1
|
Lv P, Wang M, Qiu R, Yao C, Fang M, Xing Y, Zhang X, He Y, Cai D, Song Z. Comparative transcriptome analysis reveals key genes associated with meiotic stability and high seed setting rate in tetraploid rice. BMC PLANT BIOLOGY 2025; 25:645. [PMID: 40375090 PMCID: PMC12080012 DOI: 10.1186/s12870-025-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Polyploid rice has a high yield potential and excellent nutritional quality. The development of polyploid rice remained critically limited for several decades due to low seed setting rate until the successful breeding of polyploid meiosis stability (PMeS) lines. To determine the mechanism responsible for meiotic stability and high seed setting rate of PMeS line, agronomic traits, pollen fertility and viability, and meiotic behaviors of PMeS and non-PMeS lines were investigated. Further, comparative transcriptome analysis was performed to identify genes associated with meiotic stability and high seed setting rate in PMeS line. RESULTS The seed setting rate, fertile and viable pollen ratios of PMeS line were significantly higher than those of non-PMeS line. The PMeS line exhibited stable meiosis, and chromosomes mainly paired as bivalents, rarely as univalents and multivalents in prophase I. Few lagging chromosomes were observed in anaphase I. By contrast, the homologous chromosomes pairing was disorganized in the non-PMeS line, with low frequencies of bivalents and high frequencies of univalents and multivalents in prophase I, while more cells with increased lagging chromosomes were detected in anaphase I. Many differentially expressed genes (DEGs) between PMeS and non-PMeS lines were identified through comparative transcriptome analysis. Some meiosis-related genes were specifically investigated from all DEGs. Further, several meiotic genes were identified as candidate genes. CONCLUSIONS The study not only demonstrates the morphological, cytological, and molecular differences between the PMeS and non-PMeS lines, but also provides several key genes associated with meiotic stability and high seed setting rate in tetraploid rice.
Collapse
Affiliation(s)
- Pincang Lv
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Man Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Rongjie Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Chang Yao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Meng Fang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Yuandong Xing
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Yuchi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Detian Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
- Wuhan Polyploid Biotechnology Co., Ltd., Hubei, 430345, Wuhan, China
| | - Zhaojian Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
| |
Collapse
|
2
|
Fan YJ, Du ZZ, He XY, Liu ZA, Zhuang JX, Xiao GA, Duan YY, Tan FQ, Xie KD, Jiao WB, Zhang F, Yang C, Guo WW, Wu XM. Somatic variations in the meiosis-specific gene CrMER3 confer seedlessness in a citrus bud sport. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39981730 DOI: 10.1111/jipb.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Seedlessness is a most valuable trait in fruit crops for fresh consumption and processing. The mutations in essential meiosis genes are known to confer sterility and seed abortion in plants. However, defects in meiosis have rarely been reported in fruit crops. Here, we found meiosis defects caused sterility in a seedless citrus bud sport cultivar, with massive unpaired univalents during diakinesis, indicating a disruption in crossover formation. A non-functional CrMER3A-103 bp allele with a 103-bp deletion in the gene body, together with the other non-functional CrMER3a allele with a T deletion in exon, were identified in the seedless cultivar. The CrMER3 protein was undetectable at meiotic prophase I in the seedless cultivar, and knock out of CrMER3 resulted in sterility in precocious Mini-citrus. Therefore, the natural variation in CrMER3 is responsible for sterility and seedlessness in this bud sport cultivar. The CrMER3a allele originated from the primitive wild mandarin and was passed to cultivated mandarins. A Kompetitive Allele-Specific PCR (KASP) marker was developed to identify citrus germplasm with CrMER3a allele and to screen potential sterile and seedless hybrids in citrus cross breeding. Uncovering the natural mutations responsible for meiosis defects in citrus enhances our understanding of mechanisms controlling seedlessness in fruit crops and facilitates breeding of seedless varieties.
Collapse
Affiliation(s)
- Yan-Jie Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Zhen Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing-Yi He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zi-Ang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Xin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gong-Ao Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao-Yuan Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, France
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
4
|
Huang J, Qiao Z, Yu H, Lu Z, Chen W, Lu J, Wu J, Bao Y, Shahid MQ, Liu X. OsRH52A, a DEAD-box protein, regulates functional megaspore specification and is required for embryo sac development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4802-4821. [PMID: 38642102 PMCID: PMC11350083 DOI: 10.1093/jxb/erae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The development of the embryo sac is an important factor that affects seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants; however, the function of the DEAD-box RNA helicase family genes is poorly known in rice. Here, we characterized a rice DEAD-box protein, RH52A, which is localized in the nucleus and cytoplasm and highly expressed in the floral organs. The knockout mutant rh52a displayed partial ES sterility, including degeneration of the ES (21%) and the presence of a double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores near the chalazal end in one ovule, and 3.4% of DFGs were able to fertilize via the sac near the micropylar pole in rh52a. RH52A was found to interact with MFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-sequencing identified 234 down-regulated differentially expressed genes associated with reproductive development, including two, MSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrates that RH52A is essential for the development of the rice embryo sac and provides cytological details regarding the formation of DFGs.
Collapse
Affiliation(s)
- Jinghua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengping Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weibin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Di Dio C, Serra H, Sourdille P, Higgins JD. ASYNAPSIS 1 ensures crossover fidelity in polyploid wheat by promoting homologous recombination and suppressing non-homologous recombination. FRONTIERS IN PLANT SCIENCE 2023; 14:1188347. [PMID: 37284727 PMCID: PMC10239940 DOI: 10.3389/fpls.2023.1188347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.
Collapse
Affiliation(s)
- Chiara Di Dio
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| | - Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - James D. Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
Steckenborn S, Cuacos M, Ayoub MA, Feng C, Schubert V, Hoffie I, Hensel G, Kumlehn J, Heckmann S. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). PLANT REPRODUCTION 2023; 36:1-15. [PMID: 35767067 PMCID: PMC9957907 DOI: 10.1007/s00497-022-00444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Mohammad A Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Chao Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
7
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Lewandowska D, Orr J, Schreiber M, Colas I, Ramsay L, Zhang R, Waugh R. The proteome of developing barley anthers during meiotic prophase I. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1464-1482. [PMID: 34758083 PMCID: PMC8890616 DOI: 10.1093/jxb/erab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Flowering plants reproduce sexually by combining a haploid male and female gametophyte during fertilization. Male gametophytes are localized in the anthers, each containing reproductive (meiocyte) and non-reproductive tissue necessary for anther development and maturation. Meiosis, where chromosomes pair and exchange their genetic material during a process called recombination, is one of the most important and sensitive stages in breeding, ensuring genetic diversity. Most anther development studies have focused on transcript variation, but very few have been correlated with protein abundance. Taking advantage of a recently published barley anther transcriptomic (BAnTr) dataset and a newly developed sensitive mass spectrometry-based approach to analyse the barley anther proteome, we conducted high-resolution mass spectrometry analysis of barley anthers, collected at six time points and representing their development from pre-meiosis to metaphase. Each time point was carefully staged using immunocytology, providing a robust and accurate staging mirroring our previous BAnTr dataset. We identified >6100 non-redundant proteins including 82 known and putative meiotic proteins. Although the protein abundance was relatively stable throughout prophase I, we were able to quantify the dynamic variation of 336 proteins. We present the first quantitative comparative proteomics study of barley anther development during meiotic prophase I when the important process of homologous recombination is taking place.
Collapse
Affiliation(s)
- Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jamie Orr
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, SA 5064, Australia
- Correspondence:
| |
Collapse
|
9
|
Cao L, Wang S, Zhao L, Qin Y, Wang H, Cheng Y. The Inactivation of Arabidopsis UBC22 Results in Abnormal Chromosome Segregation in Female Meiosis, but Not in Male Meiosis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112418. [PMID: 34834780 PMCID: PMC8625819 DOI: 10.3390/plants10112418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.
Collapse
Affiliation(s)
- Ling Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| |
Collapse
|
10
|
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3012-3027. [PMID: 33502451 PMCID: PMC8023211 DOI: 10.1093/jxb/erab035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.
Collapse
Affiliation(s)
- Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
11
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, Yang H, Tang D, Du G, Li Y, Shen Y, Cheng Z. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. THE NEW PHYTOLOGIST 2021; 230:585-600. [PMID: 33421144 DOI: 10.1111/nph.17178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
12
|
Ascari L, Cristofori V, Macrì F, Botta R, Silvestri C, De Gregorio T, Huerta ES, Di Berardino M, Kaufmann S, Siniscalco C. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. FRONTIERS IN PLANT SCIENCE 2020; 11:615922. [PMID: 33370424 PMCID: PMC7753158 DOI: 10.3389/fpls.2020.615922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 05/23/2023]
Abstract
Impedance flow cytometry (IFC) is a versatile lab-on-chip technology which enables fast and label-free analysis of pollen grains in various plant species, promising new research possibilities in agriculture and plant breeding. Hazelnut is a monoecious, anemophilous species, exhibiting sporophytic self-incompatibility. Its pollen is dispersed by wind in midwinter when temperatures are still low and relative humidity is usually high. Previous research found that hazelnut can be characterized by high degrees of pollen sterility following a reciprocal chromosome translocation occurring in some cultivated genotypes. In this study, IFC was used for the first time to characterize hazelnut pollen biology. IFC was validated via dye exclusion in microscopy and employed to (i) follow pollen hydration over time to define the best pre-hydration treatment for pollen viability evaluation; (ii) test hazelnut pollen viability and sterility on 33 cultivars grown in a collection field located in central Italy, and two wild hazelnuts. The accessions were also characterized by their amount and distribution of catkins in the tree canopy. Pollen sterility rate greatly varied among hazelnut accessions, with one main group of highly sterile cultivars and a second group, comprising wild genotypes and the remaining cultivars, producing good quality pollen. The results support the hypothesis of recurring reciprocal translocation events in Corylus avellana cultivars, leading to the observed gametic semi-sterility. The measured hazelnut pollen viability was also strongly influenced by pollen hydration (R adj 2 = 0.83, P ≤ 0.0001) and reached its maximum at around 6 h of pre-hydration in humid chambers. Viable and dead pollen were best discriminated at around the same time of pollen pre-hydration, suggesting that high humidity levels are required for hazelnut pollen to maintain its functionality. Altogether, our results detail the value of impedance flow cytometry for high throughput phenotyping of hazelnut pollen. Further research is required to clarify the causes of pollen sterility in hazelnut, to confirm the role of reciprocal chromosome translocations and to investigate its effects on plant productivity.
Collapse
Affiliation(s)
- Lorenzo Ascari
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Federico Macrì
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | | | | | | | - Consolata Siniscalco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Molecular Control and Application of Male Fertility for Two-Line Hybrid Rice Breeding. Int J Mol Sci 2020; 21:ijms21217868. [PMID: 33114094 PMCID: PMC7660317 DOI: 10.3390/ijms21217868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/24/2023] Open
Abstract
The significance of the climate change may involve enhancement of plant growth as well as utilization of the environmental alterations in male fertility (MF) regulation via male sterility (MS) systems. We described that MS systems provide a fundamental platform for improvement in agriculture production and have been explicated for creating bulk germplasm of the two-line hybrids (EGMS) in rice as compared to the three-line, to gain production sustainability and exploit its immense potential. Environmental alterations such as photoperiod and/or temperature and humidity regulate MS in EGMS lines via genetic and epigenetic changes, regulation of the noncoding RNAs, and RNA-metabolism including the transcriptional factors (TFs) implication. Herein, this article enlightens a deep understanding of the molecular control of MF in EGMS lines and exploring the regulatory driving forces that function efficiently during plant adaption under a changing environment. We highlighted a possible solution in obtaining more stable hybrids through apomixis (single-line system) for seed production.
Collapse
|
14
|
Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci U S A 2020; 117:8980-8988. [PMID: 32273390 PMCID: PMC7183234 DOI: 10.1073/pnas.1919459117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genome duplication is an important factor in the evolution of eukaryotic lineages, but it poses challenges for the regular segregation of chromosomes in meiosis and thus fertility. To survive, polyploid lineages must evolve to overcome initial challenges that accompany doubling the chromosome complement. Understanding how evolution can solve the challenge of segregating multiple homologous chromosomes promises fundamental insights into the mechanisms of genome maintenance and could open polyploidy as a crop improvement tool. We previously identified candidate genes for meiotic stabilization of Arabidopsis arenosa, which has natural diploid and tetraploid variants. Here we test the role that derived alleles of two genes under selection in tetraploid A. arenosa might have in meiotic stabilization in tetraploids. Polyploidy, which results from whole genome duplication (WGD), has shaped the long-term evolution of eukaryotic genomes in all kingdoms. Polyploidy is also implicated in adaptation, domestication, and speciation. Yet when WGD newly occurs, the resulting neopolyploids face numerous challenges. A particularly pernicious problem is the segregation of multiple chromosome copies in meiosis. Evolution can overcome this challenge, likely through modification of chromosome pairing and recombination to prevent deleterious multivalent chromosome associations, but the molecular basis of this remains mysterious. We study mechanisms underlying evolutionary stabilization of polyploid meiosis using Arabidopsis arenosa, a relative of A. thaliana with natural diploid and meiotically stable autotetraploid populations. Here we investigate the effects of ancestral (diploid) versus derived (tetraploid) alleles of two genes, ASY1 and ASY3, that were among several meiosis genes under selection in the tetraploid lineage. These genes encode interacting proteins critical for formation of meiotic chromosome axes, long linear multiprotein structures that form along sister chromatids in meiosis and are essential for recombination, chromosome segregation, and fertility. We show that derived alleles of both genes are associated with changes in meiosis, including reduced formation of multichromosome associations, reduced axis length, and a tendency to more rod-shaped bivalents in metaphase I. Thus, we conclude that ASY1 and ASY3 are components of a larger multigenic solution to polyploid meiosis in which individual genes have subtle effects. Our results are relevant for understanding polyploid evolution and more generally for understanding how meiotic traits can evolve when faced with challenges.
Collapse
|
15
|
Li J, Zhang J, Li H, Niu H, Xu Q, Jiao Z, An J, Jiang Y, Li Q, Niu J. The Major Factors Causing the Microspore Abortion of Genic Male Sterile Mutant NWMS1 in Wheat ( Triticum aestivum L.). Int J Mol Sci 2019; 20:ijms20246252. [PMID: 31835796 PMCID: PMC6940770 DOI: 10.3390/ijms20246252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 11/17/2022] Open
Abstract
Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.
Collapse
Affiliation(s)
- Junchang Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Jing Zhang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Huijuan Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Hao Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Qiaoqiao Xu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Zhixin Jiao
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Junhang An
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Yumei Jiang
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Qiaoyun Li
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
| | - Jishan Niu
- National Centre of Engineering and Technological Research for Wheat/Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou 450046, China; (J.L.); (J.Z.); (H.L.); (Q.X.); (Z.J.); (J.A.); (Y.J.); (Q.L.)
- Correspondence: ; Tel.: +86-0371-56990186
| |
Collapse
|
16
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Morgan CH, Zhang H, Bomblies K. Are the effects of elevated temperature on meiotic recombination and thermotolerance linked via the axis and synaptonemal complex? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0470. [PMID: 29109229 PMCID: PMC5698628 DOI: 10.1098/rstb.2016.0470] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/23/2022] Open
Abstract
Meiosis is unusual among cell divisions in shuffling genetic material by crossovers among homologous chromosomes and partitioning the genome into haploid gametes. Crossovers are critical for chromosome segregation in most eukaryotes, but are also an important factor in evolution, as they generate novel genetic combinations. The molecular mechanisms that underpin meiotic recombination and chromosome segregation are well conserved across kingdoms, but are also sensitive to perturbation by environment, especially temperature. Even subtle shifts in temperature can alter the number and placement of crossovers, while at greater extremes, structural failures can occur in the linear axis and synaptonemal complex structures which are essential for recombination and chromosome segregation. Understanding the effects of temperature on these processes is important for its implications in evolution and breeding, especially in the context of global warming. In this review, we first summarize the process of meiotic recombination and its reliance on axis and synaptonemal complex structures, and then discuss effects of temperature on these processes and structures. We hypothesize that some consistent effects of temperature on recombination and meiotic thermotolerance may commonly be two sides of the same coin, driven by effects of temperature on the folding or interaction of key meiotic proteins. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
| | - Huakun Zhang
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
18
|
|
19
|
Zhou X, Liu Z, Ji R, Feng H. Comparative transcript profiling of fertile and sterile flower buds from multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Mol Genet Genomics 2017; 292:967-990. [PMID: 28492984 DOI: 10.1007/s00438-017-1324-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
We studied the underlying causes of multiple-allele-inherited male sterility in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by identifying differentially expressed genes (DEGs) related to pollen sterility between fertile and sterile flower buds. In this work, we verified the stages of sterility microscopically and then performed transcriptome analysis of mRNA isolated from fertile and sterile buds using Illumina HiSeq 2000 platform sequencing. Approximately 80% of ~229 million high-quality paired-end reads were uniquely mapped to the reference genome. In sterile buds, 699 genes were significantly up-regulated and 4096 genes were down-regulated. Among the DEGs, 28 pollen cell wall-related genes, 54 transcription factor genes, 45 phytohormone-related genes, 20 anther and pollen-related genes, 212 specifically expressed transcripts, and 417 DEGs located on linkage group A07 were identified. Six transcription factor genes BrAMS, BrMS1, BrbHLH089, BrbHLH091, BrAtMYB103, and BrANAC025 were identified as putative sterility-related genes. The weak auxin signal that is regulated by BrABP1 may be one of the key factors causing pollen sterility observed here. Moreover, several significantly enriched GO terms such as "cell wall organization or biogenesis" (GO:0071554), "intrinsic to membrane" (GO:0031224), "integral to membrane" (GO:0016021), "hydrolase activity, acting on ester bonds" (GO:0016788), and one significantly enriched pathway "starch and sucrose metabolism" (ath00500) were identified in this work. qRT-PCR, PCR, and in situ hybridization experiments validated our RNA-seq transcriptome analysis as accurate and reliable. This study will lay the foundation for elucidating the molecular mechanism(s) that underly sterility and provide valuable information for studying multiple-allele-inherited male sterility in the Chinese cabbage line 'AB01'.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
20
|
Zhou L, Han J, Chen Y, Wang Y, Liu YG. Bivalent Formation 1, a plant-conserved gene, encodes an OmpH/coiled-coil motif-containing protein required for meiotic recombination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2163-2174. [PMID: 28369589 PMCID: PMC5447885 DOI: 10.1093/jxb/erx077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and plant fertility. In comparison with over 80 meiotic genes identified in Arabidopsis, there are only ~30 meiotic genes characterized in rice (Oryza sativa L.). Many genes involved in the regulation of meiotic progression remain to be determined. In this study, we identified a sterile rice mutant and cloned a new meiotic gene, OsBVF1 (Bivalent Formation 1) by map-based cloning. Molecular genetics and cytological approaches were carried out to address the function of OsBVF1 in meiosis. Phylogenetic analyses were used to study the evolution of OsBVF1 and its homologs in plant species. Here we showed that the bvf1 male meiocytes were defective in formation of meiotic double strand break, thereby resulting in a failure of bivalent formation in diakinesis and unequal chromosome segregation in anaphase I. The causal gene, OsBVF1, encodes a unique OmpH/coiled-coil motif-containing protein and its homologs are highly conserved in the plant kingdom and seem to be a single-copy gene in the majority of plant species. Our study demonstrates that OsBVF1 is a novel plant-conserved factor involved in meiotic recombination in rice, providing a new insight into understanding of meiotic progression regulation.
Collapse
Affiliation(s)
- Lian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
21
|
Zeng X, Yan X, Yuan R, Li K, Wu Y, Liu F, Luo J, Li J, Wu G. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. FRONTIERS IN PLANT SCIENCE 2017; 7:1966. [PMID: 28101089 PMCID: PMC5209369 DOI: 10.3389/fpls.2016.01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 05/13/2023]
Abstract
Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
22
|
Liu H, Nonomura KI. A wide reprogramming of histone H3 modifications during male meiosis I in rice is dependent on the Argonaute protein MEL1. J Cell Sci 2016; 129:3553-3561. [PMID: 27521428 DOI: 10.1242/jcs.184937] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
The roles of epigenetic mechanisms, including small-RNA-mediated silencing, in plant meiosis largely remain unclear, despite their importance in plant reproduction. This study unveiled that rice chromosomes are reprogrammed during the premeiosis-to-meiosis transition in pollen mother cells (PMCs). This large-scale meiotic chromosome reprogramming (LMR) continued throughout meiosis I, during which time H3K9 dimethylation (H3K9me2) was increased, and H3K9 acetylation and H3S10 phosphorylation were broadly decreased, with an accompanying immunostaining pattern shift of RNA polymerase II. LMR was dependent on the rice Argonaute protein, MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), which is specifically expressed in germ cells prior to meiosis, because LMR was severely diminished in mel1 mutant anthers. Pivotal meiotic events, such as pre-synaptic centromere association, DNA double-strand break initiation and synapsis of homologous chromosomes, were also disrupted in this mutant. Interestingly, and as opposed to the LMR loss in most chromosomal regions, aberrant meiotic protein loading and hypermethylation of H3K9 emerged on the nucleolar organizing region in the mel1 PMCs. These results suggest that MEL1 plays important roles in epigenetic LMR to promote faithful homologous recombination and synapsis during rice meiosis.
Collapse
Affiliation(s)
- Hua Liu
- Experimental Farm, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan Department of Life Science, Graduate University for Advanced Studies/SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
23
|
Miyazaki S, Sato Y, Asano T, Nagamura Y, Nonomura KI. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR. PLANT MOLECULAR BIOLOGY 2015; 89:293-307. [PMID: 26319516 DOI: 10.1007/s11103-015-0369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.
Collapse
Affiliation(s)
- Saori Miyazaki
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
- Office for the Promotion of Global Education Programs, Shizuoka University, Jyouhoku, Nakaku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, 920-0934, Japan.
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan.
| | - Yoshiaki Nagamura
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
24
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:297-327. [PMID: 25494464 DOI: 10.1146/annurev-arplant-050213-035923] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is the cell division that reshuffles genetic information between generations. Recently, much progress has been made in understanding this process; in particular, the identification and functional analysis of more than 80 plant genes involved in meiosis have dramatically deepened our knowledge of this peculiar cell division. In this review, we provide an overview of advancements in the understanding of all aspects of plant meiosis, including recombination, chromosome synapsis, cell cycle control, chromosome distribution, and the challenge of polyploidy.
Collapse
Affiliation(s)
- Raphaël Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; , , , ,
| | | | | | | | | |
Collapse
|
26
|
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol 2013; 31:660-72. [PMID: 24336924 DOI: 10.1093/molbev/mst258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.
Collapse
Affiliation(s)
- Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
27
|
Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura KI, Wabiko H. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice. PLANT PHYSIOLOGY 2013; 162:858-71. [PMID: 23629836 PMCID: PMC3668075 DOI: 10.1104/pp.113.216523] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Physical methods for genetic plant transformation. Phys Life Rev 2012; 9:308-45. [DOI: 10.1016/j.plrev.2012.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 01/27/2023]
|
29
|
Gao X, Chen Z, Zhang J, Li X, Chen G, Li X, Wu C. OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. PLANTA 2012; 235:713-27. [PMID: 22020753 DOI: 10.1007/s00425-011-1532-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/29/2011] [Indexed: 05/05/2023]
Abstract
Although a large number of genes encoding the WD40 motif have been identified as being involved in various developmental processes in Arabidopsis, little is known about the function of these genes in rice (Oryza sativa). Here, we report the cloning and functional characterization of a novel rice gene OsLIS-L1 (Lissencephaly type-1-like 1), which is required for normal fertility and the first internode elongation. OsLIS-L1 encodes a lissencephaly type-1-like protein containing the WD40 motif that is required for brain development in human. SMART algorithm analysis indicated that OsLIS-L1 contains a LIS1 homology (LisH) domain, a C terminus to LisH (CTLH) domain, a five WD40-repeat domain in the middle, and a domain with four WD40 repeats which is homologous to the β subunit of trimeric G-proteins (G(β)). OsLIS-L1 transcript is relatively highly abundant in stem and panicle and has a dynamic expression pattern at different panicle developmental stages. Two independent alleles, designated oslis-l1-1 and oslis-l1-2, exhibited similar abnormal developmental phenotypes, including semi-dwarf, shorter panicle length, and reduced male fertility. Cytological examination confirmed that OsLIS-L1 does not affect the meiosis in pollen mother cells. Compared with wild type, the oslis-l1 mutant had abnormal male gametophyte formation, but anther cell wall and pollen wall development were not affected. Histological analysis revealed that OsLIS-L1 regulates the cell proliferation in the first internode under the panicle. Our results indicate that OsLIS-L1 plays an important role in male gametophyte formation and the first internode elongation in rice.
Collapse
Affiliation(s)
- Xinqiang Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research-Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Yi J, Kim SR, Lee DY, Moon S, Lee YS, Jung KH, Hwang I, An G. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:256-70. [PMID: 22111585 DOI: 10.1111/j.1365-313x.2011.04864.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Tapetum development and meiosis play crucial roles in anther development. Here we identified a rice gene, DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1), which controls the early stages of that development. This gene encodes for an endoplasmic reticulum (ER) membrane protein that is present only in cereals. Our T-DNA insertion mutations gave rise to abnormal tapetal formation. Cellular organelles, especially the ER, were underdeveloped, which led to hampered differentiation and degeneration of the tapetum. In addition, the development of pollen mother cells was arrested at the early stages of meiotic prophase I. RNA in-situ hybridization analyses showed that DTM1 transcripts were most abundant in tapetal cells at stages 6 and 7, and moderately in the pollen mother cells and meiocytes. Transcripts of UDT1, which functions in tapetum development during early meiosis, were reduced in dtm1 anthers, as were those of PAIR1, which is involved in chromosome pairing and synapsis during meiosis. However, expression of MSP1 and MEL1, which function in anther wall specification and germ cell division, respectively, was not altered in the dtm1 mutant. Moreover, transcripts of DTM1 were reduced in msp1 mutant anthers, but not in udt1 and pair1 mutants. These results, together with their mutant phenotypes, suggest that DTM1 plays important roles in the ER membrane during early tapetum development, functioning after MSP1 and before UDT1, and also in meiocyte development, after MEL1 and before PAIR1.
Collapse
Affiliation(s)
- Jakyung Yi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Khoo KHP, Able AJ, Able JA. The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1. BMC Res Notes 2012; 5:106. [PMID: 22340255 PMCID: PMC3305362 DOI: 10.1186/1756-0500-5-106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a proteinaceous tripartite structure used to hold homologous chromosomes together during the early stages of meiosis. The yeast ZIP1 and its homologues in other species have previously been characterised as the transverse filament protein of the synaptonemal complex. Proper installation of ZYP1 along chromosomes has been shown to be dependent on the axial element-associated protein, ASY1 in Arabidopsis. RESULTS Here we report the isolation of the wheat (Triticum aestivum) ZYP1 (TaZYP1) and its expression profile (during and post-meiosis) in wild-type, the ph1b deletion mutant as well as in Taasy1 RNAi knock-down mutants. TaZYP1 has a putative DNA-binding S/TPXX motif in its C-terminal region and we provide evidence that TaZYP1 interacts non-preferentially with both single- and double-stranded DNA in vitro. 3-dimensional dual immunofluorescence localisation assays conducted with an antibody raised against TaZYP1 show that TaZYP1 interacts with chromatin during meiosis but does not co-localise to regions of chromatin where TaASY1 is present. The TaZYP1 signal lengthens into regions of chromatin where TaASY1 has been removed in wild-type but this appears delayed in the ph1b mutant. The localisation profile of TaZYP1 in four Taasy1 knock-down mutants is similar to wild-type but TaZYP1 signal intensity appears weaker and more diffused. CONCLUSIONS In contrast to previous studies performed on plant species where ZYP1 signal is sandwiched by ASY1 signal located on both axial elements of the SC, data from the 3-dimensional dual immunofluorescence localisation assays conducted in this study show that TaZYP1 signal only lengthens into regions of chromatin after TaASY1 signal is being unloaded. However, the observation that TaZYP1 loading appears delayed in both the ph1b and Taasy1 mutants suggests that TaASY1 may still be essential for TaZYP1 to play a role in SC formation during meiosis. These data further suggest that the temporal installation of ZYP1 onto pairing homologous chromosomes in wheat is different to that of other plant species and highlights the need to study this synaptonemal complex protein on a species to species basis.
Collapse
Affiliation(s)
- Kelvin HP Khoo
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064
| | - Amanda J Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064
| | - Jason A Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064
| |
Collapse
|
32
|
Khoo KHP, Able AJ, Able JA. Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:514398. [PMID: 22518114 PMCID: PMC3303760 DOI: 10.1155/2012/514398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/25/2011] [Accepted: 11/30/2011] [Indexed: 05/18/2023]
Abstract
Chromosome pairing, synapsis, and DNA recombination are three key processes that occur during early meiosis. A previous study of Poor Homologous Synapsis 1 (PHS1) in maize suggested that PHS1 has a role in coordinating these three processes. Here we report the isolation of wheat (Triticum aestivum) PHS1 (TaPHS1), and its expression profile during and after meiosis. While the TaPHS1 protein has sequence similarity to other plant PHS1/PHS1-like proteins, it also possesses a unique region of oligopeptide repeat units. We show that TaPHS1 interacts with both single- and double-stranded DNA in vitro and provide evidence of the protein region that imparts the DNA-binding ability. Immunolocalisation data from assays conducted using antisera raised against TaPHS1 show that TaPHS1 associates with chromatin during early meiosis, with the signal persisting beyond chromosome synapsis. Furthermore, TaPHS1 does not appear to colocalise with the asynapsis protein (TaASY1) suggesting that these proteins are probably independently coordinated. Significantly, the data from the DNA-binding assays and 3-dimensional immunolocalisation of TaPHS1 during early meiosis indicates that TaPHS1 interacts with DNA, a function not previously observed in either the Arabidopsis or maize PHS1 homologues. As such, these results provide new insight into the function of PHS1 during early meiosis in bread wheat.
Collapse
Affiliation(s)
| | | | - Jason A. Able
- School of Agriculture, Food & Wine, Waite Research Institute, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
33
|
Deveshwar P, Bovill WD, Sharma R, Able JA, Kapoor S. Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC PLANT BIOLOGY 2011; 11:78. [PMID: 21554676 PMCID: PMC3112077 DOI: 10.1186/1471-2229-11-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/09/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed in many plant species at progressive stages of development by using microarray and sequence-by synthesis-technologies to identify genes that regulate anther development. Here we report a comprehensive analysis of rice anther transcriptomes at four distinct stages, focusing on identifying regulatory components that contribute to male meiosis and germline development. Further, these transcriptomes have been compared with the transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. RESULTS Transcriptome profiling of four stages of anther development in rice including pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA) revealed about 22,000 genes expressing in at least one of the anther developmental stages, with the highest number in MA (18,090) and the lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of 1,000 genes specifically expressed in anther stages. From this sub-set, 453 genes were specific to TPA, while 78 and 184 genes were expressed specifically in MA and SCP, respectively. The expression pattern of selected genes has been validated using real time PCR and in situ hybridizations. Gene ontology and pathway analysis of stage-specific genes revealed that those encoding transcription factors and components of protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. CONCLUSIONS Not only have we provided the transcriptome constituents of four landmark stages of anther development in rice but we have also identified genes that express exclusively in these stages. It is likely that many of these candidates may therefore contribute to specific aspects of anther and/or male gametophyte development in rice. In addition, the gene sets that have been produced will assist the plant reproductive community in building a deeper understanding of underlying regulatory networks and in selecting gene candidates for functional validation.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi-110021, India
| | | | | | | | | |
Collapse
|
34
|
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH. Pathways to meiotic recombination in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 190:523-44. [PMID: 21366595 DOI: 10.1111/j.1469-8137.2011.03665.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
35
|
Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. THE PLANT CELL 2011; 23:515-33. [PMID: 21297036 PMCID: PMC3077785 DOI: 10.1105/tpc.110.074369] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 05/17/2023]
Abstract
The rice (Oryza sativa) floral homeotic C-class gene, MADS3, was previously shown to be required for stamen identity determination during early flower development. Here, we describe a role for MADS3 in regulating late anther development and pollen formation. Consistent with this role, MADS3 is highly expressed in the tapetum and microspores during late anther development, and a newly identified MADS3 mutant allele, mads3-4, displays defective anther walls, aborted microspores, and complete male sterility. During late anther development, mads3-4 exhibits oxidative stress-related phenotypes. Microarray analysis revealed expression level changes in many genes in mads3-4 anthers. Some of these genes encode proteins involved in reactive oxygen species (ROS) homeostasis; among them is MT-1-4b, which encodes a type 1 small Cys-rich and metal binding protein. In vivo and in vitro assays showed that MADS3 is associated with the promoter of MT-1-4b, and recombinant MT-1-4b has superoxide anion and hydroxyl radical scavenging activity. Reducing the expression of MT-1-4b causes decreased pollen fertility and an increased level of superoxide anion in transgenic plants. Our findings suggest that MADS3 is a key transcriptional regulator that functions in rice male reproductive development, at least in part, by modulating ROS levels through MT-1-4b.
Collapse
Affiliation(s)
- Lifang Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changsong Yin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Cui
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|
36
|
Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC PLANT BIOLOGY 2011; 11:10. [PMID: 21226959 PMCID: PMC3031230 DOI: 10.1186/1471-2229-11-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/12/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. RESULTS A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. CONCLUSIONS Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.
Collapse
Affiliation(s)
- Yutaka Sato
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Baltazar Antonio
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobukazu Namiki
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Ritsuko Motoyama
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiko Sugimoto
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Hinako Takehisa
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Minami
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Kaori Kamatsuki
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshiaki Nagamura
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
37
|
Abstract
The events occurring at the onset of meiosis have not been fully elucidated. In the present study, OsAM1 was identified in rice (Oryza sativa L.) by map-based cloning. OsAM1, a homolog of Arabidopsis SWI1 and maize AM1, encodes a protein with a coiled-coil domain in its central region. In the Osam1 mutant, pollen mother cells are arrested at leptotene, showing that OsAM1 is required for the leptotene-zygotene transition. Immunocytological analysis revealed that OsAM1 exists as foci in early prophase I meiocytes. Very faint OsREC8 foci persisted in the Osam1 mutant, indicating that OsAM1 is not required for the initial meiotic recruitment of OsREC8. In the absence of OsAM1, many other critical meiotic components, including PAIR2, ZEP1 and OsMER3, could not be correctly installed onto chromosomes. In contrast, in pair2, Osmer3 and zep1 mutants, OsAM1 could be loaded normally, suggesting that OsAM1 plays a fundamental role in building the proper chromosome structure at the beginning of meiosis.
Collapse
|
38
|
Nonomura KI, Eiguchi M, Nakano M, Takashima K, Komeda N, Fukuchi S, Miyazaki S, Miyao A, Hirochika H, Kurata N. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L.). PLoS Genet 2011; 7:e1001265. [PMID: 21253568 PMCID: PMC3017114 DOI: 10.1371/journal.pgen.1001265] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/02/2010] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM) proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1), though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species. Meiosis is a pivotal event to produce haploid spores and gametes in all sexually reproducing species and is a fundamentally different type of cell cycle from mitosis. Thus, the molecular mechanisms to switch the cell cycle from mitosis to meiosis have been studied by many researchers. In yeast and metazoans, RNA-binding proteins are known to play important roles in the post-transcriptional regulation of genes implicated in the meiotic entry and meiosis. In contrast, in the plant kingdom, the mechanisms to control the meiotic entry have largely remained elusive. In this study, we discover a novel RNA-recognition-motif (RRM) protein in rice (Oryza sativa L.), designated MEL2, and demonstrate that MEL2 is required for the faithful transition of germ cells from mitosis to meiotic cell cycle. Rice MEL2 shows partial similarity with human DAZAP1, which is an RRM protein and relates to Azoospermia syndrome in human, while there are critical structural differences between germline-specific RRM proteins of mammals and plants. Our findings will lead the molecular-biological studies of plant meiotic entry to the next steps and will enable a comparison of the systems of meiotic entry between animals and plants.
Collapse
Affiliation(s)
- Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu L, Cheng Z, Lei C, Wang J, Guo X, Wu F, Ikehashi H, Wang H, Wan J. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. THE PLANT CELL 2011; 23:111-29. [PMID: 21282525 PMCID: PMC3051251 DOI: 10.1105/tpc.109.073692] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 05/20/2023]
Abstract
In flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence. Map-based molecular cloning revealed that PSS1 encodes a kinesin-1-like protein. PSS1 is broadly expressed in various organs, with highest expression in panicles. Furthermore, PSS1 expression is significantly upregulated during anther development and peaks during male meiosis. The PSS1-green fluorescent protein fusion is predominantly localized in the cytoplasm of rice protoplasts. Substitution of a conserved Arg (Arg-289) to His in the PSS1 motor domain nearly abolishes its microtubule-stimulated ATPase activity. Consistent with this, lagging chromosomes and chromosomal bridges were found at anaphase I and anaphase II of male meiosis in the pss1 mutant. Together, our results suggest that PSS1 defines a novel member of the kinesin-1 family essential for male meiotic chromosomal dynamics, male gametogenesis, and anther dehiscence in rice.
Collapse
Affiliation(s)
- Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchang Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhai Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Su
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hiroshi Ikehashi
- Department of Plant and Resources College of Bioresources, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
40
|
Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N. Rice expression atlas in reproductive development. PLANT & CELL PHYSIOLOGY 2010; 51:2060-81. [PMID: 21062870 DOI: 10.1093/pcp/pcq165] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene expression throughout the reproductive process in rice (Oryza sativa) beginning with primordia development through pollination/fertilization to zygote formation was analyzed. We analyzed 25 stages/organs of rice reproductive development including early microsporogenesis stages with 57,381 probe sets, and identified around 26,000 expressed probe sets in each stage. Fine dissection of 25 reproductive stages/organs combined with detailed microarray profiling revealed dramatic, coordinated and finely tuned changes in gene expression. A decrease in expressed genes in the pollen maturation process was observed in a similar way with Arabidopsis and maize. An almost equal number of ab initio predicted genes and cloned genes which appeared or disappeared coordinated with developmental stage progression. A large number of organ-/stage-specific genes were identified; notably 2,593 probe sets for developing anther, including 932 probe sets corresponding to ab initio predicted genes. Analysis of cell cycle-related genes revealed that several cyclin-dependent kinases (CDKs), cyclins and components of SCF E3 ubiquitin ligase complexes were expressed specifically in reproductive organs. Cell wall biosynthesis or degradation protein genes and transcription factor genes expressed specifically in reproductive stages were also newly identified. Rice genes homologous to reproduction-related genes in other plants showed expression profiles both consistent and inconsistent with their predicted functions. The rice reproductive expression atlas is likely to be the most extensive and most comprehensive data set available, indispensable for unraveling functions of many specific genes in plant reproductive processes that have not yet been thoroughly analyzed.
Collapse
Affiliation(s)
- Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang K, Wang M, Tang D, Shen Y, Qin B, Li M, Cheng Z. PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 2010; 22:12-9. [PMID: 21119003 PMCID: PMC3016970 DOI: 10.1091/mbc.e10-08-0667] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PAIR3, an axis-associated protein, is essential for bouquet formation, initial homologous pairing and normal recombination, and SC assembly in rice. During meiosis, the paired homologous chromosomes are tightly held together by the synaptonemal complex (SC). This complex consists of two parallel axial/lateral elements (AEs/LEs) and one central element. Here, we observed that PAIR3 localized to the chromosome core during prophase I and associated with both unsynapsed AEs and synapsed LEs. Analyses of the severe pair3 mutant demonstrated that PAIR3 was essential for bouquet formation, homologous pairing and normal recombination, and SC assembly. In addition, we showed that although PAIR3 was not required for the initial recruitment of PAIR2, it was required for the proper association of PAIR2 with chromosomes. Dual immunostaining revealed that PAIR3 highly colocalized with REC8. Moreover, studies using a rec8 mutant indicated that PAIR3 localized to chromosomes in a REC8-dependent manner.
Collapse
Affiliation(s)
- Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
42
|
The Post-meiotic Deficicent Anther1 (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics 2010; 37:37-46. [PMID: 20171576 DOI: 10.1016/s1673-8527(09)60023-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/26/2009] [Accepted: 12/02/2009] [Indexed: 11/24/2022]
Abstract
To understand the molecular mechanism of male reproductive development in the model crop rice, we isolated a complete male sterile mutant post-meiotic deficient anther1 (pda1) from a gamma-ray-treated rice mutant library. Genetic analysis revealed that the pda1 mutant was controlled by a recessive nucleus gene. The pda1 mutant anther seemed smaller with white appearance. Histological analysis demonstrated that the pda1 mutant anther undergoes normal early tapetum development without obvious altered meiosis. However, the pda1 mutant displayed obvious defects in postmeiotic tapetal development, abnormal degeneration occurred in the tapetal cells at stage 9 of anther development. Also we observed abnormal lipidic Ubisch bodies from the tapetal layer of the pda1 mutant, causing no obvious pollen exine formation. RT-PCR analysis indicated that the expression of genes involved in anther development including GAMYB, OsC4 and Wax-deficient anther1 (WDA1) was greatly reduced in the pda1 mutant anther. Using map-based cloning approach, the PDA1 gene was finely mapped between two markers HLF610 and HLF627 on chromosome 6 using 3,883 individuals of F(2) population. The physical distance between HLF610 and HLF627 was about 194 kb. This work suggests that PDA1 is required for post-meiotic tapetal development and pollen/microspore formation in rice.
Collapse
|
43
|
Non-homologous chromosome pairing and crossover formation in haploid rice meiosis. Chromosoma 2010; 120:47-60. [DOI: 10.1007/s00412-010-0288-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 12/17/2022]
|
44
|
Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res 2010; 316:158-71. [PMID: 19686734 DOI: 10.1016/j.yexcr.2009.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
Abstract
HORMA domain-containing proteins regulate interactions between homologous chromosomes (homologs) during meiosis in a wide range of eukaryotes. We have identified a mouse HORMA domain-containing protein, HORMAD1, and biochemically and cytologically shown it to be associated with the meiotic chromosome axis. HORMAD1 first accumulates on the chromosomes during the leptotene to zygotene stages of meiotic prophase I. As germ cells progress into the pachytene stage, HORMAD1 disappears from the synapsed chromosomal regions. However, once the chromosomes desynapse during the diplotene stage, HORMAD1 again accumulates on the chromosome axis of the desynapsed homologs. HORMAD1 thus preferentially localizes to unsynapsed or desynapsed chromosomal regions during the prophase I stage of meiosis. Analysis of mutant strains lacking different components of the synaptonemal complex (SC) revealed that establishment of the SC is required for the displacement of HORMAD1 from the chromosome axis. Our results therefore strongly suggest that also mammalian cells use a HORMA domain-containing protein as part of a surveillance system that monitors synapsis or other interactions between homologs.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CLC, Voermans W, Woudenberg L, de Wit JPC, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E. Reverse breeding: a novel breeding approach based on engineered meiosis. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:837-45. [PMID: 19811618 PMCID: PMC2784905 DOI: 10.1111/j.1467-7652.2009.00450.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/30/2009] [Accepted: 08/03/2009] [Indexed: 05/18/2023]
Abstract
Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome.
Collapse
Affiliation(s)
- Rob Dirks
- Rijk Zwaan Breeding BVFijnaart, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alisher Touraev
- Max F. Perutz Laboratories, Department of Plant Molecular Biology, Vienna UniversityVienna, Austria
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityPA, USA
- School of Life Sciences, Institute of Plant Biology, Fudan UniversityShanghai, China
| | - Hans de Jong
- Laboratory of Genetics, Wageningen UniversityWageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen UniversityWageningen, the Netherlands
- *Correspondence (fax +31 317 483146; e-mail )
| |
Collapse
|
46
|
Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ, Toth A. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 2009; 5:e1000702. [PMID: 19851446 PMCID: PMC2758600 DOI: 10.1371/journal.pgen.1000702] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers are produced when programmed double-strand breaks (DSBs) are repaired by recombination from homologous chromosomes (homologues). In a wide variety of organisms, meiotic HORMA-domain proteins are required to direct DSB repair towards homologues. This inter-homologue bias is required for efficient homology search, homologue alignment, and crossover formation. HORMA-domain proteins are also implicated in other processes related to crossover formation, including DSB formation, inhibition of promiscuous formation of the synaptonemal complex (SC), and the meiotic prophase checkpoint that monitors both DSB processing and SCs. We examined the behavior of two previously uncharacterized meiosis-specific mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type mice and in mutants defective in DSB processing or SC formation. HORMADs are preferentially associated with unsynapsed chromosome axes throughout meiotic prophase. We observe a strong negative correlation between SC formation and presence of HORMADs on axes, and a positive correlation between the presumptive sites of high checkpoint-kinase ATR activity and hyper-accumulation of HORMADs on axes. HORMADs are not depleted from chromosomes in mutants that lack SCs. In contrast, DSB formation and DSB repair are not absolutely required for depletion of HORMADs from synapsed axes. A simple interpretation of these findings is that SC formation directly or indirectly promotes depletion of HORMADs from chromosome axes. We also find that TRIP13 protein is required for reciprocal distribution of HORMADs and the SYCP1/SC-component along chromosome axes. Similarities in mouse and budding yeast meiosis suggest that TRIP13/Pch2 proteins have a conserved role in establishing mutually exclusive HORMAD-rich and synapsed chromatin domains in both mouse and yeast. Taken together, our observations raise the possibility that involvement of meiotic HORMA-domain proteins in the regulation of homologue interactions is conserved in mammals. Generation of haploid gametes in most organisms requires that homologues become connected via crossovers during meiosis. Efficient formation of crossovers depends on HORMA-domain proteins in diverse taxa. These proteins ensure that programmed meiotic DSBs are preferentially repaired from homologues, rather than from sister chromatids. This inter-homologue bias is crucial for homology search and crossovers formation. HORMA-domain proteins have been also implicated in DSB formation, in suppression of synaptonemal complex formation between non-homologous chromosomes, and in the meiotic prophase checkpoint that monitors DSB repair. Despite the importance of HORMA-domain proteins in various organisms, a role for these proteins in mammalian meiosis hasn't been reported. We examined the behaviour of meiotic mouse HORMA-domain proteins—HORMAD1 and HORMAD2—in wild-type and meiotic mutants. HORMAD1/2 preferentially accumulate on unsynapsed chromosome axes. Our data suggest that HORMAD1/2 depletion from chromosomes is a response to synaptonemal complex formation and it that is a conserved process supported by TRIP13/Pch2 AAA-ATPase. Assuming that HORMA-domain functions are conserved in mammals, we speculate that depletion of HORMADs from axes might contribute to the down-regulation of inter-homologue bias and the prophase checkpoint once homology search is completed and synaptonemal complexes form between aligned homologues.
Collapse
Affiliation(s)
- Lukasz Wojtasz
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Katrin Daniel
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Ignasi Roig
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | | | - Huiling Xu
- Divisions of Radiation Oncology and Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Verawan Boonsanay
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | | | - Howard J. Cooke
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Michael J. McKay
- Department of Radiation Oncology, Australian National University and the Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Attila Toth
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
47
|
Chang L, Ma H, Xue HW. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice. Cell Res 2009; 19:768-82. [PMID: 19417775 DOI: 10.1038/cr.2009.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis SDS (SOLO DANCERS) and RCK (ROCK-N-ROLLERS) genes are important for male meiosis, but it is still unknown whether they represent conserved functions in plants. We have performed phylogenetic analyses of SDS and RCK and their respective homologs, and identified their putative orthologs in poplar and rice. Quantitative real-time RT-PCR analysis indicated that rice SDS and RCK are expressed preferentially in young flowers, and transgenic RNAi rice lines with reduced expression of these genes exhibited normal vegetative development, but showed significantly reduced fertility with partially sterile flowers and defective pollens. SDS deficiency also caused a decrease in pollen amounts. Further cytological examination of male meiocytes revealed that the SDS deficiency led to defects in homolog interaction and bivalent formation in meiotic prophase I, and RCK deficiency resulted in defective meiotic crossover formation. These results indicate that rice SDS and RCK genes have similar functions to their Arabidopsis orthologs. Because rice and Arabidopsis, respectively, are members of monocots and eudicots, two largest groups of flowering plants, our results suggest that the functions of SDS and RCK are likely conserved in flowering plants.
Collapse
Affiliation(s)
- Ling Chang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
48
|
|
49
|
Able JA, Crismani W, Boden SA. Understanding meiosis and the implications for crop improvement. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:575-588. [PMID: 32688671 DOI: 10.1071/fp09068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/01/2009] [Indexed: 06/11/2023]
Abstract
Over the past 50 years, the understanding of meiosis has aged like a fine bottle of wine: the complexity is developing but the wine itself is still young. While emphasis in the plant kingdom has been placed on the model diploids Arabidopsis (Arabidopsis thaliana L.) and rice (Orzya sativa L.), our research has mainly focussed on the polyploid, bread wheat (Triticum aestivum L.). Bread wheat is an important food source for nearly two-thirds of the world's population. While creating new varieties can be achieved using existing or advanced breeding lines, we would also like to introduce beneficial traits from wild related species. However, expanding the use of non-adapted and wild germplasm in cereal breeding programs will depend on the ability to manipulate the cellular process of meiosis. Three important and tightly-regulated events that occur during early meiosis are chromosome pairing, synapsis and recombination. Which key genes control these events in meiosis (and how they do so) remains to be completely answered, particularly in crops such as wheat. Although the majority of published findings are from model organisms including yeast (Saccharomyces cerevisiae) and the nematode Caenorhabditis elegans, information from the plant kingdom has continued to grow in the past decade at a steady rate. It is with this new knowledge that we ask how meiosis will contribute to the future of cereal breeding. Indeed, how has it already shaped cereal breeding as we know it today?
Collapse
Affiliation(s)
- Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Wayne Crismani
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
50
|
Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:303-15. [PMID: 19392701 DOI: 10.1111/j.1365-313x.2009.03870.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and important for genetic diversity among individuals. Although a number of genes regulating homologous chromosome pairing and synapsis have been identified in the plant kingdom, their molecular basis remains poorly understood. In this study, we identified a novel gene, PAIR3 (HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS 3), required for homologous chromosome pairing and synapsis in rice. Two independent alleles, designated pair3-1 and pair3-2, were identified in our T-DNA insertional mutant library which could not form bivalents due to failure of homologous chromosome pairing and synapsis at diakinesis, resulting in sterility in both male and female gametes. Suppression of PAIR3 by RNAi produced similar results to the T-DNA insertion lines. PAIR3 encodes a protein that contains putative coiled-coil motifs, but does not have any close homologs in other organisms. PAIR3 is preferentially expressed in reproductive organs, especially in pollen mother cells and the ovule tissues during meiosis. Our results suggest that PAIR3 plays a crucial role in homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Wenya Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|