, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
25
|
Bedoya F, Medveczky MM, Lund TC, Perl A, Horvath J, Jett SD, Medveczky PG. Identification of mitochondrial genome concatemers in AIDS-associated lymphomas and lymphoid cell lines. Leuk Res 2009; 33:1499-504. [PMID: 19362738 PMCID: PMC2730422 DOI: 10.1016/j.leukres.2009.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 12/24/2022]
Abstract
Since most oncogenic viruses persist as extrachromosomal covalently closed circular DNA (cccDNA) in tumor cells, we developed an assay to visualize and identify cccDNA in primary lymphomas. We identified concatemers of the mitochondrial genome in all samples analyzed, but not in normal lymphocytes. One AIDS-associated lymphoma (EL) was further studied in detail as its mitochondrial genome consisted of tandem head-to-tail duplications. Insertion of C-residues was noted near the origin of replication of EL mtDNA. EL cells responded weakly to Fas-apoptotic stimulus, displayed reduced mitochondrial activity and mass, and produced higher levels of reactive oxygen intermediates. Screening of several AIDS-associated lymphomas and established lymphoid cell lines also revealed the presence of mitochondrial genome concatemers consisting of interlinked monomer molecules. Taken together, our results suggest that formation of mtDNA concatemers is associated with oncogenic transformation in lymphoid cells.
Collapse
Affiliation(s)
- Felipe Bedoya
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL
| | - Maria M. Medveczky
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Andras Perl
- Department of Medicine, State University of New York, Syracuse, NY
| | | | - Stephen D. Jett
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Peter G. Medveczky
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
26
|
Pohjoismäki JLO, Goffart S, Tyynismaa H, Willcox S, Ide T, Kang D, Suomalainen A, Karhunen PJ, Griffith JD, Holt IJ, Jacobs HT. Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 2009; 284:21446-57. [PMID: 19525233 PMCID: PMC2755869 DOI: 10.1074/jbc.m109.016600] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/04/2009] [Indexed: 11/25/2022] Open
Abstract
Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the -type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non- mechanism is unprecedented in mammals.
Collapse
Affiliation(s)
- Jaakko L. O. Pohjoismäki
- From the Institute of Medical Technology
- Tampere University Hospital, and
- Department of Forensic Medicine, University of Tampere, FI-33014 University of Tampere, Finland
| | - Steffi Goffart
- From the Institute of Medical Technology
- Tampere University Hospital, and
| | - Henna Tyynismaa
- Department of Neurology, Helsinki University Central Hospital and Research Programme of Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, FI-00290 Helsinki, Finland
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Tomomi Ide
- Departments of Cardiovascular Medicine and
| | - Dongchon Kang
- Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan, and
| | - Anu Suomalainen
- Department of Neurology, Helsinki University Central Hospital and Research Programme of Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, FI-00290 Helsinki, Finland
| | - Pekka J. Karhunen
- Department of Forensic Medicine, University of Tampere, FI-33014 University of Tampere, Finland
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295
| | - Ian J. Holt
- Medical Research Council (MRC)-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 OXY, United Kingdom
| | - Howard T. Jacobs
- From the Institute of Medical Technology
- Tampere University Hospital, and
| |
Collapse
|
27
|
Odahara M, Kuroiwa H, Kuroiwa T, Sekine Y. Suppression of repeat-mediated gross mitochondrial genome rearrangements by RecA in the moss Physcomitrella patens. THE PLANT CELL 2009; 21:1182-94. [PMID: 19357088 PMCID: PMC2685630 DOI: 10.1105/tpc.108.064709] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 01/31/2009] [Accepted: 03/23/2009] [Indexed: 05/23/2023]
Abstract
RecA and its ubiquitous homologs are crucial components in homologous recombination. Besides their eukaryotic nuclear counterparts, plants characteristically possess several bacterial-type RecA proteins localized to chloroplasts and/or mitochondria, but their roles are poorly understood. Here, we analyzed the role of the only mitochondrial RecA in the moss Physcomitrella patens. Disruption of the P. patens mitochondrial recA gene RECA1 caused serious defects in plant growth and development and abnormal mitochondrial morphology. Analyses of mitochondrial DNA in disruptants revealed that frequent DNA rearrangements occurred at multiple loci. Structural analysis suggests that the rearrangements, which in some cases were associated with partial deletions and amplifications of mitochondrial DNA, were due to aberrant recombination between short (<100 bp) direct and inverted repeats in which the sequences were not always identical. Such repeats are abundant in the mitochondrial genome, and interestingly many are located in group II introns. These results suggest that RECA1 does not promote but rather suppresses recombination among short repeats scattered throughout the mitochondrial genome, thereby maintaining mitochondrial genome stability. We propose that RecA-mediated homologous recombination plays a crucial role in suppression of short repeat-mediated genome rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
28
|
Rajão MA, Passos-Silva DG, DaRocha WD, Franco GR, Macedo AM, Pena SDJ, Teixeira SM, Machado CR. DNA polymerase kappa fromTrypanosoma cruzilocalizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate. Mol Microbiol 2009; 71:185-97. [DOI: 10.1111/j.1365-2958.2008.06521.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci U S A 2008; 105:18424-9. [PMID: 19011103 DOI: 10.1073/pnas.0806759105] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum (Geraniaceae) reveals the largest and most rearranged plastid genome identified to date. Highly elevated rates of sequence evolution in Geraniaceae mitochondrial genomes have been reported, but rates in Geraniaceae plastid genomes have not been characterized. Analysis of nucleotide substitution rates for 72 plastid genes for 47 angiosperm taxa, including nine Geraniaceae, show that values of dN are highly accelerated in ribosomal protein and RNA polymerase genes throughout the family. Furthermore, dN/dS is significantly elevated in the same two classes of plastid genes as well as in ATPase genes. A relatively high dN/dS ratio could be interpreted as evidence of two phenomena, namely positive or relaxed selection, neither of which is consistent with our current understanding of plastid genome evolution in photosynthetic plants. These analyses are the first to use protein-coding sequences from complete plastid genomes to characterize rates and patterns of sequence evolution for a broad sampling of photosynthetic angiosperms, and they reveal unprecedented accumulation of nucleotide substitutions in Geraniaceae. To explain these remarkable substitution patterns in the highly rearranged Geraniaceae plastid genomes, we propose a model of aberrant DNA repair coupled with altered gene expression.
Collapse
|
30
|
Vlček D, Ševčovičová A, Sviežená B, Gálová E, Miadoková E. Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes. Curr Genet 2007; 53:1-22. [DOI: 10.1007/s00294-007-0163-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/08/2007] [Accepted: 10/20/2007] [Indexed: 01/12/2023]
|
31
|
DNA replication, recombination, and repair in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0231] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Odahara M, Inouye T, Fujita T, Hasebe M, Sekine Y. Involvement of mitochondrial-targeted RecA in the repair of mitochondrial DNA in the moss, Physcomitrella patens. Genes Genet Syst 2007; 82:43-51. [PMID: 17396019 DOI: 10.1266/ggs.82.43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is a universal process that contributes to genetic diversity and genomic integrity. Bacterial-type RecA generally exists in all bacteria and plays a crucial role in homologous recombination. Although RecA homologues also exist in plant mitochondria, there have been few reports about the in vivo functions of these homologues. We identified a recA gene orthologue (named PprecA1) in a cDNA library of the moss, Physcomitrella patens. N-terminal fusion of the putative organellar targeting sequence of PpRecA1 to GFP caused a targeting of PpRecA1 to mitochondria. PprecA1 partially complemented the effects of a DNA damaging agent in an Escherichia coli recA deficient strain. Additionally, the expression of PprecA1 was induced by treating the plants with DNA damaging agents. Disruption of PprecA1 by targeted replacement resulted lower rate of the recovery of the mitochondrial DNA from methyl methan sulfonate damage. This is the first report about the characteristics of a null mutant of bacterial-type recA gene in plant. The data suggest that PprecA1 participates in the repair of mitochondrial DNA in P. patens.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo, St. Paul's University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
33
|
Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A 2006; 103:10328-10333. [PMID: 16798872 PMCID: PMC1502457 DOI: 10.1073/pnas.0604232103] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RADalpha, with highly conserved functions; (ii) RADbeta, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RADalpha and RADbeta subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RADalpha subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RADbeta subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes.
Collapse
Affiliation(s)
- Zhenguo Lin
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; and
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Masatoshi Nei
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| | - Hong Ma
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| |
Collapse
|
34
|
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | |
Collapse
|
35
|
Manchekar M, Scissum-Gunn K, Song D, Khazi F, McLean SL, Nielsen BL. DNA recombination activity in soybean mitochondria. J Mol Biol 2006; 356:288-99. [PMID: 16376379 DOI: 10.1016/j.jmb.2005.11.070] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/12/2005] [Accepted: 11/22/2005] [Indexed: 11/29/2022]
Abstract
Mitochondrial genomes in higher plants are much larger and more complex as compared to animal mitochondrial genomes. There is growing evidence that plant mitochondrial genomes exist predominantly as a collection of linear and highly branched DNA molecules and replicate by a recombination-dependent mechanism. However, biochemical evidence of mitochondrial DNA (mtDNA) recombination activity in plants has previously been lacking. We provide the first report of strand-invasion activity in plant mitochondria. Similar to bacterial RecA, this activity from soybean is dependent on the presence of ATP and Mg(2+). Western blot analysis using an antibody against the Arabidopsis mitochondrial RecA protein shows cross-reaction with a soybean protein of about 44 kDa, indicating conservation of this protein in at least these two plant species. mtDNA structure was analyzed by electron microscopy of total soybean mtDNA and molecules recovered after field-inversion gel electrophoresis (FIGE). While most molecules were found to be linear, some molecules contained highly branched DNA structures and a small but reproducible proportion consisted of circular molecules (many with tails) similar to recombination intermediates. The presence of recombination intermediates in plant mitochondria preparations is further supported by analysis of mtDNA molecules by 2-D agarose gel electrophoresis, which indicated the presence of complex recombination structures along with a considerable amount of single-stranded DNA. These data collectively provide convincing evidence for the occurrence of homologous DNA recombination in plant mitochondria.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
36
|
Edmondson AC, Song D, Alvarez LA, Wall MK, Almond D, McClellan DA, Maxwell A, Nielsen BL. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Genet Genomics 2005; 273:115-22. [PMID: 15744502 DOI: 10.1007/s00438-004-1106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/14/2004] [Indexed: 11/30/2022]
Abstract
A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.
Collapse
Affiliation(s)
- Andrew C Edmondson
- Department of Microbiology and Molecular Biology, Brigham Young University, 775 WIDB, Provo, UT, 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hasegawa Y, Arimitsu T, Nakamura S, Kodaira KI, Shinohara H, Yasukawa H. Analysis of Rad51 in the Social Amoeba Dictyostelium Discoideum: Sequence, Induction and Disruption. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yasuna Hasegawa
- Division of Bioengineering, Faculty of Engineering, Toyama University
| | - Toshio Arimitsu
- Division of Bioengineering, Faculty of Engineering, Toyama University
| | - Shogo Nakamura
- Department of Environmental Biology and Chemistry, Faculty of Science, Toyama University
| | - Ken-ichi Kodaira
- Division of Bioengineering, Faculty of Engineering, Toyama University
| | - Hiroaki Shinohara
- Division of Bioengineering, Faculty of Engineering, Toyama University
| | - Hiro Yasukawa
- Division of Bioengineering, Faculty of Engineering, Toyama University
| |
Collapse
|
38
|
Wall MK, Mitchenall LA, Maxwell A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci U S A 2004; 101:7821-6. [PMID: 15136745 PMCID: PMC419690 DOI: 10.1073/pnas.0400836101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 04/05/2004] [Indexed: 11/18/2022] Open
Abstract
DNA gyrase is the bacterial DNA topoisomerase (topo) that supercoils DNA by using the free energy of ATP hydrolysis. The enzyme, an A(2)B(2) tetramer encoded by the gyrA and gyrB genes, catalyses topological changes in DNA during replication and transcription, and is the only topo that is able to introduce negative supercoils. Gyrase is essential in bacteria and apparently absent from eukaryotes and is, consequently, an important target for antibacterial agents (e.g., quinolones and coumarins). We have identified four putative gyrase genes in the model plant Arabidopsis thaliana; one gyrA and three gyrB homologues. DNA gyrase protein A (GyrA) has a dual translational initiation site targeting the mature protein to both chloroplasts and mitochondria, and there are individual targeting sequences for two of the DNA gyrase protein B (GyrB) homologues. N-terminal fusions of the organellar targeting sequences to GFPs support the hypothesis that one enzyme is targeted to the chloroplast and another to the mitochondrion, which correlates with supercoiling activity in isolated organelles. Treatment of seedlings and cultured cells with gyrase-specific drugs leads to growth inhibition. Knockout of A. thaliana gyrA is embryo-lethal whereas knockouts in the gyrB genes lead to seedling-lethal phenotypes or severely stunted growth and development. The A. thaliana genes have been cloned in Escherichia coli and found to complement gyrase temperature-sensitive strains. This report confirms the existence of DNA gyrase in eukaryotes and has important implications for drug targeting, organelle replication, and the evolution of topos in plants.
Collapse
Affiliation(s)
- Melisa K Wall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | |
Collapse
|