1
|
Dayama BR, Mahadik VA, Somani D, Shinde BA, Kondhare KR, Karthikeyan M, Kadoo NY. Transcriptome analyses reveal TaWRKY41 as a potential candidate governing spot blotch resistance in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:591-608. [PMID: 40443467 PMCID: PMC12116962 DOI: 10.1007/s12298-025-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 06/02/2025]
Abstract
Spot blotch disease caused by Bipolaris sorokiniana poses a significant threat to wheat production. Cultivation of disease-resistant wheat genotypes appears to be the most practical approach to mitigate the impact of this devastating disease. However, the molecular responses of wheat plants during spot blotch disease progression remain poorly understood. This study employed RNA-sequencing to unravel the spatiotemporal molecular events underlying the resistance mechanism in the spot blotch susceptible and resistant wheat genotypes. This study further provides a comprehensive overview of differentially expressed transcripts through functional analysis and transcription factor identification, elucidating the biological mechanisms governing wheat-B. sorokiniana interaction. In the resistant genotype, the expression of one of the key transcription factors, TaWRKY41, was significantly induced upon pathogen inoculation. Computational studies, electrophoretic-mobility shift assay, and yeast one-hybrid assay confirmed the interaction of the recombinant TaWRKY41 protein with W-box elements present in the promoters of plant defense-related genes. Furthermore, co-expression network analyses identified downstream genes positively correlated with TaWRKY41, providing insights into their probable involvement in the defense response. Overall, our investigation suggests that TaWRKY41 contributes to spot blotch resistance in wheat. This knowledge can help develop new disease-resistant wheat varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01583-5.
Collapse
Affiliation(s)
- Bhakti R. Dayama
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Varsha A. Mahadik
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Deepika Somani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Balkrishna A. Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Rajbaug, Loni Kalbhor, Pune, Maharashtra 412201 India
| | - Kirtikumar R. Kondhare
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Muthukumarasamy Karthikeyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Narendra Y. Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
2
|
Chen Z, Huang J, Li J, Menke FLH, Jones JDG, Guo H. Reversible ubiquitination conferred by domain shuffling controls paired NLR immune receptor complex homeostasis in plant immunity. Nat Commun 2025; 16:1984. [PMID: 40011440 PMCID: PMC11865428 DOI: 10.1038/s41467-025-57231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Plant intracellular NLR immune receptors can function individually or in pairs to detect pathogen effectors and activate immune responses. NLR homeostasis has to be tightly regulated to ensure proper defense without triggering autoimmunity. However, in contrast to singleton NLRs, the mechanisms controlling the paired NLRs complex homeostasis are less understood. The paired Arabidopsis RRS1/RPS4 immune receptor complex confers disease resistance through effector recognition mediated by the integrated WRKY domain of RRS1. Here, through proximity labeling, we reveal a ubiquitination-deubiquitination cycle that controls the homeostasis of the RRS1/RPS4 complex. E3 ligase RARE directly binds and ubiquitinates RRS1's WRKY domain to promote its proteasomal degradation, thereby destabilizing RPS4 indirectly and compromising the stability and function of the RRS1/RPS4 complex. Conversely, the deubiquitinating enzymes UBP12/UBP13 deubiquitinate RRS1's WRKY domain, counteracting RARE's effects. Interestingly, the abundance of WRKY transcription factors WRKY70 and WRKY41 is also regulated by RARE and UBP12/UBP13. Phylogenetic analysis suggests this regulation likely transferred from WRKY70/WRKY41 to RRS1 upon WRKY domain integration. Our findings improve our understanding of homeostatic regulation of paired NLR complex and uncover a paradigm whereby domain integration can co-opt preexisting post-translational modification to regulate novel protein functions.
Collapse
Affiliation(s)
- Zhiyi Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jianyu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hailong Guo
- State Key Laboratory of Agricultural and Forestry Biosecurity, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Li H, Lu Y, Liu Z, Ren Q, Liu Z, Liu S, Ren R, Wang F, Liu Y, Zhang Y. Transcriptomic analysis unveils alterations in the genetic expression profile of tree peony (Paeonia suffruticosa Andrews) infected by Alternaria alternata. BMC Genomics 2024; 25:861. [PMID: 39277723 PMCID: PMC11402206 DOI: 10.1186/s12864-024-10784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Black spot disease in tree peony caused by the fungal necrotroph A. alternata, is a primary limiting factor in the production of the tree peony. The intricate molecular mechanisms underlying the tree peony resistance to A. alternata have not been thoroughly investigated. RESULTS The present study utilized high-throughput RNA sequencing (RNA-seq) technology to conduct global expression profiling, revealing an intricate network of genes implicated in the interaction between tree peony and A. alternata. RNA-Seq libraries were constructed from leaf samples and high-throughput sequenced using the BGISEQ-500 sequencing platform. Six distinct libraries were characterized. M1, M2 and M3 were derived from leaves that had undergone mock inoculation, while I1, I2 and I3 originated from leaves that had been inoculated with the pathogen. A range of 10.22-11.80 gigabases (Gb) of clean bases were generated, comprising 68,131,232 - 78,633,602 clean bases and 56,677 - 68,996 Unigenes. A grand total of 99,721 Unigenes were acquired, boasting a mean length of 1,266 base pairs. All these 99,721 Unigenes were annotated in various databases, including NR (Non-Redundant, 61.99%), NT (Nucleotide, 45.50%), SwissProt (46.32%), KEGG (Kyoto Encyclopedia of Genes and Genomes, 49.33%), KOG (clusters of euKaryotic Orthologous Groups, 50.18%), Pfam (Protein family, 47.16%), and GO (Gene Ontology, 34.86%). In total, 66,641 (66.83%) Unigenes had matches in at least one database. By conducting a comparative transcriptome analysis of the mock- and A. alternata-infected sample libraries, we found differentially expressed genes (DEGs) that are related to phytohormone signalling, pathogen recognition, active oxygen generation, and circadian rhythm regulation. Furthermore, multiple different kinds of transcription factors were identified. The expression levels of 10 selected genes were validated employing qRT-PCR (quantitative real-time PCR) to confirm RNA-Seq data. CONCLUSIONS A multitude of transcriptome sequences have been generated, thus offering a valuable genetic repository for further scholarly exploration on the immune mechanisms underlying the tree peony infected by A. alternata. While the expression of most DEGs increased, a few DEGs showed decreased expression.
Collapse
Affiliation(s)
- Huiyun Li
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| | - Yifan Lu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zixin Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Qing Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Zhongyan Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Sibing Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Ruili Ren
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Fei Wang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yi Liu
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China
| | - Yanzhao Zhang
- College of Life Science, Luoyang Normal University, Luoyang, Henan, 471934, China.
| |
Collapse
|
4
|
Calderón AA, Almagro L, Martínez-Calderón A, Ferrer MA. Transcriptional reprogramming in sound-treated Micro-Tom plants inoculated with Pseudomonas syringae pv. tomato DC3000. PHYSIOLOGIA PLANTARUM 2024; 176:e14335. [PMID: 38705728 DOI: 10.1111/ppl.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.
Collapse
Affiliation(s)
- Antonio A Calderón
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | | - María A Ferrer
- Departamento de Ingeniería Agronómica, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
5
|
Zhang Z, Jiang C, Chen C, Su K, Lin H, Zhao Y, Guo Y. VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway. HORTICULTURE RESEARCH 2023; 10:uhad172. [PMID: 37841502 PMCID: PMC10569242 DOI: 10.1093/hr/uhad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
Grape white rot is a disease caused by Coniella diplodiella (Speg.) Sacc. (Cd) can drastically reduce the production and quality of grape (Vitis vinifera). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member VvWRKY5 was highly induced by Cd infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and Arabidopsis) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of VvJAZ2 (a JA signaling suppressor) and VvMYC2 (a JA signaling activator), thereby inhibiting and activating the transcription of VvJAZ2 and VvMYC2, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of VvJAZ2 and VvMYC2 activities by VvWRKY5, respectively. When VvWRKY5 was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Kai Su
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
6
|
Lee MB, Han H, Lee S. The role of WRKY transcription factors, FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria × ananassa Duch.). BMC PLANT BIOLOGY 2023; 23:420. [PMID: 37691125 PMCID: PMC10494375 DOI: 10.1186/s12870-023-04426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The cultivated strawberry (Fragaria × ananassa Duch.) is one of the most economically important horticultural crops worldwide. Botrytis fruit rot (BFR) caused by the necrotrophic fungal pathogen Botrytis cinerea is the most devasting disease of cultivated strawberries. Most commercially grown strawberry varieties are susceptible to BFR, and controlling BFR relies on repeated applications of various fungicides. Despite extensive efforts, breeding for BFR resistance has been unsuccessful, primarily due to lack of information regarding the mechanisms of disease resistance and genetic resources available in strawberry. RESULTS Using a reverse genetics approach, we identified candidate genes associated with BFR resistance and screened Arabidopsis mutants using strawberry isolates of B. cinerea. Among the five Arabidopsis T-DNA knockout lines tested, the mutant line with AtWRKY53 showed the greatest reduction in disease symptoms of BFR against the pathogen. Two genes, FaWRKY29 and FaWRKY64, were identified as orthologs in the latest octoploid strawberry genome, 'Florida Brilliance'. We performed RNAi-mediated transient assay and found that the disease frequencies were significantly decreased in both FaWRKY29- and FaWRKY64-RNAi fruits of the strawberry cultivar, 'Florida Brilliance'. Furthermore, our transcriptomic data analysis revealed significant regulation of genes associated with ABA and JA signaling, plant cell wall composition, and ROS in FaWRKY29 or FaWRKY64 knockdown strawberry fruits in response to the pathogen. CONCLUSION Our study uncovered the foundational role of WRKY transcription factor genes, FaWRKY29 and FaWRKY64, in conferring resistance against B. cinerea. The discovery of susceptibility genes involved in BFR presents significant potential for developing resistance breeding strategies in cultivated strawberries, potentially leveraging CRISPR-based gene editing techniques.
Collapse
Affiliation(s)
- Man Bo Lee
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Korea
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Hyeondae Han
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
7
|
Patel S, Patel J, Silliman K, Hall N, Bowen K, Koebernick J. Comparative Transcriptome Profiling Unfolds a Complex Defense and Secondary Metabolite Networks Imparting Corynespora cassiicola Resistance in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2023; 24:10563. [PMID: 37445741 DOI: 10.3390/ijms241310563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Katherine Silliman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Nathan Hall
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Zhao Y, Mao W, Tang W, Soares MA, Li H. Wild Rosa Endophyte M7SB41-Mediated Host Plant's Powdery Mildew Resistance. J Fungi (Basel) 2023; 9:620. [PMID: 37367556 DOI: 10.3390/jof9060620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Xiao S, Ming Y, Hu Q, Ye Z, Si H, Liu S, Zhang X, Wang W, Yu Y, Kong J, Klosterman SJ, Lindsey K, Zhang X, Aierxi A, Zhu L. GhWRKY41 forms a positive feedback regulation loop and increases cotton defence response against Verticillium dahliae by regulating phenylpropanoid metabolism. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:961-978. [PMID: 36632704 PMCID: PMC10106861 DOI: 10.1111/pbi.14008] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/04/2023]
Abstract
Despite the established significance of WRKY proteins and phenylpropanoid metabolism in plant immunity, how WRKY proteins modulate aspects of the phenylpropanoid pathway remains undetermined. To understand better the role of WRKY proteins in plant defence, we identified a cotton (Gossypium hirsutum) protein, GhWRKY41, that is, universally and rapidly induced in three disease-resistant cotton cultivars following inoculation with the plant pathogenic fungus, Verticillium dahliae. We show that overexpression of GhWRKY41 in transgenic cotton and Arabidopsis enhances resistance to V. dahliae, while knock-down increases cotton more susceptibility to the fungus. GhWRKY41 physically interacts with itself and directly activates its own transcription. A genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), in combination with RNA sequencing (RNA-seq) analyses, revealed that 43.1% of GhWRKY41-binding genes were up-regulated in cotton upon inoculation with V. dahliae, including several phenylpropanoid metabolism master switches, receptor kinases, and disease resistance-related proteins. We also show that GhWRKY41 homodimer directly activates the expression of GhC4H and Gh4CL, thereby modulating the accumulation of lignin and flavonoids. This finding expands our understanding of WRKY-WRKY protein interactions and provides important insights into the regulation of the phenylpropanoid pathway in plant immune responses by a WRKY protein.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- State Key Lab for Conservation and Utilization of Subtropical Agri‐Biological Resources, College of AgricultureGuangxi UniversityNanningChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Huan Si
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Shiming Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Yu Yu
- Xinjiang Academy of Agricultural & Reclamation SciencesShiheziChina
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCAUSA
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
11
|
Li S, Liu J, Xue C, Lin Y, Yan Q, Chen J, Wu R, Chen X, Yuan X. Identification and Functional Characterization of WRKY, PHD and MYB Three Salt Stress Responsive Gene Families in Mungbean ( Vigna radiata L.). Genes (Basel) 2023; 14:463. [PMID: 36833390 PMCID: PMC9956968 DOI: 10.3390/genes14020463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
WRKY-, PHD-, and MYB-like proteins are three important types of transcription factors in mungbeans, and play an important role in development and stress resistance. The genes' structures and characteristics were clearly reported and were shown to contain the conservative WRKYGQK heptapeptide sequence, Cys4-His-cys3 zinc binding motif, and HTH (helix) tryptophan cluster W structure, respectively. Knowledge on the response of these genes to salt stress is largely unknown. To address this issue, 83 VrWRKYs, 47 VrPHDs, and 149 VrMYBs were identified by using comparative genomics, transcriptomics, and molecular biology methods in mungbeans. An intraspecific synteny analysis revealed that the three gene families had strong co-linearity and an interspecies synteny analysis showed that mungbean and Arabidopsis were relatively close in genetic relationship. Moreover, 20, 10, and 20 genes showed significantly different expression levels after 15 days of salt treatment (p < 0.05; Log2 FC > 0.5), respectively. Additionally, in the qRT-PCR analysis, VrPHD14 had varying degrees of response to NaCl and PEG treatments after 12 h. VrWRKY49 was upregulated by ABA treatment, especially in the beginning (within 24 h). VrMYB96 was significantly upregulated in the early stages of ABA, NaCl, and PEG stress treatments (during the first 4 h). VrWRKY38 was significantly upregulated by ABA and NaCl treatments, but downregulated by PEG treatment. We also constructed a gene network centered on the seven DEGs under NaCl treatment; the results showed that VrWRKY38 was in the center of the PPI network and most of the homologous Arabidopsis genes of the interacted genes were reported to have response to biological stress. Candidate genes identified in this study provide abundant gene resources for the study of salt tolerance in mungbeans.
Collapse
Affiliation(s)
- Shicong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210000, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Qiang Yan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Ranran Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
12
|
Tang Y, Lu L, Huang X, Zhao D, Tao J. The herbaceous peony transcription factor WRKY41a promotes secondary cell wall thickening to enhance stem strength. PLANT PHYSIOLOGY 2023; 191:428-445. [PMID: 36305685 PMCID: PMC9806655 DOI: 10.1093/plphys/kiac507] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Stem bending or lodging caused by insufficient stem strength is an important limiting factor for plant production. Secondary cell walls play a crucial role in plant stem strength, but whether WRKY transcription factors can positively modulate secondary cell wall thickness are remain unknown. Here, we characterized a WRKY transcription factor PlWRKY41a from herbaceous peony (Paeonia lactiflora), which was highly expressed in stems. PlWRKY41a functioned as a nucleus-localized transcriptional activator and enhanced stem strength by positively modulating secondary cell wall thickness. Moreover, PlWRKY41a bound to the promoter of the XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE4 (PlXTH4) and activated the expression of PlXTH4. PlXTH4-overexpressing tobacco (Nicotiana tabacum) had thicker secondary cell walls, resulting in enhanced stem strength, while PlXTH4-silenced P. lactiflora had thinner secondary cell walls, showing decreased stem strength. Additionally, PlWRKY41a directly interacted with PlMYB43 to form a protein complex, and their interaction induced the expression of PlXTH4. These data support that the PlMYB43-PlWRKY41a protein complex can directly activate the expression of PlXTH4 to enhance stem strength by modulating secondary cell wall thickness in P. lactiflora. The results will enhance our understanding of the formation mechanism of stem strength and provide a candidate gene to improve stem straightness in plants.
Collapse
Affiliation(s)
- Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Lili Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Xingqi Huang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daqiu Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
13
|
Cheng C, Yan C, Qi CT, Zhao XL, Liu LX, Guo Y, Leng P, Sun J, Ahmtijiang, Liu J, Liu YG. Metabolome and transcriptome analysis of postharvest peach fruit in response to fungal pathogen Monilinia fructicola infection. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Guillou MC, Vergne E, Aligon S, Pelletier S, Simonneau F, Rolland A, Chabout S, Mouille G, Gully K, Grappin P, Montrichard F, Aubourg S, Renou JP. The peptide SCOOP12 acts on reactive oxygen species homeostasis to modulate cell division and elongation in Arabidopsis primary root. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6115-6132. [PMID: 35639812 DOI: 10.1093/jxb/erac240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Small secreted peptides have been described as key contributors to complex signalling networks that control plant development and stress responses. The Brassicaceae-specific PROSCOOP family encodes precursors of Serine riCh endOgenOus Peptides (SCOOPs). In Arabidopsis SCOOP12 has been shown to promote the defence response against pathogens and to be involved in root development. Here, we explore its role as a moderator of Arabidopsis primary root development. We show that the PROSCOOP12 null mutation leads to longer primary roots through the development of longer differentiated cells while PROSCOOP12 overexpression induces dramatic plant growth impairments. In comparison, the exogenous application of synthetic SCOOP12 peptide shortens roots through meristem size and cell length reductions. Moreover, superoxide anion (O2·-) and hydrogen peroxide (H2O2) production in root tips vary according to SCOOP12 abundance. By using reactive oxygen species scavengers that suppress the proscoop12 phenotype, we showed that root growth regulation by SCOOP12 is associated with reactive oxygen species metabolism. Furthermore, our results suggest that peroxidases act as potential SCOOP12 downstream targets to regulate H2O2 production, which in turn triggers cell wall modifications in root. Finally, a massive transcriptional reprogramming, including the induction of genes from numerous other pathways, including ethylene, salicylic acid, and glucosinolates biosynthesis, was observed, emphasizing its dual role in defence and development.
Collapse
Affiliation(s)
| | - Emilie Vergne
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Sophie Aligon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Aurélia Rolland
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Salem Chabout
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gregory Mouille
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Philippe Grappin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | | | | |
Collapse
|
15
|
The receptor kinase SRF3 coordinates iron-level and flagellin dependent defense and growth responses in plants. Nat Commun 2022; 13:4445. [PMID: 35915109 PMCID: PMC9343624 DOI: 10.1038/s41467-022-32167-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Iron is critical for host–pathogen interactions. While pathogens seek to scavenge iron to spread, the host aims at decreasing iron availability to reduce pathogen virulence. Thus, iron sensing and homeostasis are of particular importance to prevent host infection and part of nutritional immunity. While the link between iron homeostasis and immunity pathways is well established in plants, how iron levels are sensed and integrated with immune response pathways remains unknown. Here we report a receptor kinase SRF3, with a role in coordinating root growth, iron homeostasis and immunity pathways via regulation of callose synthases. These processes are modulated by iron levels and rely on SRF3 extracellular and kinase domains which tune its accumulation and partitioning at the cell surface. Mimicking bacterial elicitation with the flagellin peptide flg22 phenocopies SRF3 regulation upon low iron levels and subsequent SRF3-dependent responses. We propose that SRF3 is part of nutritional immunity responses involved in sensing external iron levels. Iron homeostasis is known to influence plant immune signaling. Here the authors characterize SRF3, a receptor kinase that acts as a negative regulator of callose synthesis, that is required for root responses to iron deficiency and pathogen signals.
Collapse
|
16
|
Huang Z, Song L, Xiao Y, Zhong X, Wang J, Xu W, Jiang CZ. Overexpression of Myrothamnus flabellifolia MfWRKY41 confers drought and salinity tolerance by enhancing root system and antioxidation ability in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:967352. [PMID: 35937333 PMCID: PMC9355591 DOI: 10.3389/fpls.2022.967352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Myrothamnus flabellifolia is the only woody resurrection plant discovered so far and could recover from extreme desiccation condition. However, few genes related to its strong drought tolerance have been characterized, and the underlying molecular mechanisms remains mysterious. Members of WRKY transcription factor family are effective in regulating abiotic stress responses or tolerance in various plants. An early dehydration-induced gene encoding a WRKY transcription factor namely MfWRKY41 was isolated from M. flabellifolia, which is homologous to AtWRKY41 of Arabidopsis. It contains a typical WRKY domain and zinc finger motif, and is located in the nucleus. Comparing to wild type, the four transgenic lines overexpressing MfWRKY41 showed better growth performance under drought and salt treatments, and exhibited higher chlorophyll content, lower water loss rate and stomatal aperture and better osmotic adjustment capacity. These results indicated that MfWRKY41 of M. flabellifolia positively regulates drought as well as salinity responses. Interestingly, the root system architecture, including lateral root number and primary root length, of the transgenic lines was enhanced by MfWRKY41 under both normal and stressful conditions, and the antioxidation ability was also significantly improved. Therefore, MfWRKY41 may have potential application values in genetic improvement of plant tolerance to drought and salinity stresses. The molecular mechanism involving in the regulatory roles of MfWRKY41 is worthy being explored in the future.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yao Xiao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiatong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
17
|
Dong L, Wang M, Zhang X, Liu J, Zhang S. Genome-wide identification, phylogeny and expression analyses of group III WRKY genes in cotton ( Gossypium hirsutum). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Lijun Dong
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Meng Wang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Xue Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Jianfeng Liu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| | - Shuling Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, PR China
| |
Collapse
|
18
|
Fu Y, Li J, Wu H, Jiang S, Zhu Y, Liu C, Xu W, Li Q, Yang L. Analyses of Botrytis cinerea-responsive LrWRKY genes from Lilium regale reveal distinct roles of two LrWRKY transcription factors in mediating responses to B. cinerea. PLANT CELL REPORTS 2022; 41:995-1012. [PMID: 35195770 DOI: 10.1007/s00299-022-02833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Botrytis cinerea induced expression of 15 LrWRKY genes; overexpression of LrWRKY39 and LrWRKY41a increased resistance and susceptibility, respectively, to B. cinerea in a manner related to SA and JA signaling. WRKY transcription factors (TFs), a large family, play important roles in coping with biotic stresses. Lilium regale Wilson is a lily species with strong resistance to fungi and viruses; however, functional characterization of LrWRKY TFs remains very limited. Here, a total of 25 LrWRKY members were identified from the L. regale transcriptome, and 15 LrWRKY genes were significantly induced by Botrytis cinerea. Based on their structural features, B. cinerea-responsive LrWRKY genes could be classified into six subgroups (Groups I, IIa-d, and III), and sequence alignment showed that 12 LrWRKY proteins have a well-conserved WRKYGQK domain, while 3 LrWRKYs have a variant sequence (WRKYGKK or WRMYEQK). Quantitative RT-PCR analysis revealed tissue-specific expression of B. cinerea-responsive LrWRKY genes and their expression profiles in response to defense-related hormones salicylic acid (SA), methyl jasmonate (MeJA) and hydrogen peroxide. LrWRKY39 and LrWRKY41a, which encode two LrWRKY TFs with different three-dimensional (3D) models of the WRKY domain, were cloned, and both proteins were targeted to the nucleus. Overexpression of LrWRKY39 and LrWRKY41a in Arabidopsis thaliana increased the resistance and susceptibility to B. cinerea, respectively, compared to the wild type. Similar results were also observed in tobacco and lily (L. longiflorum 'Snow Queen') by transient transformation analyses. Their distinct roles may be related to changes in the transcript levels of SA-/JA-responsive genes. Our results provide new insights into B. cinerea-responsive LrWRKY members and the biological functions of two different 3D models of LrWRKY TFs in defense responses to B. cinerea infection.
Collapse
Affiliation(s)
- Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Juan Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Han Wu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Sijia Jiang
- Heilongjiang Forest Botanical Garden, Harbin, 150046, Heilongjiang Province, China
| | - Yiyong Zhu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Chunyu Liu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - WenJi Xu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
19
|
Wang Z, Wang S, Liu P, Yang X, He X, Xie X, Luo Z, Wu M, Wang C, Yang J. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111154. [PMID: 35067314 DOI: 10.1016/j.plantsci.2021.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Phenylpropanoids are important secondary metabolites that have multifaceted effects on plant growth, development, and environmental adaptation. WRKY41 has been shown to repress anthocyanins synthesis in Arabidopsis, but its full roles in regulating plant phenylpropanoids metabolism still remains to be further studied. Here, we cloned two NtWRKY41 genes from N. tabacum genome, and NtWRKY41a showed higher expression levels than NtWRKY41b genes in all the tobacco tissues examined. Overexpression and knock-out of NtWRKY41a gene revealed that NtWRKY41a promoted the biosynthesis of Chlorogenic acid (CGA) and lignin, but repressed the accumulation of scopoletin and flavonoids in tobacco. Transcriptome analysis found 7 phenylpropanoids related differentially expressed genes (DEGs) between WT and NtWRKY41a-OE plants, among which the transcription of NtCCoAOMT and NtHST was significantly induced by posttranslational activation of NtWRKY41a, while those of NtF6'H1 and NtGT3 was significantly repressed by NtWRKY41a. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtWRKY41a could bind to the promoter regions of these four genes to regulate their transcription. Moreover, ectopic expression of NtWRKY41a also promoted the transcription of several NtLOX and NtHPL genes, which encode key enzymes involved in the oxylipin pathway. Our findings revealed new functions of NtWRKY41a in modulating the distribution of metabolism flux in phenylpropanoids pathway, and provided a promising target for manipulating phenylpropanoids contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shuaibin Wang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xiaonian Yang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses. Viruses 2021; 13:v13091820. [PMID: 34578401 PMCID: PMC8473359 DOI: 10.3390/v13091820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Among the numerous biological constraints that hinder cassava (Manihot esculenta Crantz) production, foremost is cassava mosaic disease (CMD) caused by virus members of the family Geminiviridae, genus Begomovirus. The mechanisms of CMD tolerance and susceptibility are not fully understood; however, CMD susceptible T200 and tolerant TME3 cassava landraces have been shown to exhibit different large-scale transcriptional reprogramming in response to South African cassava mosaic virus (SACMV). Recent identification of 85 MeWRKY transcription factors in cassava demonstrated high orthology with those in Arabidopsis, however, little is known about their roles in virus responses in this non-model crop. Significant differences in MeWRKY expression and regulatory networks between the T200 and TME3 landraces were demonstrated. Overall, WRKY expression and associated hormone and enriched biological processes in both landraces reflect oxidative and other biotic stress responses to SACMV. Notably, MeWRKY11 and MeWRKY81 were uniquely up and downregulated at 12 and 67 days post infection (dpi) respectively in TME3, implicating a role in tolerance and symptom recovery. AtWRKY28 and AtWRKY40 homologs of MeWRKY81 and MeWRKY11, respectively, have been shown to be involved in regulation of jasmonic and salicylic acid signaling in Arabidopsis. AtWRKY28 is an interactor in the RPW8-NBS resistance (R) protein network and downregulation of its homolog MeWRKY81 at 67 dpi in TME3 suggests a negative role for this WRKY in SACMV tolerance. In contrast, in T200, nine MeWRKYs were differentially expressed from early (12 dpi), middle (32 dpi) to late (67 dpi) infection. MeWRKY27 (homolog AtWRKY33) and MeWRKY55 (homolog AtWRKY53) were uniquely up-regulated at 12, 32 and 67 dpi in T200. AtWRKY33 and AtWRKY53 are positive regulators of leaf senescence and oxidative stress in Arabidopsis, suggesting MeWRKY55 and 27 contribute to susceptibility in T200.
Collapse
|
21
|
Identification, evolution and expression analysis of WRKY gene family in Eucommia ulmoides. Genomics 2021; 113:3294-3309. [PMID: 34022347 DOI: 10.1016/j.ygeno.2021.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
The WRKY transcription factors is one of the largest families of transcription factors (TFs) in plants and involved in multiple biological processes. However, the role of the WRKY family had not been reported in Eucommia ulmoides. In this study, 45 WRKY genes (EuWRKY1-45) with conserved WRKY domain were identified in E. ulmoides and classified into three groups. The group II was further divided into five subgroups based on phylogenetic analysis, and each clade was well supported by the conserved motifs. All the genes were located on 34 different scaffolds respectively. A number of development-, light-, hormone-, and stress-related elements were randomly distributed in the promoter sequences of EuWRKYs. Expression profiles indicated that EuWRKY genes were involved in leaf development, and majority of EuWRKYs genes were highly expressed in leaf buds. Co-expression analysis of WRKYs suggested an intricate interplay of growth-related responses. EuWRKY4 was involved in a complex proteins interaction network. Collectively, our results provide extensive insights into the WRKY gene family, thereby contributing to the screening of additional candidate genes in E. ulmoides.
Collapse
|
22
|
Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola. Sci Rep 2021; 11:4407. [PMID: 33623070 PMCID: PMC7902848 DOI: 10.1038/s41598-021-83267-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 11/08/2022] Open
Abstract
Genetic resistance to blackleg (Leptosphaeria maculans, Lm) of canola (Brassica napus, Bn) has been extensively studied, but the mechanisms underlying the host-pathogen interaction are still not well understood. Here, a comparative transcriptome analysis was performed on a resistant doubled haploid Bn line carrying the resistance gene Rlm1 following inoculation with a virulent (avrLm1) or avirulent (AvrLm1) Lm isolate on cotyledons. A total of 6999 and 3015 differentially expressed genes (DEGs) were identified, respectively, in inoculated local tissues with compatible (susceptible) and incompatible (resistant) interactions. Functional enrichment analysis found several biological processes, including protein targeting to membrane, ribosome and negative regulation of programmed cell death, were over-represented exclusively among up-regulated DEGs in the resistant reaction, whereas significant enrichment of salicylic acid (SA) and jasmonic acid (JA) pathways observed for down-regulated DEGs occurred only in the susceptible reaction. A heat-map analysis showed that both biosynthesis and signaling of SA and JA were induced more significantly in the resistant reaction, implying that a threshold level of SA and JA signaling is required for the activation of Rlm1-mediated resistance. Co-expression network analysis revealed close correlation of a gene module with the resistance, involving DEGs regulating pathogen-associated molecular pattern recognition, JA signaling and transcriptional reprogramming. Substantially fewer DEGs were identified in mock-inoculated (control) cotyledons, relative to those in inoculated local tissues, including those involved in SA pathways potentially contributing to systemic acquired resistance (SAR). Pre-inoculation of cotyledon with either an avirulent or virulent Lm isolate, however, failed to induce SAR on remote tissues of same plant despite elevated SA and PR1 protein. This study provides insights into the molecular mechanism of Rlm1-mediated resistance to blackleg.
Collapse
|
23
|
Ramos RN, Martin GB, Pombo MA, Rosli HG. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2021; 105:65-82. [PMID: 32909182 DOI: 10.1007/s11103-020-01069-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE NbWRKY22 and NbWRKY25 are required for full activation of bacteria-associated pattern- and effector-triggered immunity as well as for the response to other non-bacterial defense elicitors. Plants defend themselves against pathogens using a two-layered immune system. Pattern-triggered immunity (PTI) can be activated upon recognition of epitopes from flagellin including flg22. Pseudomonas syringae pv. tomato (Pst) delivers effector proteins into the plant cell to promote host susceptibility. However, some plants express resistance (R) proteins that recognize specific effectors leading to the activation of effector-triggered immunity (ETI). Resistant tomato lines such as Rio Grande-PtoR (RG-PtoR) recognize two Pst effectors, AvrPto and AvrPtoB, and activate ETI through the Pto/Prf protein complex. Using RNA-seq, we identified two tomato WRKY transcription factor genes, SlWRKY22 and SlWRKY25, whose expression is increased during Pst-induced ETI. Silencing of the WRKY25/22 orthologous genes in Nicotiana benthamiana led to a delay in programmed cell death normally associated with AvrPto recognition or several non-bacterial effector/R protein pairs. An increase in disease symptoms was observed in silenced plants infiltrated with Pseudomonas syringae pv. tabaci expressing AvrPto or HopQ1-1. Expression of both tomato WRKY genes is also induced upon treatment with flg22 and callose deposition and cell death suppression assays in WRKY25/22-silenced N. benthamiana plants supported their involvement in PTI. Our results reveal an important role for two WRKYs as positive regulators of plant immunity against bacterial and potentially non-bacterial pathogens.
Collapse
Affiliation(s)
- Romina N Ramos
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Marina A Pombo
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina.
| | - Hernan G Rosli
- INFIVE, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| |
Collapse
|
24
|
Dabi M, Agarwal P, Agarwal PK. Overexpression of JcWRKY2 confers increased resistance towards Macrophomina phaseolina in transgenic tobacco. 3 Biotech 2020; 10:490. [PMID: 33134008 PMCID: PMC7591662 DOI: 10.1007/s13205-020-02490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022] Open
Abstract
WRKY proteins are plant-specific transcription factors (TFs), and form one of the largest families and are involved in plant development and responses to stress. The salicylic acid (SA) responsive WRKY family auto or cross-regulate the defence stress signalling pathways. In this study, we functionally validated the role of JcWRKY2 gene from biofuel crop Jatropha curcas towards improving resistance to tobacco transgenic against charcoal rot causing necrotrophic fungus, Macrophomina phaseolina. The microscopic studies revealed that JcWRKY2 participated in preventing the spread of infection in transgenic. The generation of H2O2 during M. phaseolina and combinatorial stress in transgenic induces the expression and activity of antioxidant enzymes. The transcript expression of SA biosynthetic (NtICS1) gene, pathogenesis-related (NtPR-10) gene and antioxidative enzymes (NtCAT1 and NtSOD) gene revealed that JcWRKY2 transgenic play a role in SA-mediated, antioxidative enzymes regulation during biotic challenges. The study highlights the potential of JcWRKY2 as an important regulator for plant biotic stress responses through the SA-dependent pathway.
Collapse
Affiliation(s)
- Mitali Dabi
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002 Gujarat India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002 Gujarat India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002 Gujarat India
| |
Collapse
|
25
|
Hou L, Chen W, Zhang Z, Pang X, Li Y. Genome-wide association studies of fruit quality traits in jujube germplasm collections using genotyping-by-sequencing. THE PLANT GENOME 2020; 13:e20036. [PMID: 33217218 DOI: 10.1002/tpg2.20036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/06/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important fruit crop and harbors many highly diverse traits of potential economic importance. Fruit size, stone size, and fruit cracking have an important influence on the commercial value of jujube. This study is the first to conduct a genome-wide association study (GWAS) on 180 accessions of jujube and focuses on locating single-nucleotide polymorphisms (SNPs) associated with nine important fruit quality traits. Genotyping was performed using genotyping-by-sequencing and 4651 high-quality SNPs were identified. A genetic diversity analysis revealed the presence of three distinct groups, and rapid linkage disequilibrium decay was observed in this jujube population. Using a mixed linear model, a total of 45 significant SNP-trait associations were detected, among which 33 SNPs had associations with fruit size-related traits, nine were associated with stone size-related traits, and three with fruit cracking-related traits. In total, 21 candidate genes involved in cell expansion, abiotic stress responses, hormone signaling, and growth development were identified from the genome sequences of jujube. These results are useful as basic data for GWAS of other jujube traits, and these significant SNP loci and candidate genes should aid marker-assisted breeding and genomic selection of improved jujube cultivars.
Collapse
Affiliation(s)
- Lu Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wu Chen
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoming Pang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingyue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
26
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
27
|
Du C, Jiang J, Zhang H, Zhao T, Yang H, Zhang D, Zhao Z, Xu X, Li J. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genomics 2020; 21:250. [PMID: 32293256 PMCID: PMC7092525 DOI: 10.1186/s12864-020-6654-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/04/2020] [Indexed: 01/19/2023] Open
Abstract
Background The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. Results In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as “plant-pathogen interaction” and “plant hormone signal transduction”. Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. Conclusion Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.
Collapse
Affiliation(s)
- Chong Du
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dongye Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhentong Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
28
|
Xiong XP, Sun SC, Zhang XY, Li YJ, Liu F, Zhu QH, Xue F, Sun J. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:69. [PMID: 32158454 PMCID: PMC7052014 DOI: 10.3389/fpls.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a destructive cotton disease causing severe yield and quality losses worldwide. WRKY transcription factors play important roles in plant defense against pathogen infection. However, little has been reported on the functions of WRKYs in cotton's resistance to V. dahliae. Here, we identified 5, 5, and 10 WRKY70 genes in Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively, and investigated the expression profiles of all GhWRKY70 genes in various cotton tissues and in response to hormone treatment or V. dahliae infection. Reverse transcription-quantitative PCR analysis showed that GhWRKY70D13 was expressed higher in roots and stems than in other tissues, and up-regulated after V. dahliae inoculation. Knock-down of GhWRKY70D13 improved resistance to V. dahliae in both resistant and susceptible cotton cultivars. Comparative analysis of transcriptomes generated from wild-type and stable RNAi (RNA interference) plant with down-regulated GhWRKY70D13 showed that genes involved in ethylene (ET) and jasmonic acid (JA) biosynthesis and signaling were significantly upregulated in the GhWRKY70D13 RNAi plants. Consistently, the contents of 1-aminocyclopropane-1-carboxylic (ACC), JA, and JA-isoleucine levels were significantly higher in the GhWRKY70D13 RNAi plants than in wild-type. Following V. dahliae infection, the levels of ACC and JA decreased in the GhWRKY70D13 RNAi plants but still significantly higher (for ACC) than that in wild-type or at the same level (for JA) as in non-infected wild-type plants. Collectively, our results suggested that GhWRKY70D13 negatively regulates cotton's resistance to V. dahliae mainly through its effect on ET and JA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| |
Collapse
|
29
|
Patil V, McDermott HI, McAllister T, Cummins M, Silva JC, Mollison E, Meikle R, Morris J, Hedley PE, Waugh R, Dockter C, Hansson M, McKim SM. APETALA2 control of barley internode elongation. Development 2019; 146:dev.170373. [PMID: 31076487 PMCID: PMC6589076 DOI: 10.1242/dev.170373] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final ‘peduncle’ internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering. Summary: Regulation of reproductive stem elongation in barley by APETALA2 suggests a pivotal role for phase change repression of JA-associated responses to promote internode growth.
Collapse
Affiliation(s)
- Vrushali Patil
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Hannah I McDermott
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Michael Cummins
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Joana C Silva
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Ewan Mollison
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Rowan Meikle
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland.,Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
30
|
Yao W, Zhou B, Zhang X, Zhao K, Cheng Z, Jiang T. Transcriptome analysis of transcription factor genes under multiple abiotic stresses in Populus simonii × P.nigra. Gene 2019; 707:189-197. [PMID: 31029602 DOI: 10.1016/j.gene.2019.04.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
Transcription factor (TF) genes play essential roles in abiotic stress responses as master switches in complex regulatory networks. In the present study, the transcript abundance of 4287 TF genes in Populus simonii × P.nigra were profiled under NaCl, KCl, CdCl2 and PEG stresses, respectively. A total of 118 up-regulated and 226 down-regulated TFs were identified to be shared in the four stress conditions. Among the top seven TF families (ERF, NAC, WRKY, MYB, bHLH, C2H2, bZIP), there were 76 up-regulated TFs found common in the four stresses, and 67% of them were likely to be involved in stress responses. We identified three TFs, which can enhance stress tolerance of transgenic plants, were members of the most significantly up-regulated genes in the respective TF family. Among them, a highly salt-inducible ERF gene, ERF76, was proved to activate the expression of other TFs in the transgenic poplar lines overexpressing ERF76. Transcriptome analysis indicated there was a synergistic effect of TFs on improving salinity tolerance of the transgenic plants. Of significant interest in the study is the discovery of the role and interactions of various TF genes under multiple stress conditions.
Collapse
Affiliation(s)
- Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China; Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin 150040, China.
| |
Collapse
|
31
|
Wulff JA, Kiani M, Regan K, Eubanks MD, Szczepaniec A. Neonicotinoid Insecticides Alter the Transcriptome of Soybean and Decrease Plant Resistance. Int J Mol Sci 2019; 20:E783. [PMID: 30759791 PMCID: PMC6387383 DOI: 10.3390/ijms20030783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/17/2022] Open
Abstract
Neonicotinoids are widely used systemic insecticides that have been associated with spider mite outbreaks on diverse plants. These insecticides have complex effects on plant physiology, which have been speculated to drive enhanced performance of spider mites. We used RNA-Seq to explore how neonicotinoids modify gene expression in soybean thereby lowering plant resistance. We exposed soybean (Glycine max L.) to two neonicotinoid insecticides, thiamethoxam applied to seeds and imidacloprid applied as a soil drench, and we exposed a subset of these plants to spider mites (Tetranychus cinnabarinus). Applications of both insecticides downregulated genes involved in plant-pathogen interactions, phytohormone pathways, phenylpropanoid pathway, and cell wall biosynthesis. These effects were especially pronounced in plants exposed to thiamethoxam. Introduction of spider mites restored induction of genes in these pathways in plants treated with imidacloprid, while expression of genes involved in phenylpropanoid synthesis, in particular, remained downregulated in thiamethoxam-treated plants. Our outcomes indicate that both insecticides suppress genes in pathways relevant to plant⁻arthropod interactions, and suppression of genes involved in cell wall synthesis may explain lower plant resistance to spider mites, cell-content feeders. These effects appear to be particularly significant when plants are exposed to neonicotinoids applied to soybean seeds.
Collapse
Affiliation(s)
- Jason A Wulff
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | - Mahnaz Kiani
- Department of Entomology, Texas A&M AgriLife Research, Amarillo, TX 79106, USA.
| | - Karly Regan
- Department of Entomology, Penn State University, University Park, PA 16801, USA.
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
32
|
Luan Q, Chen C, Liu M, Li Q, Wang L, Ren Z. CsWRKY50 mediates defense responses to Pseudoperonospora cubensis infection in Cucumis sativus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:59-69. [PMID: 30709494 DOI: 10.1016/j.plantsci.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 05/13/2023]
Abstract
The cucumber (Cucumis sativus L.), an economically important vegetable crop, is often infected by Pseudoperonospora cubensis (P. cubensis), which results in inhibited growth and reduced yield. WRKY transcription factors (TFs) play critical roles in plant disease resistance. However, little is known about the function of WRKY TFs in cucumber downy mildew resistance. In this study, we reported that CsWRKY50, a cucumber WRKY subgroup Ⅱc TF localized in the nucleus, plays an important role in cucumber defense responses to downy mildew. In addition, several putative cis-acting elements involved in abiotic stress responsiveness were also identified in the CsWRKY50 promoter. Expression analysis revealed that CsWRKY50 can be induced by P. cubensis infection, abiotic stress and diverse signaling molecules. The overexpression of CsWRKY50 in cucumber enhanced the resistance of the plant to the fungal pathogen P. cubensis. In addition, less ROS accumulated in 35S:CsWRKY50 transgenic plants infected by the pathogen due to the higher expression levels of antioxidant enzymes. Importantly, after P. cubensis infection, the transcript levels of several hormone-related defense genes were also upregulated in transgenic plants, including SA- and JA-responsive genes and SA-synthesis genes. Collectively, our results indicate that CsWRKY50 positively regulates cucumber disease resistance to P. cubensis via multiple signaling pathways.
Collapse
Affiliation(s)
- Qianqian Luan
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Mengyu Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qiang Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lina Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
33
|
De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D’Agostino N, Tucci M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. HORTICULTURE RESEARCH 2019; 6:5. [PMID: 30603091 PMCID: PMC6312540 DOI: 10.1038/s41438-018-0079-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 05/13/2023]
Abstract
Beneficial interactions of rhizosphere microorganisms are widely exploited for plant biofertilization and mitigation of biotic and abiotic constraints. To provide new insights into the onset of the roots-beneficial microorganisms interplay, we characterised the transcriptomes expressed in tomato roots at 24, 48 and 72 h post inoculation with the beneficial fungus Trichoderma harzianum T22 and analysed the epigenetic and post-trascriptional regulation mechanisms. We detected 1243 tomato transcripts that were differentially expressed between Trichoderma-interacting and control roots and 83 T. harzianum transcripts that were differentially expressed between the three experimental time points. Interaction with Trichoderma triggered a transcriptional response mainly ascribable to signal recognition and transduction, stress response, transcriptional regulation and transport. In tomato roots, salicylic acid, and not jasmonate, appears to have a prominent role in orchestrating the interplay with this beneficial strain. Differential regulation of many nutrient transporter genes indicated a strong effect on plant nutrition processes, which, together with the possible modifications in root architecture triggered by ethylene/indole-3-acetic acid signalling at 72 h post inoculation may concur to the well-described growth-promotion ability of this strain. Alongside, T. harzianum-induced defence priming and stress tolerance may be mediated by the induction of reactive oxygen species, detoxification and defence genes. A deeper insight into gene expression and regulation control provided first evidences for the involvement of cytosine methylation and alternative splicing mechanisms in the plant-Trichoderma interaction. A model is proposed that integrates the plant transcriptomic responses in the roots, where interaction between the plant and beneficial rhizosphere microorganisms occurs.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Maria Salzano
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Teresa Docimo
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | | | - Nunzio D’Agostino
- CREA, Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
34
|
In silico Identification of Resistance and Defense Related Genes for Bacterial Leaf Blight (BLB) in Rice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Gong P, Li J, He C. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. PLANT MOLECULAR BIOLOGY 2018; 98:545-563. [PMID: 30426309 PMCID: PMC6280879 DOI: 10.1007/s11103-018-0795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Molecular and functional characterization of four gene families of the Physalis exon junction complex (EJC) core improved our understanding of the evolution and function of EJC core genes in plants. The exon junction complex (EJC) plays significant roles in posttranscriptional regulation of genes in eukaryotes. However, its developmental roles in plants are poorly known. We characterized four EJC core genes from Physalis floridana that were named PFMAGO, PFY14, PFeIF4AIII and PFBTZ. They shared a similar phylogenetic topology and were expressed in all examined organs. PFMAGO, PFY14 and PFeIF4AIII were localized in both the nucleus and cytoplasm while PFBTZ was mainly localized in the cytoplasm. No protein homodimerization was observed, but they could form heterodimers excluding the PFY14-PFBTZ heterodimerization. Virus-induced gene silencing (VIGS) of PFMAGO or PFY14 aborted pollen development and resulted in low plant survival due to a leaf-blight-like phenotype in the shoot apex. Carpel functionality was also impaired in the PFY14 knockdowns, whereas pollen maturation was uniquely affected in PFBTZ-VIGS plants. Once PFeIF4AIII was strongly downregulated, plant survival was reduced via a decomposing root collar after flowering and Chinese lantern morphology was distorted. The expression of Physalis orthologous genes in the DYT1-TDF1-AMS-bHLH91 regulatory cascade that is associated with pollen maturation was significantly downregulated in PFMAGO-, PFY14- and PFBTZ-VIGS flowers. Intron-retention in the transcripts of P. floridana dysfunctional tapetum1 (PFDYT1) occurred in these mutated flowers. Additionally, the expression level of WRKY genes in defense-related pathways in the shoot apex of PFMAGO- or PFY14-VIGS plants and in the root collar of PFeIF4AIII-VIGS plants was significantly downregulated. Taken together, the Physalis EJC core genes play multiple roles including a conserved role in male fertility and newly discovered roles in Chinese lantern development, carpel functionality and defense-related processes. These data increase our understanding of the evolution and functions of EJC core genes in plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Hu H, Wang C, Li X, Tang Y, Wang Y, Chen S, Yan S. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. PEST MANAGEMENT SCIENCE 2018; 74:2793-2805. [PMID: 29737595 DOI: 10.1002/ps.5066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. RESULTS The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses on the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high-quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21 558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. CONCLUSION This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haijing Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Cong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xia Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yunyun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yufang Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuanglin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuzhen Yan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
37
|
de Vries S, de Vries J, Teschke H, von Dahlen JK, Rose LE, Gould SB. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. PLANT, CELL & ENVIRONMENT 2018; 41:2530-2548. [PMID: 29314046 DOI: 10.1111/pce.13131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 12/21/2017] [Indexed: 05/16/2023]
Abstract
Plants sense and respond to microbes utilizing a multilayered signalling cascade. In seed plants, the phytohormones jasmonic and salicylic acid (JA and SA) are key denominators of how plants respond to certain microbes. Their interplay is especially well-known for tipping the scales in plants' strategies of dealing with phytopathogens. In non-angiosperm lineages, the interplay is less well understood, but current data indicate that it is intertwined to a lesser extent and the canonical JA/SA antagonism appears to be absent. Here, we used the water fern Azolla filiculoides to gain insights into the fern's JA/SA signalling and the molecular communication with its unique nitrogen fixing cyanobiont Nostoc azollae, which the fern inherits both during sexual and vegetative reproduction. By mining large-scale sequencing data, we demonstrate that Azolla has most of the genetic repertoire to produce and sense JA and SA. Using qRT-PCR on the identified biosynthesis and signalling marker genes, we show that Azolla is responsive to exogenously applied SA. Furthermore, exogenous SA application influenced the abundance and gene expression of Azolla's cyanobiont. Our data provide a framework for JA/SA signalling in ferns and suggest that SA might be involved in Azolla's communication with its vertically inherited cyanobiont.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Hendrik Teschke
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Janina K von Dahlen
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
- Ceplas, Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University Duesseldorf, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| |
Collapse
|
38
|
Kiani M, Szczepaniec A. Effects of sugarcane aphid herbivory on transcriptional responses of resistant and susceptible sorghum. BMC Genomics 2018; 19:774. [PMID: 30367619 PMCID: PMC6204049 DOI: 10.1186/s12864-018-5095-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sugarcane aphid (Melanaphis sacchari) outbreaks in sorghum that were first reported in 2013 are now the most significant threat to this crop in all major sorghum production areas in the U.S. The outcomes of interactions between sugarcane aphid and sorghum and thus the severity of the outbreaks depend on sorghum genotype and potentially also on the phenology of sorghum. Mechanisms underlying these interactions are not known, however. Thus, the goal of this research was to characterize transcriptional changes in a commercially available resistant and a susceptible genotype of sorghum at 2- and 6-wk post-emergence exposed to M. sacchari herbivory. The effects of sorghum age and genotype on the daily change in aphid densities were also evaluated in separate greenhouse experiments. RESULTS A higher number of diffentially expressed genes (DEGs) was recovered from the 2-wk plants exposed to aphid herbivory compared to the 6-wk plants across genotypes. Further, gene ontology and pathway analysis indicated a suite of transcriptional changes in the resistant genotype that were weak or absent in the susceptible sorghum. Specifically, the aphid-resistant genotype exposed to M. sacchari up-regulated several genes involved in defense, which was particularly evident in the 2-wk plants that showed the most robust transcriptional responses. These transcriptional changes in the younger resistant sorghum were characterized by induction of hormone-signaling pathways, pathways coding for secondary metabolites, glutathion metabolism, and plant-pathogen interaction. Furthermore, the 2-wk resistant plants appeared to compensate for the effects of oxidative stress induced by sugarcane aphid herbivory with elevated expression of genes involved in detoxification. These transcriptional responses were reflected in the aphid population growth, which was significantly faster in the susceptible and older sorghum than in the resistant and younger plants. CONCLUSION This experiment provided the first insights into molecular mechanisms underlying lower population growth of M. sacchari on the resistant sorghum genotype. Further, it appears that the younger resistant sorghum was able to mount a robust defense response following aphid herbivory, which was much weaker in the older sorghum. Several pathways and specific genes provide specific clues into the mechanisms underlying host plant resistance to this invasive insect.
Collapse
Affiliation(s)
- Mahnaz Kiani
- Department of Entomology, Texas A&M AgriLife Research, 6500 Amarillo Blvd. W, Amarillo, TX 79106 USA
| | - Adrianna Szczepaniec
- Department of Entomology, Texas A&M AgriLife Research, 6500 Amarillo Blvd. W, Amarillo, TX 79106 USA
| |
Collapse
|
39
|
Mandal MK, Suren H, Ward B, Boroujerdi A, Kousik C. Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J Pineal Res 2018; 65:e12505. [PMID: 29766569 DOI: 10.1111/jpi.12505] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 12/23/2022]
Abstract
Since the 1950s, research on the animal neurohormone, melatonin, has focused on its multiregulatory effect on patients suffering from insomnia, cancer, and Alzheimer's disease. In plants, melatonin plays major role in plant growth and development, and is inducible in response to diverse biotic and abiotic stresses. However, studies on the direct role of melatonin in disease suppression and as a signaling molecule in host-pathogen defense mechanism are lacking. This study provides insight on the predicted biosynthetic pathway of melatonin in watermelon (Citrullus lanatus), and how application of melatonin, an environmental-friendly immune inducer, can boost plant immunity and suppress pathogen growth where fungicide resistance and lack of genetic resistance are major problems. We evaluated the effect of spray-applied melatonin and also transformed watermelon plants with the melatonin biosynthetic gene SNAT (serotonin N-acetyltransferase) to determine the role of melatonin in plant defense. Increased melatonin levels in plants were found to boost resistance against the foliar pathogen Podosphaera xanthii (powdery mildew), and the soil-borne oomycete Phytophthora capsici in watermelon and other cucurbits. Further, transcriptomic data on melatonin-sprayed (1 mmol/L) watermelon leaves suggest that melatonin alters the expression of genes involved in both PAMP-mediated (pathogen-associated molecular pattern) and ETI-mediated (effector-triggered immunity) defenses. Twenty-seven upregulated genes were associated with constitutive defense as well as initial priming of the melatonin-induced plant resistance response. Our results indicate that developing strategies to increase melatonin levels in specialty crops such as watermelon can lead to resistance against diverse filamentous pathogens.
Collapse
Affiliation(s)
- Mihir Kumar Mandal
- USDA, ARS, U.S. Vegetable Laboratory, Charleston, SC, USA
- ORISE Participant sponsored by the U.S. Vegetable Laboratory, USDA, ARS, Charleston, SC, USA
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Brian Ward
- Clemson University, CREC, Charleston, SC, USA
| | | | | |
Collapse
|
40
|
Nicolis V, Venter E. Silencing of a Unique Integrated Domain Nucleotide-Binding Leucine-Rich Repeat Gene in Wheat Abolishes Diuraphis noxia Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29533135 DOI: 10.1094/mpmi-11-17-0262-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants respond in a similar manner to aphid feeding as to pathogen attack. Diuraphis noxia is a specialist aphid, feeding only on selected grasses that include wheat, barley, and oats. The wheat-Diuraphis noxia interaction is characterized by responses very similar to those seen in wheat-pathogen interactions with none of the underlying resistance pathways and genes characterized yet. From wheat harboring the Dn1 resistance gene, we have identified a nucleotide-binding leucine-rich repeat (NLR) gene containing two integrated domains (IDs). These are three C-terminus ankyrin repeat domains and an N-terminus WRKY domain. The NLR core of the gene can be traced through speciation events within the grass family, with a recent WRKY domain integration that is Triticum-specific. Virus-induced gene silencing of the gene in a resistant wheat line resulted in the abolishment of the resistance response and induced a highly susceptible phenotype. Silenced plants supported a higher number of aphids, similar to the susceptible near-isogenic line (NIL), and the intrinsic rate of increase of the aphids matched that of aphids feeding on the susceptible NIL. The presence of the gene is necessary for Dn1 resistance and we have named the gene Associated with Dn resistance 1 (Adnr1) to reflect this function.
Collapse
Affiliation(s)
- Vittorio Nicolis
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
41
|
Duan S, Wang J, Gao C, Jin C, Li D, Peng D, Du G, Li Y, Chen M. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 268:47-53. [PMID: 29362083 DOI: 10.1016/j.plantsci.2017.12.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 05/22/2023]
Abstract
Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves.
Collapse
Affiliation(s)
- Shaowei Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianjun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenhao Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changyu Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Danshuai Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guomei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiqian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
42
|
Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:545. [PMID: 29922304 PMCID: PMC5996931 DOI: 10.3389/fpls.2018.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 05/09/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. 'Kyoho.' In the current study, WRKY3 from the 'Kyoho' grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT) plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.
Collapse
Affiliation(s)
- Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Jiao Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Xianyang, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Xianyang, China
- *Correspondence: Zhi Li, Xiping Wang,
| |
Collapse
|
43
|
Tao F, Wang J, Guo Z, Hu J, Xu X, Yang J, Chen X, Hu X. Transcriptomic Analysis Reveal the Molecular Mechanisms of Wheat Higher-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:240. [PMID: 29541084 PMCID: PMC5835723 DOI: 10.3389/fpls.2018.00240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. The disease is preferably controlled by growing resistant cultivars. Wheat cultivar Xiaoyan 6 (XY 6) has been resistant to stripe rust since its release. In the previous studies, XY 6 was found to have higher-temperature seedling-plant (HTSP) resistance. However, the molecular mechanisms of HTSP resistance were not clear. To identify differentially expressed genes (DEGs) involved in HTSP resistance, we sequenced 30 cDNA libraries constructed from XY 6 seedlings exposed to several temperature treatments. Compared to the constant normal (15°C) and higher (20°C) temperature treatments, 1395 DEGs were identified in seedlings exposed to 20°C for 24 h (to activate HTSP resistance) and then kept at 15°C. These DEGs were located on all 21 chromosomes, with 29.2% on A, 41.1% on B and 29.7% on D genomes, by mapping to the Chinese Spring wheat genome. The 1395 DEGs were enriched in ribosome, plant-pathogen interaction and glycerolipid metabolism pathways, and some of them were identified as hub proteins (phosphatase 2C10), resistance protein homologs, WRKY transcription factors and protein kinases. The majority of these genes were up-regulated in HTSP resistance. Based on the differential expression, we found that phosphatase 2C10 and LRR receptor-like serine/threonine protein kinases are particularly interesting as they may be important for HTSP resistance through interacting with different resistance proteins, leading to a hypersensitive response.
Collapse
Affiliation(s)
- Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhongfeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Hu
- Wuhan UnigueGene Bioinformatics Science and Technology Co., Ltd, Wuhan, China
| | - Xiangming Xu
- NIAB East Malling Research (EMR), East Malling, United Kingdom
| | - Jiarong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Jiarong Yang
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Xiaoping Hu
| |
Collapse
|
44
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
45
|
Dutta A, Choudhary P, Caruana J, Raina R. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1015-1028. [PMID: 28650521 DOI: 10.1111/tpj.13623] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 05/17/2023]
Abstract
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis.
Collapse
Affiliation(s)
- Aditya Dutta
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | | | - Julie Caruana
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| |
Collapse
|
46
|
Li L, Mu S, Cheng Z, Cheng Y, Zhang Y, Miao Y, Hou C, Li X, Gao J. Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 2017; 7:6675. [PMID: 28751687 PMCID: PMC5532226 DOI: 10.1038/s41598-017-06701-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
The WRKY family of transcription factors (TFs) is one of the ten largest families of TFs in higher plants and has been implicated in multiple biological processes. Here, we identified 121 WRKY TFs in moso bamboo, including five novel members that were not annotated in the Phyllostachys edulis genomic database. Estimation of the divergence time of paralogous gene pairs revealed an important role of the recent whole-genome duplication in the expansion of the WRKY family. Expression analysis based on quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data revealed that a large number of PheWRKY genes varied significantly under cold or drought stress treatments, which could be defined as abiotic stress-responsive genes. The overexpression of PheWRKY72-2 in Arabidopsis resulted in a decreased sensitivity to drought stress during early seedling growth. PheWRKY72-2 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure. Our study provides a theoretical foundation and some experimental evidence for further functional verification of the PheWRKY family of TFs.
Collapse
Affiliation(s)
- Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.,College of Forestry, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Yuanwen Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Ying Zhang
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China
| | - Ying Miao
- Center for Molecular Cell and Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chenglin Hou
- Department of Microbiology, College of Life Science, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, 100102, People's Republic of China.
| |
Collapse
|
47
|
Kanofsky K, Bahlmann AK, Hehl R, Dong DX. Combinatorial requirement of W- and WT-boxes in microbe-associated molecular pattern-responsive synthetic promoters. PLANT CELL REPORTS 2017; 36:971-986. [PMID: 28341984 DOI: 10.1007/s00299-017-2130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/10/2017] [Indexed: 05/12/2023]
Abstract
The WT-box GGACTTTC belongs to a novel class of MAMP-responsive cis-regulatory sequences that are part of combinatorial elements. Microbe-associated molecular pattern (MAMP)-responsive synthetic promoters were generated with two cis-regulatory modules (CRM1 and CRM2) from the Arabidopsis thaliana WRKY30 promoter. Both modules harbour two W-boxes and one WT-box. Mutation analysis of the synthetic promoters and transient gene expression analysis in parsley protoplasts underline the importance of the W- and WT-boxes for MAMP-responsive gene expression and reveal the combinatorial requirement of at least two boxes for full MAMP responsivity. In the context of the native promoter, CRM1 is required for MAMP responsivity, while CRM2 alone is not sufficient. Yeast one-hybrid screenings using CRM1 with a transcription factor (TF) only prey library select only WRKY factors. Selection of WRKY26, 40, 41, and 70 requires the W-boxes. The WT-box is also required for selection of WRKY26 and 41 in yeast. In plant cells, WRKY26, 40, and 41 act as repressors of MAMP-responsive gene expression, whereas WRKY70 is an activator. To investigate whether the WT-box is also required for WRKY26 and 41 mediated gene expression in plant cells, both were converted into transcriptional activators by adding the GAL4 activating domain (AD). In contrast to yeast, transient gene expression in parsley protoplasts shows that only the W-boxes from CRM1 are required for WRKY41AD-activated reporter gene activity but not the WT-box. In addition, WRKY70-activated reporter gene activity in parsley cells does not require the WT-box of CRM1. The results demonstrate the importance of the WT-box as a new cis-regulatory sequence for MAMP-responsive gene expression. Based on these and earlier results, two types of WT-boxes are proposed.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Ann-Kathrin Bahlmann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| | - Do Xuan Dong
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Laboratory of Plant Cell Biotechnology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
48
|
Kong L, Qiu X, Kang J, Wang Y, Chen H, Huang J, Qiu M, Zhao Y, Kong G, Ma Z, Wang Y, Ye W, Dong S, Ma W, Wang Y. A Phytophthora Effector Manipulates Host Histone Acetylation and Reprograms Defense Gene Expression to Promote Infection. Curr Biol 2017; 27:981-991. [PMID: 28318979 DOI: 10.1016/j.cub.2017.02.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/28/2022]
Abstract
Immune response during pathogen infection requires extensive transcription reprogramming. A fundamental mechanism of transcriptional regulation is histone acetylation. However, how pathogens interfere with this process to promote disease remains largely unknown. Here we demonstrate that the cytoplasmic effector PsAvh23 produced by the soybean pathogen Phytophthora sojae acts as a modulator of histone acetyltransferase (HAT) in plants. PsAvh23 binds to the ADA2 subunit of the HAT complex SAGA and disrupts its assembly by interfering with the association of ADA2 with the catalytic subunit GCN5. As such, PsAvh23 suppresses H3K9 acetylation mediated by the ADA2/GCN5 module and increases plant susceptibility. Expression of PsAvh23 or silencing of GmADA2/GmGCN5 resulted in misregulation of defense-related genes, most likely due to decreased H3K9 acetylation levels at the corresponding loci. This study highlights an effective counter-defense mechanism by which a pathogen effector suppresses the activation of defense genes by interfering with the function of the HAT complex during infection.
Collapse
Affiliation(s)
- Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xufang Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiangang Kang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China.
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
49
|
Yu Q, Chen C, Du D, Huang M, Yao J, Yu F, Brlansky RH, Gmitter FG. Reprogramming of a defense signaling pathway in rough lemon and sweet orange is a critical element of the early response to ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2017; 4:17063. [PMID: 29214028 PMCID: PMC5705785 DOI: 10.1038/hortres.2017.63] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 05/04/2023]
Abstract
Huanglongbing (HLB) in citrus infected by Candidatus Liberibacter asiaticus (CLas) has caused tremendous losses to the citrus industry. No resistant genotypes have been identified in citrus species or close relatives. Among citrus varieties, rough lemon (Citrus jambhiri) has been considered tolerant due to its ability to produce a healthy flush of new growth after infection. The difference between tolerance and susceptibility is often defined by the speed and intensity of a plant's response to a pathogen, especially early defense responses. RNA-seq data were collected from three biological replicates of CLas- and mock-inoculated rough lemon and sweet orange at week 0 and 7 following infection. Functional analysis of the differentially expressed genes (DEGs) indicated that genes involved in the mitogen activated protein kinase (MAPK) signaling pathway were highly upregulated in rough lemon. MAPK induces the transcription of WRKY and other transcription factors which potentially turn on multiple defense-related genes. A Subnetwork Enrichment Analysis further revealed different patterns of regulation of several functional categories, suggesting DEGs with different functions were subjected to reprogramming. In general, the amplitude of the expression of defense-related genes is much greater in rough lemon than in sweet orange. A quantitative disease resistance response may contribute to the durable tolerance level to HLB observed in rough lemon.
Collapse
Affiliation(s)
- Qibin Yu
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Chunxian Chen
- USDA, ARS, SEFTNRL, 21 Dunbar Road, Byron, GA 31008, USA
| | - Dongliang Du
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Ming Huang
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Jiqiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA
| | - Ronald H Brlansky
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Frederick G. Gmitter
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
- ()
| |
Collapse
|
50
|
Wang X, Guo R, Tu M, Wang D, Guo C, Wan R, Li Z, Wang X. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:97. [PMID: 28197166 PMCID: PMC5281567 DOI: 10.3389/fpls.2017.00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.
Collapse
Affiliation(s)
- Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Dejun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Xiping Wang,
| |
Collapse
|