1
|
Zhang H, Zhang W, Xiang F, Zhang Z, Guo Y, Chen T, Duan F, Zhou Q, Li X, Fang M, Li X, Li B, Zhao X. Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant crm1 in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:80. [PMID: 37954030 PMCID: PMC10635920 DOI: 10.1007/s11032-023-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Chlorophyll is one of the key factors for photosynthesis and plays an important role in plant growth and development. We previously isolated an EMS mutagenized rapeseed chlorophyll-reduced mutant (crm1), which had yellow leaf, reduced chlorophyll content and fewer thylakoid stacks. Here, we found that crm1 showed attenuated utilization efficiency of both light energy and CO2 but enhanced heat dissipation efficiency and greater tolerance to high-light intensity. BSA-Seq analysis identified a single nucleotide change (C to T) and (G to A) in the third exon of the BnaA01G0094500ZS and BnaC01G0116100ZS, respectively. These two genes encode the magnesium chelatase subunit I 1 (CHLI1) that catalyzes the insertion of magnesium into protoporphyrin IX, a pivotal step in chlorophyll synthesis. The mutation sites resulted in an amino acid substitution P144S and G128E within the AAA+ domain of the CHLI1 protein. Two KASP markers were developed and co-segregated with the yellow leaf phenotype in segregating F2 population. Loss of BnaA01.CHLI1 and BnaC01.CHLI1 by CRISPR/Cas9 gene editing recapitulated the mutant phenotype. BnaA01.CHLI1 and BnaC01.CHLI1 were located in chloroplast and highly expressed in the leaves. Furthermore, RNA-seq analyses revealed the expression of chlorophyll synthesis-related genes were upregulated in the crm1 mutant. These findings provide a new insight into the regulatory mechanism of chlorophyll synthesis in rapeseed and suggest a novel target for improving the photosynthetic efficiency and tolerance to high-light intensity in crops. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01429-6.
Collapse
Affiliation(s)
- Hui Zhang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Wei Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 Hunan China
| | - Fujiang Xiang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Zhengfeng Zhang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Tingzhou Chen
- Hunan Cotton Research Institute, Changde, 415100 Hunan China
| | - Feifei Duan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Quanyu Zhou
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | | | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| | - Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125 China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha, 410082 China
| |
Collapse
|
2
|
Tiwari LD, Kurtz-Sohn A, Bdolach E, Fridman E. Crops under past diversification and ongoing climate change: more than just selection of nuclear genes for flowering. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5431-5440. [PMID: 37480516 DOI: 10.1093/jxb/erad283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/21/2023] [Indexed: 07/24/2023]
Abstract
Diversification and breeding following domestication and under current climate change across the globe are the two most significant evolutionary events experienced by major crops. Diversification of crops from their wild ancestors has favored dramatic changes in the sensitivity of the plants to the environment, particularly significantly in transducing light inputs to the circadian clock, which has allowed the growth of major crops in the relatively short growing season experienced in the Northern Hemisphere. Historically, mutants and the mapping of quantitative trait loci (QTL) have facilitated the identification and the cloning of genes that underlie major changes of the clock and the regulation of flowering. Recent studies have suggested that the thermal plasticity of the circadian clock output, and not just the core genes that follow temperature compensation, has also been under selection during diversification and breeding. Wild alleles that accelerate output rhythmicity could be beneficial for crop resilience. Furthermore, wild alleles with beneficial and flowering-independent effects under stress indicate their possible role in maintaining a balanced source-sink relationship, thereby allowing productivity under climatic change. Because the chloroplast genome also regulates the plasticity of the clock output, mapping populations including cytonuclear interactions should be utilized within an integrated field and clock phenomics framework. In this review, we highlight the need to integrate physiological and developmental approaches (physio-devo) to gain a better understanding when re-domesticating wild gene alleles into modern cultivars to increase their robustness under abiotic heat and drought stresses.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Ayelet Kurtz-Sohn
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Bdolach
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Eyal Fridman
- Plant Sciences institute, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| |
Collapse
|
3
|
Zhang K, Mu Y, Li W, Shan X, Wang N, Feng H. Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis). BMC PLANT BIOLOGY 2020; 20:68. [PMID: 32041529 PMCID: PMC7011377 DOI: 10.1186/s12870-020-2271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leaf color is a major agronomic trait, which has a strong influence on crop yields. Isolating leaf color mutants can represent valuable materials for research in chlorophyll (Chl) biosynthesis and metabolism regulation. RESULTS In this study, we identified a stably inherited yellow leaf mutant derived from 'Huaguan' pakchoi variety via isolated microspore culture and designated as pylm. This mutant displayed yellow leaves after germination. Its etiolated phenotype was nonlethal and stable during the whole growth period. Its growth was weak and its hypocotyls were markedly elongated. Genetic analysis revealed that two recessive nuclear genes, named py1 and py2, are responsible for the etiolation phenotype. Bulked segregant RNA sequencing (BSR-Seq) showed that py1 and py2 were mapped on chromosomes A09 and A07, respectively. The genes were single Mendelian factors in F3:4 populations based on a 3:1 phenotypic segregation ratio. The py1 was localized to a 258.3-kb interval on a 34-gene genome. The differentially expressed gene BraA09004189 was detected in the py1 mapping region and regulated heme catabolism. One single-nucleotide polymorphism (SNP) of BraA09004189 occurred in pylm. A candidate gene-specific SNP marker in 1520 F3:4 yellow-colored individuals co-segregated with py1. For py2, 1860 recessive homozygous F3:4 individuals were investigated and localized py2 to a 4.4-kb interval. Of the five genes in this region, BraA07001774 was predicted as a candidate for py2. It encoded an embryo defective 1187 and a phosphotransferase related to chlorophyll deficiency and hypocotyl elongation. One SNP of BraA07001774 occurred in pylm. It caused a single amino acid mutation from Asp to Asn. According to quantitative real-time polymerase chain reaction (qRT-PCR), BraA07001774 was downregulated in pylm. CONCLUSIONS Our study identified a Chl deficiency mutant pylm in pakchoi. Two recessive nuclear genes named py1 and py2 had a significant effect on etiolation. Candidate genes regulating etiolation were identified as BraA09004189 and BraA07001774, respectively. These findings will elucidate chlorophyll metabolism and the molecular mechanisms of the gene interactions controlling pakchoi etiolation.
Collapse
Affiliation(s)
- Kun Zhang
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Yu Mu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Weijia Li
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Xiaofei Shan
- College of Life Sciences, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
4
|
Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Fei D, Feng H. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). BMC PLANT BIOLOGY 2018; 18:130. [PMID: 29940850 PMCID: PMC6019835 DOI: 10.1186/s12870-018-1353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 06/17/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plastome mutants are ideal resources for elucidating the functions of plastid genes. Numerous studies have been conducted for the function of plastid genes in barley and tobacco; however, related information is limited in Chinese cabbage. RESULTS A chlorophyll-deficient mutant of Chinese cabbage that was derived by ethyl methanesulfonate treatment on isolated microspores showed uniformly pale green inner leaves and slow growth compared with that shown by the wild type "Fukuda 50' ('FT'). Genetic analysis revealed that cdm was cytoplasmically inherited. Physiological and ultrastructural analyses of cdm showed impaired photosynthesis and abnormal chloroplast development. Utilizing next generation sequencing, the complete plastomes of cdm and 'FT' were respectively re-mapped to the reference genome of Chinese cabbage, and an A-to-C base substitution with a mutation ratio higher than 99% was detected. The missense mutation of plastid ribosomal protein S4 led to valine substitution for glycine at residue 193. The expression level of rps4 was analyzed using quantitative real-time PCR and found lower in than in 'FT'. RNA gel-blot assays showed that the abundance of mature 23S rRNA, 16S rRNA, 5S rRNA, and 4.5S rRNA significantly decreased and that the processing of 23S, 16S rRNA, and 4.5S rRNA was seriously impaired, affecting the ribosomal function in cdm. CONCLUSIONS These findings indicated that cdm was a plastome mutant and that chlorophyll deficiency might be due to an A-to-C base substitution of the plastome-encoded rps4 that impaired the rRNA processing and affected the ribosomal function.
Collapse
Affiliation(s)
- Xiaoyan Tang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yiheng Wang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yun Zhang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Shengnan Huang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Zhiyong Liu
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Danli Fei
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Hui Feng
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| |
Collapse
|
5
|
|
6
|
Landau AM, Pacheco MG, Prina AR. A second infA plastid gene point mutation shows a compensatory effect on the expression of the cytoplasmic line 2 (CL2) syndrome in barley. J Hered 2011; 102:633-9. [PMID: 21742633 DOI: 10.1093/jhered/esr061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The IF1 protein is one of the factors controlling translation initiation in bacteria. This protein is encoded by the infA gene, which, in several higher plants, is located in the plastome. Cytoplasmic Line 2 (CL2), an alboviridis barley mutant, was the first to be proposed as an infA gene mutation (T 157 C) in higher plants. This mutant was isolated from a chloroplast mutator genotype (cpm/cpm) and was made genetically stable by backcrosses with a wild-type nuclear genotype. In the present work, genetically stable CL2 plants were backcrossed as females by cpm/cpm plants in order to regain the mutator activity. Interestingly, a seedling carrying a first leaf blade with a darker green stripe on a typical CL2-mutant background was observed in the F(4) generation. The T 157 C transition was confirmed in tissues from the CL2 background, whereas a second transition (A 178 G) was also found in the darker stripe. Two clearly different levels of CL2 syndrome were observed in the seedlings of the F(5) and F(6) progenies. Those of the greener group carried both transitions. These results suggest a compensatory effect of the second mutation and support the involvement of the infA plastid gene in CL2 syndrome, confirming CL2 as the first mutant of this gene reported in higher plants.
Collapse
Affiliation(s)
- Alejandra M Landau
- Instituto de Genética Ewald A. Favret, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Castelar, Provincia de Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
8
|
Eggert K, Pawelzik E. Proteome analysis of Fusarium head blight in grains of naked barley (Hordeum vulgare
subsp. nudum
). Proteomics 2011; 11:972-85. [DOI: 10.1002/pmic.201000322] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/12/2023]
|