1
|
Expression profiling of TaARGOS homoeologous drought responsive genes in bread wheat. Sci Rep 2022; 12:3595. [PMID: 35246579 PMCID: PMC8897478 DOI: 10.1038/s41598-022-07637-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Drought tolerant germplasm is needed to increase crop production, since water scarcity is a critical bottleneck in crop productivity worldwide. Auxin Regulated Gene involved in Organ Size (ARGOS) is a large protein family of transcription factors that plays a vital role in organ size, plant growth, development, and abiotic stress responses in plants. Although, the ARGOS gene family has been discovered and functionalized in a variety of crop plants, but a comprehensive and systematic investigation of ARGOS genes in locally used commercial wheat cultivars is still yet to be reported. The relative expression of three highly conserved TaARGOS homoeologous genes (TaARGOS-A, TaARGOS-B, TaARGOS-D) was studied in three drought-tolerant (Pakistan-2013, NARC-2009 and NR-499) and three sensitive (Borlaug-2016, NR-514 and NR-516) wheat genotypes under osmotic stress, induced by PEG-6000 at 0 (exogenous control), 2, 4, 6, and 12 h. The normalization of target genes was done using β-actin as endogenous control, whereas DREB3, as a marker gene was also transcribed, reinforcing the prevalence of dehydration in all stress treatments. Real-time quantitative PCR revealed that osmotic stress induced expression of the three TaARGOS transcripts in different wheat seedlings at distinct timepoints. Overall, all genes exhibited significantly higher expression in the drought-tolerant genotypes as compared to the sensitive ones. For instance, the expression profile of TaARGOS-A and TaARGOS-D showed more than threefold increase at 2 h and six to sevenfold increase after 4 h of osmotic stress. However, after 6 h of osmotic stress these genes started to downregulate, and the lowest gene expression was noticed after 12 h of osmotic stress. Among all the homoeologous genes, TaARGOS-D, in particular, had a more significant influence on controlling plant growth and drought tolerance as it showed the highest expression. Altogether, TaARGOSs are involved in seedling establishment and overall plant growth. In addition, the tolerant group of genotypes had a much greater relative fold expression than the sensitive genotypes. Ultimately, Pakistan-2013 showed the highest relative expression of the studied genes than other genotypes which shows its proficiency to mitigate osmotic stress. Therefore, it could be cultivated in arid and semi-arid regions under moisture-deficient regimes. These findings advocated the molecular mechanism and regulatory roles of TaARGOS genes in plant growth and osmotic stress tolerance in contrasting groups of wheat genotypes, accompanied by the genetic nature of identified genotypes in terms of their potential for drought tolerance.
Collapse
|
2
|
Identification of the Genetic Basis of Response to De-Acclimation in Winter Barley. Int J Mol Sci 2021; 22:ijms22031057. [PMID: 33494371 PMCID: PMC7865787 DOI: 10.3390/ijms22031057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.
Collapse
|
3
|
Aduse Poku S, Nkachukwu Chukwurah P, Aung HH, Nakamura I. Over-Expression of a Melon Y3SK2-Type LEA Gene Confers Drought and Salt Tolerance in Transgenic Tobacco Plants. PLANTS 2020; 9:plants9121749. [PMID: 33321898 PMCID: PMC7763651 DOI: 10.3390/plants9121749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.
Collapse
Affiliation(s)
| | | | | | - Ikuo Nakamura
- Correspondence: ; Tel.: +81-47-308-8852; Fax: +81-47-308-8853
| |
Collapse
|
4
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Edrisi Maryan K, Samizadeh Lahiji H, Farrokhi N, Hasani Komeleh H. Analysis of Brassica napus dehydrins and their Co-Expression regulatory networks in relation to cold stress. Gene Expr Patterns 2018; 31:7-17. [PMID: 30408599 DOI: 10.1016/j.gep.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Dehydrins (DHNs) are plant specific cold and drought stress-responsive proteins that belong to late embryogenesis abundant (LEA) protein families. B. napus DHNs (BnDHNs) were computationally analyzed to establish gene regulatory- and protein-protein interaction networks. Promoter analyses suggested functionality of phytohormones in BnDHNs gene network. The relative expressions of some BnDHNs were analyzed using qRT-PCR in seedling leaves of both cold-tolerant (Zarfam) and -sensitive (Sari Gul) canola treated/untreated by cold. Our expression data were indicative of the importance of BnDHNs in cold tolerance in Zarfam. BnDHNs were classified into three classes according to the expression pattern. Moreover, expression of three BnDHN types, SKn (BnLEA10 and BnLEA18), YnKn (BnLEA90) and YnSKn (BnLEA104) were significantly high in the tolerant cultivar at 12 h of cold treatment. Our findings put forward the possibility of considering these genes as screening biomarker to determine cold-tolerant breeding lines; something that needs to be further corroborated. Furthermore, these genes may have some implications in developing such tolerant lines via transgenesis.
Collapse
Affiliation(s)
- Khazar Edrisi Maryan
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| | | | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences and Biotechnology, Shahid Beheshti University. G.C., Evin, Tehran, Iran.
| | - Hassan Hasani Komeleh
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| |
Collapse
|
6
|
Guo X, Zhang L, Zhu J, Liu H, Wang A. Cloning and characterization of SiDHN, a novel dehydrin gene from Saussurea involucrata Kar. et Kir. that enhances cold and drought tolerance in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:160-169. [PMID: 28167030 DOI: 10.1016/j.plantsci.2016.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 05/18/2023]
Abstract
Saussurea involucrata Kar. et Kir. is a hardy, dicotyledonous plant featured by strong tolerance to severe stress conditions. In a previous study, we created a cDNA library to characterize genetic factors associated with the cold acclimation response of S. involucrata. The full-length cDNA of one dehydrin-like gene, SiDHN, was obtained by RT-PCR and the SiDHN gene was further characterized in this study. The full-length SiDHN cDNA consists of 703 base pairs (bp) with a 333bp open reading frame encoding a protein comprising 111 amino acid residues. The alignment of the deduced amino acid sequence showed that SiDHN protein shared 36% identity with one homolog in Helianthus annuus. To evaluate its biological functions, 35S:SiDHN recombinant plasmid was introduced into tobacco using Agrobacterium tumefaciens and the resistance of transgenic plants to freezing and drought stresses were analyzed. Compared with the wild-type, transgenic tobacco plants showed greater resistance to freezing and drought stresses. In this study, we provided evidence that SiDHN can enhance plant cold and drought resistance, suggesting that SiDHN could be potentially used to genetically improve plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Xinyong Guo
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi 832003, China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi 832003, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi 832003, China.
| | - Hongling Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi 832003, China
| | - Aiying Wang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi 832003, China
| |
Collapse
|
7
|
John R, Anjum NA, Sopory SK, Akram NA, Ashraf M. Some key physiological and molecular processes of cold acclimation. BIOLOGIA PLANTARUM 2016; 60:603-618. [PMID: 0 DOI: 10.1007/s10535-016-0648-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
8
|
Uçarlı C, McGuffin LJ, Çaputlu S, Aravena A, Gürel F. Genetic diversity at the Dhn3 locus in Turkish Hordeum spontaneum populations with comparative structural analyses. Sci Rep 2016; 6:20966. [PMID: 26869072 PMCID: PMC4751488 DOI: 10.1038/srep20966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 12/30/2022] Open
Abstract
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.
Collapse
Affiliation(s)
- Cüneyt Uçarlı
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler 34134, Istanbul, Turkey
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Süleyman Çaputlu
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler 34134, Istanbul, Turkey
| | - Andres Aravena
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler 34134, Istanbul, Turkey
| | - Filiz Gürel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler 34134, Istanbul, Turkey
| |
Collapse
|
9
|
Ceccarelli S, Grando S, Baum M, Udupa SM. Breeding for Drought Resistance in a Changing Climate. CHALLENGES AND STRATEGIES OF DRYLAND AGRICULTURE 2015. [DOI: 10.2135/cssaspecpub32.c11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J. Osmotic Stress Modulates the Balance between Exocytosis and Clathrin-Mediated Endocytosis in Arabidopsis thaliana. MOLECULAR PLANT 2015; 8:1175-87. [PMID: 25795554 DOI: 10.1016/j.molp.2015.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Stéphanie Robert
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Jiří Friml
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
11
|
Fiust A, Rapacz M, Wójcik-Jagła M, Tyrka M. Development of DArT-based PCR markers for selecting drought-tolerant spring barley. J Appl Genet 2015; 56:299-309. [PMID: 25716655 PMCID: PMC4543407 DOI: 10.1007/s13353-015-0273-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.
Collapse
Affiliation(s)
- Anna Fiust
- Department of Plant Physiology, University of Agriculture in Kraków, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Physiology, University of Agriculture in Kraków, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Magdalena Wójcik-Jagła
- Department of Plant Physiology, University of Agriculture in Kraków, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Rzeszow University of Technology, Albigowa 472, 37-122 Albigowa, Poland
| |
Collapse
|
12
|
Vaseva II, Anders I, Yuperlieva-Mateeva B, Nenkova R, Kostadinova A, Feller U. Dehydrin expression as a potential diagnostic tool for cold stress in white clover. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 78:43-8. [PMID: 24632490 DOI: 10.1016/j.plaphy.2014.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/18/2014] [Indexed: 05/10/2023]
Abstract
Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37-40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another 'cold-specific' band at position 52-55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37-40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools.
Collapse
Affiliation(s)
- Irina Ivanova Vaseva
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
| | - Iwona Anders
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Bistra Yuperlieva-Mateeva
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Rosa Nenkova
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Anelia Kostadinova
- Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| |
Collapse
|
13
|
Qiu H, Zhang L, Liu C, He L, Wang A, Liu HL, Zhu JB. Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir. PLANT MOLECULAR BIOLOGY 2014; 84:707-18. [PMID: 24337866 DOI: 10.1007/s11103-013-0164-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/06/2013] [Indexed: 05/06/2023]
Abstract
Saussurea involucrata Kar. et Kir. is a hardy dicotyledonous plant capable of tolerating severe abiotic stress conditions. In a previous study, we created a cDNA library to determine what factors are associated with the cold acclimation response in S. involucrata. From this, a full-length cDNA of a dehydrin-like gene (SiDhn2) was obtained by RT-PCR. The SiDhn2 gene was characterized in this study. The full-length SiDhn2 cDNA comprised 693 bp containing an open reading frame of 345 bp specifying a protein of 115 amino acids. An alignment of the deduced amino acid sequence showed that SiDhn2 shared 55 % identity with two Brassica dehydrins. Agrobacterium tumefaciens was used to transform RD29A:SiDhn2 and 35S:SiDhn2 constructs into tobacco to investigate the germination and resistance to freezing and drought stress of transgenic plants. The RD29A:SiDhn2 transgenic plants showed greater resistance to freezing and drought stress than 35S:SiDhn2 transgenic plants or the wild-type. This study demonstrates that SiDhn2 confers cold hardiness and drought resistance, and may be a candidate resistance gene for genetic improvement of crops to increase stress resistance.
Collapse
Affiliation(s)
- Honglin Qiu
- Laboratory of Agricultural Biotechnology, College of Life Science of Shihezi University, Shihezi, 832003, Xinjiang, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Xu H, Zhu H, Tao Y, Zhang G, Zhang L, Zhang C, Zhang Z, Ma Z. Classification and expression diversification of wheat dehydrin genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:113-20. [PMID: 24268169 DOI: 10.1016/j.plantsci.2013.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs) are late embryonic abundant proteins characterized by the dehydrin domains that are involved in plant abiotic stress tolerance. In this study, fifty-four wheat DHN unigenes were identified in the expressed sequence tags database. These genes encode seven types of dehydrins (KS, SK3, YSK2, Y2SK2, Kn, Y2SK3, and YSK3) and separate in 32 homologous clusters. The gene amplification differed among the dehydrin types, and members of the YSK2- and Kn-type DHNs are more numerous in wheat than in other cereals. The relative expression of all of these DHN clusters was analyzed using an in silico method in seven tissue types (i.e. normal growing shoots, roots, and reproductive tissues; developing and germinating seeds; drought- and cold-stressed shoots) as well as semi-quantitative reverse transcription polymerase chain reaction in seedling leaves and roots treated by dehydration, cold, and salt, respectively. The role of the ABA pathway in wheat DHN expression regulation was analyzed. Transcripts of certain types of DHNs accumulated specifically according to tissue type and treatment, which suggests their differentiated roles in wheat abiotic stress tolerance.
Collapse
Affiliation(s)
- Yuezhi Wang
- The Applied Plant Genomics Lab, Crop Genomics and Bioinformatics Center & National Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu 210095, China; Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021 China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Graether SP, Boddington KF. Disorder and function: a review of the dehydrin protein family. FRONTIERS IN PLANT SCIENCE 2014; 5:576. [PMID: 25400646 PMCID: PMC4215689 DOI: 10.3389/fpls.2014.00576] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins.
Collapse
Affiliation(s)
- Steffen P. Graether
- *Correspondence: Steffen P. Graether, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada e-mail:
| | | |
Collapse
|
16
|
Kosová K, Vítámvás P, Prášil IT. Wheat and barley dehydrins under cold, drought, and salinity - what can LEA-II proteins tell us about plant stress response? FRONTIERS IN PLANT SCIENCE 2014; 5:343. [PMID: 25071816 PMCID: PMC4089117 DOI: 10.3389/fpls.2014.00343] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein levels as well as their possible functions in common wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare) plants exposed to various abiotic stress factors (cold, frost, drought, salinity) is provided. Possible roles of dehydrin proteins in an acquisition and maintenance of an enhanced frost tolerance are analyzed in the context of plant developmental processes (vernalization). Quantitative and qualitative differences as well as post-translational modifications in accumulated dehydrin proteins between barley cultivars revealing differential tolerance to drought and salinity are also discussed. Current knowledge on dehydrin role in wheat and barley response to major dehydrative stresses is summarized and the major challenges in dehydrin research are outlined.
Collapse
Affiliation(s)
- Klára Kosová
- *Correspondence: Klára Kosová, Plant Stress Biology and Biotechnology, Department of Plant Genetics, Breeding and Product Quality, Crop Research Institute, Drnovská 507, 161 06 Prague 6 – Ruzyně, Czech Republic e-mail:
| | | | | |
Collapse
|
17
|
Avia K, Pilet-Nayel ML, Bahrman N, Baranger A, Delbreil B, Fontaine V, Hamon C, Hanocq E, Niarquin M, Sellier H, Vuylsteker C, Prosperi JM, Lejeune-Hénaut I. Genetic variability and QTL mapping of freezing tolerance and related traits in Medicago truncatula. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2353-66. [PMID: 23778689 DOI: 10.1007/s00122-013-2140-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/01/2013] [Indexed: 05/10/2023]
Abstract
Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R (2) ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants' capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3-6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.
Collapse
Affiliation(s)
- Komlan Avia
- Institut National de la Recherche Agronomique, UMR 1281 SADV, Estrées-Mons, Péronne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1849-62. [PMID: 23567863 PMCID: PMC3638819 DOI: 10.1093/jxb/ert050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The enhancement of winter hardiness is one of the most important tasks facing breeders of winter cereals. For this reason, the examination of those regulatory genes involved in the cold acclimation processes is of central importance. The aim of the present work was the functional analysis of two wheat CBF transcription factors, namely TaCBF14 and TaCBF15, shown by previous experiments to play a role in the development of frost tolerance. These genes were isolated from winter wheat and then transformed into spring barley, after which the effect of the transgenes on low temperature stress tolerance was examined. Two different types of frost tests were applied; plants were hardened at low temperature before freezing, or plants were subjected to frost without a hardening period. The analysis showed that TaCBF14 and TaCBF15 transgenes improve the frost tolerance to such an extent that the transgenic lines were able to survive freezing temperatures several degrees lower than that which proved lethal for the wild-type spring barley. After freezing, lower ion leakage was measured in transgenic leaves, showing that these plants were less damaged by the frost. Additionally, a higher Fv/Fm parameter was determined, indicating that photosystem II worked more efficiently in the transgenics. Gene expression studies showed that HvCOR14b, HvDHN5, and HvDHN8 genes were up-regulated by TaCBF14 and TaCBF15. Beyond that, transgenic lines exhibited moderate retarded development, slower growth, and minor late flowering compared with the wild type, with enhanced transcript level of the gibberellin catabolic HvGA2ox5 gene.
Collapse
Affiliation(s)
- Alexandra Soltész
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u 2, Martonvásár H-2462, Hungary.
| | | | | | | | | | | |
Collapse
|
19
|
Vaseva II, Feller U. Natural antisense transcripts of Trifolium repens dehydrins. PLANT SIGNALING & BEHAVIOR 2013; 8:e27674. [PMID: 24390012 PMCID: PMC4091226 DOI: 10.4161/psb.27674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recently described complex nature of some dehydrin-coding sequences in Trifolium repens could explain the considerable variability among transcripts originating from a single gene.1 For some of the sequences the existence of natural antisense transcripts (NAT s), which could form sense-antisense (SAS) pairs, was predicted. The present study demonstrates that cis-natural antisense transcripts of 2 dehydrin types (YnKn and YnSKn) accumulate in white clover plants subjected to treatments with polyethylene glycol (PEG), abscisic acid (ABA), and high salt concentration. The isolated YnKn cis-NAT s mapped to sequence site enriched in alternative start codons. Some of the sense-antisense pairs exhibited inverse expression with differing profiles which depended on the applied stress. A natural antisense transcript coding for an ABC F family protein (a trans-NAT ) which shares short sequence homology with YnSKn dehydrin was identified in plants subjected to salt stress. Forthcoming experiments will evaluate the impact of NAT s on transcript abundances, elucidating the role of transcriptional and post-transcriptional interferences in the regulation of dehydrin levels under various abiotic stresses.
Collapse
Affiliation(s)
- Irina I Vaseva
- Plant Stress Molecular Biology Department; Institute of Plant Physiology and Genetics; Bulgarian Academy of Sciences; Sofia, Bulgaria
- Correspondence to: Irina I Vaseva, and Urs Feller,
| | - Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR); University of Bern; Bern, Switzerland
- Correspondence to: Irina I Vaseva, and Urs Feller,
| |
Collapse
|
20
|
Sun J, Nie L, Sun G, Guo J, Liu Y. Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Mol Biol Rep 2012; 40:2281-91. [PMID: 23212615 DOI: 10.1007/s11033-012-2291-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Based on the sequence of an expressed sequence tag, the full-length cDNA of 1,008 nucleotides was cloned from Ammopiptanthus mongolicus by rapid amplification of cDNA ends. It was designated as AmDHN, encoding a protein of 183 amino acids. The calculated molecular weight of the AmDHN protein is 18.4 k Da, and theoretical isoelectric point is 5.78. The AmDHN localized in nucleus. Under normal growth conditions, differential expression of AmDHN exhibited that the expression was the highest in seeds and the lowest in flowers. AmDHN could be induced by NaCl, PEG6000, ABA and drought treatments. Salt and drought resistances of transgenic plants with overexpression of AmDHN are improved. Taken together, these results demonstrated that AmDHN could regulate the expression of abiotic-responsive genes and plays important roles in modulating the tolerance of plants to abiotic stresses.
Collapse
Affiliation(s)
- Jie Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Inner Mongolia, 0100031, China
| | | | | | | | | |
Collapse
|
21
|
Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:89-102. [PMID: 22608523 DOI: 10.1016/j.plantsci.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 05/02/2023]
Abstract
The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood. Four DHNs and two DHN-like proteins were identified in the predicted proteome of P. patens. Expression of PpDHNA and PpDHNB was induced by salt and osmotic stress and controlled by abscisic acid. Subcellular localization of the encoded proteins suggested that these dehydrins are localized in cytosol and accumulate near membranes during stress. Comparative analysis of dhnA and dhnB targeted knockout mutants of P. patens revealed that both genes play a role in cellular protection during salt and osmotic stress, although PpDHNA has a higher contribution to stress tolerance. Overexpression of PpDHNA and PpDHNB genes in transgenic Arabidopsis improved rosette and root growth in stress conditions, although PpDHNA was more efficient in this role. These results suggest that specific DHNs contribute considerably to the high stress tolerance of mosses and offer novel tools for genetic engineering stress tolerance of higher plants.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Li Y, Böck A, Haseneyer G, Korzun V, Wilde P, Schön CC, Ankerst DP, Bauer E. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC PLANT BIOLOGY 2011; 11:146. [PMID: 22032693 PMCID: PMC3228716 DOI: 10.1186/1471-2229-11-146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/27/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Frost is an important abiotic stress that limits cereal production in the temperate zone. As the most frost tolerant small grain cereal, rye (Secale cereale L.) is an ideal cereal model for investigating the genetic basis of frost tolerance (FT), a complex trait with polygenic inheritance. Using 201 genotypes from five Eastern and Middle European winter rye populations, this study reports a multi-platform candidate gene-based association analysis in rye using 161 single nucleotide polymorphisms (SNPs) and nine insertion-deletion (Indel) polymorphisms previously identified from twelve candidate genes with a putative role in the frost responsive network. RESULTS Phenotypic data analyses of FT in three different phenotyping platforms, controlled, semi-controlled and field, revealed significant genetic variations in the plant material under study. Statistically significant (P < 0.05) associations between FT and SNPs/haplotypes of candidate genes were identified. Two SNPs in ScCbf15 and one in ScCbf12, all leading to amino acid exchanges, were significantly associated with FT over all three phenotyping platforms. Distribution of SNP effect sizes expressed as percentage of the genetic variance explained by individual SNPs was highly skewed towards zero with a few SNPs obtaining large effects. Two-way epistasis was found between 14 pairs of candidate genes. Relatively low to medium empirical correlations of SNP-FT associations were observed across the three platforms underlining the need for multi-level experimentation for dissecting complex associations between genotypes and FT in rye. CONCLUSIONS Candidate gene based-association studies are a powerful tool for investigating the genetic basis of FT in rye. Results of this study support the findings of bi-parental linkage mapping and expression studies that the Cbf gene family plays an essential role in FT.
Collapse
Affiliation(s)
- Yongle Li
- Plant Breeding, Technische Universität München, Freising, Germany
| | - Andreas Böck
- Biostatistics Unit, Technische Universität München, Freising, Germany
| | - Grit Haseneyer
- Plant Breeding, Technische Universität München, Freising, Germany
| | | | | | | | - Donna P Ankerst
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Eva Bauer
- Plant Breeding, Technische Universität München, Freising, Germany
| |
Collapse
|
23
|
The effect of plant defense response to drought on selected yield parameters in barley. KVASNY PRUMYSL 2011. [DOI: 10.18832/kp2011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
He D, Han C, Yao J, Shen S, Yang P. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 2011; 11:2693-713. [DOI: 10.1002/pmic.201000598] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/23/2011] [Accepted: 04/12/2011] [Indexed: 12/15/2022]
|
25
|
Giordani T, Buti M, Natali L, Pugliesi C, Cattonaro F, Morgante M, Cavallini A. An analysis of sequence variability in eight genes putatively involved in drought response in sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1039-1049. [PMID: 21184050 DOI: 10.1007/s00122-010-1509-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/29/2010] [Indexed: 05/30/2023]
Abstract
With the aim to study variability in genes involved in ecological adaptations, we have analysed sequence polymorphisms of eight unique genes putatively involved in drought response by isolation and analysis of allelic sequences in eight inbred lines of sunflower of different origin and phenotypic characters and showing different drought response in terms of leaf relative water content (RWC). First, gene sequences were amplified by PCR on genomic DNA from a highly inbred line and their products were directly sequenced. In the absence of single nucleotide polymorphisms, the gene was considered as unique. Then, the same PCR reaction was performed on genomic DNAs of eight inbred lines to isolate allelic variants to be compared. The eight selected genes encode a dehydrin, a heat shock protein, a non-specific lipid transfer protein, a z-carotene desaturase, a drought-responsive-element-binding protein, a NAC-domain transcription regulator, an auxin-binding protein, and an ABA responsive-C5 protein. Nucleotide diversity per synonymous and non-synonymous sites was calculated for each gene sequence. The π (a)/π (s) ratio range was usually very low, indicating strong purifying selection, though with locus-to-locus differences. As far as non-coding regions, the intron showed a larger variability than the other regions only in the case of the dehydrin gene. In the other genes tested, in which one or more introns occur, variability in the introns was similar or even lower than in the other regions. On the contrary, 3'-UTRs were usually more variable than the coding regions. Linkage disequilibrium in the selected genes decayed on average within 1,000 bp, with large variation among genes. A pairwise comparison between genetic distances calculated on the eight genes and the difference in RWC showed a significant correlation in the first phases of drought stress. The results are discussed in relation to the function of analysed genes, i.e. involved in gene regulation and signal transduction, or encoding enzymes and defence proteins.
Collapse
Affiliation(s)
- T Giordani
- Department of Crop Plant Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Li Y, Haseneyer G, Schön CC, Ankerst D, Korzun V, Wilde P, Bauer E. High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC PLANT BIOLOGY 2011; 11:6. [PMID: 21219606 PMCID: PMC3032657 DOI: 10.1186/1471-2229-11-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/10/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rye (Secale cereale L.) is the most frost tolerant cereal species. As an outcrossing species, rye exhibits high levels of intraspecific diversity, which makes it well-suited for allele mining in genes involved in the frost responsive network. For investigating genetic diversity and the extent of linkage disequilibrium (LD) we analyzed eleven candidate genes and 37 microsatellite markers in 201 lines from five Eastern and Middle European rye populations. RESULTS A total of 147 single nucleotide polymorphisms (SNPs) and nine insertion-deletion polymorphisms were found within 7,639 bp of DNA sequence from eleven candidate genes, resulting in an average SNP frequency of 1 SNP/52 bp. Nucleotide and haplotype diversity of candidate genes were high with average values π = 5.6 × 10(-3) and Hd = 0.59, respectively. According to an analysis of molecular variance (AMOVA), most of the genetic variation was found between individuals within populations. Haplotype frequencies varied markedly between the candidate genes. ScCbf14, ScVrn1, and ScDhn1 were dominated by a single haplotype, while the other 8 genes (ScCbf2, ScCbf6, ScCbf9b, ScCbf11, ScCbf12, ScCbf15, ScIce2, and ScDhn3) had a more balanced haplotype frequency distribution. Intra-genic LD decayed rapidly, within approximately 520 bp on average. Genome-wide LD based on microsatellites was low. CONCLUSIONS The Middle European population did not differ substantially from the four Eastern European populations in terms of haplotype frequencies or in the level of nucleotide diversity. The low LD in rye compared to self-pollinating species promises a high resolution in genome-wide association mapping. SNPs discovered in the promoters or coding regions, which attribute to non-synonymous substitutions, are suitable candidates for association mapping.
Collapse
Affiliation(s)
- Yongle Li
- Technische Universität München, Plant Breeding, Freising, Germany
| | - Grit Haseneyer
- Technische Universität München, Plant Breeding, Freising, Germany
| | | | - Donna Ankerst
- Technische Universität München, Mathematical Statistics, Garching, Germany
| | | | | | - Eva Bauer
- Technische Universität München, Plant Breeding, Freising, Germany
| |
Collapse
|
27
|
Kosová K, Vítámvás P, Prášil IT. Expression of dehydrins in wheat and barley under different temperatures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:46-52. [PMID: 21421346 DOI: 10.1016/j.plantsci.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 05/11/2023]
Abstract
The review summarizes recent knowledge on the expression of cold-inducible dehydrins with a special attention to Wcs120 and Dhn5 genes in wheat and barley plants under different temperatures. When plants are exposed to cold, dehydrins start accumulating both in freezing-tolerant and freezing-susceptible plants; however, their accumulation correlates with plant acquired frost tolerance (FT). During a long-term cold acclimation (CA), dehydrin accumulation is significantly affected by Vrn1/Fr1 locus and the expression of the major vernalization gene VRN1, respectively. A different dynamics of dehydrin transcripts and proteins during CA is also observed. Transcripts reach their maximum within the first week of CA while proteins gradually accumulate until vernalization. Vernalization is associated with a significant decrease in dehydrin accumulation while the decrease of acquired FT is delayed. Studies carried out on plants grown at moderately cold temperatures (9-20 °C) have shown that both dehydrin transcripts and proteins can be detected even at these temperatures and that plants with different FT levels can be distinguished according to dehydrin accumulation without any exposure to severe cold. In conclusion, the potential use of these results in the breeding programmes aimed at the enhancement of wheat and barley FT is discussed.
Collapse
Affiliation(s)
- Klára Kosová
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská Street 507, Prague 6-Ruzyně, 161 06 Prague, Czech Republic.
| | | | | |
Collapse
|
28
|
Vítámvás P, Kosová K, Prášilová P, Prášil IT. Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. PLANT BREEDING 2010; 129:611-616. [PMID: 0 DOI: 10.1111/j.1439-0523.2010.01783.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
29
|
Rahman LN, Bamm VV, Voyer JAM, Smith GST, Chen L, Yaish MW, Moffatt BA, Dutcher JR, Harauz G. Zinc induces disorder-to-order transitions in free and membrane-associated Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2: a solution CD and solid-state ATR-FTIR study. Amino Acids 2010; 40:1485-502. [PMID: 20924623 DOI: 10.1007/s00726-010-0759-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Dehydrins are intrinsically unstructured proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Although their role is not completely understood, it has been suggested that they stabilize proteins and membrane structures during environmental stress and also sequester metals such as zinc. Here, we investigate two dehydrins (denoted as TsDHN-1 and TsDHN-2) from Thellungiella salsuginea. This plant is a crucifer that thrives in the Canadian sub-Arctic (Yukon Territory) where it grows on saline-rich soils and experiences periods of both extreme cold and drought. We show using circular dichroism and attenuated total reflection-Fourier transform infrared spectroscopy that ordered secondary structure is induced and stabilized in these proteins, both in free and vesicle-bound form, by association with zinc. In membrane-associated form, both proteins have an increased proportion of β-strand conformation induced by the cation, in addition to the amphipathic α-helices formed by their constituent K-segments. These results support the hypothesis that dehydrins stabilize plant plasma and organellar membranes in conditions of stress, and further that zinc may be an important co-factor in stabilization. Whereas dehydrins in the cytosol of a plant cell undergoing dehydration or temperature stress form bulk hydrogels and remain primarily disordered, dehydrins with specific membrane- or protein-associations will have induced ordered secondary structures.
Collapse
Affiliation(s)
- Luna N Rahman
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA, Dutcher JR, Harauz G. Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes — synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol 2010; 88:791-807. [DOI: 10.1139/o10-026] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dehydrins are intrinsically disordered (unstructured) proteins that are expressed in plants experiencing stressful conditions such as drought or low temperature. Dehydrins are typically found in the cytosol and nucleus, but also associate with chloroplasts, mitochondria, and the plasma membrane. Although their role is not completely understood, it has been suggested that they stabilize proteins or membrane structures during environmental stress, the latter association mediated by formation of amphipathic α-helices by conserved regions called the K-segments. Thellungiella salsuginea is a crucifer that thrives in the Canadian sub-Arctic (Yukon Territory) where it grows on saline-rich soils and experiences periods of both extreme cold and drought. We have cloned and expressed in Escherichia coli two dehydrins from this plant, denoted TsDHN-1 (acidic) and TsDHN-2 (basic). Here, we show using transmission-Fourier transform infrared (FTIR) spectroscopy that ordered secondary structure is induced and stabilized in these proteins by association with large unilamellar vesicles emulating the lipid compositions of plant plasma and organellar membranes. Moreover, this induced folding is enhanced at low temperatures, lending credence to the hypothesis that dehydrins stabilize plant outer and organellar membranes in conditions of cold.
Collapse
Affiliation(s)
- Luna N. Rahman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Lin Chen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sumaiya Nazim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mahmoud W. Yaish
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Barbara A. Moffatt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John R. Dutcher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Physics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
31
|
Vaseva II, Grigorova BS, Simova-Stoilova LP, Demirevska KN, Feller U. Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:698-707. [PMID: 20701692 DOI: 10.1111/j.1438-8677.2009.00269.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three varieties (cv. Pobeda, Katya and Sadovo) of winter wheat (Triticum aestivum), differing in their agronomic characteristics, were analysed during progressive soil water stress and recovery at early vegetation stages. Changes in abscisic acid content, SDS-PAGE and immunoblot profiles of proteins that remained soluble upon heating were monitored. Initially higher ABA content in control Pobeda and Katya corresponded to earlier expression of the studied late embryogenesis abundant (LEA) proteins. A combination of higher ABA content, early immunodetection of dehydrins, and a significant increase of WZY2 transcript levels were observed in drought-stressed leaves of the tolerant variety Katya. One-step RT-PCR analyses of some acidic dehydrin genes (WCOR410b, TADHN) documented their relatively constant high expression levels in leaves under drought stress during early vegetative development. Neutral WZY2 dehydrin, TaLEA2 and TaLEA3 transcripts accumulated gradually with increasing water deficit. Delayed expression of TaLEA2 and TaLEA3 genes was found in the least drought-tolerant wheat, Sadovo. The expression profile of WZY2 revealed two distinct and separate bands, suggesting alternative splicing, which altered as water stress increased.
Collapse
Affiliation(s)
- I I Vaseva
- Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
32
|
Heath LS, Ramakrishnan N, Sederoff RR, Whetten RW, Chevone BI, Struble CA, Jouenne VY, Chen D, van Zyl L, Grene R. Studying the functional genomics of stress responses in loblolly pine with the Expresso microarray experiment management system. Comp Funct Genomics 2010; 3:226-43. [PMID: 18628855 PMCID: PMC2447276 DOI: 10.1002/cfg.169] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Accepted: 04/04/2002] [Indexed: 12/20/2022] Open
Abstract
Conception, design, and implementation of cDNA microarray experiments present a
variety of bioinformatics challenges for biologists and computational scientists. The multiple
stages of data acquisition and analysis have motivated the design of Expresso, a
system for microarray experiment management. Salient aspects of Expresso include
support for clone replication and randomized placement; automatic gridding, extraction of
expression data from each spot, and quality monitoring; flexible methods of combining
data from individual spots into information about clones and functional categories; and the
use of inductive logic programming for higher-level data analysis and mining. The
development of Expresso is occurring in parallel with several generations of microarray
experiments aimed at elucidating genomic responses to drought stress in loblolly pine
seedlings. The current experimental design incorporates 384 pine cDNAs replicated and
randomly placed in two specific microarray layouts. We describe the design of Expresso as
well as results of analysis with Expresso that suggest the importance of molecular
chaperones and membrane transport proteins in mechanisms conferring successful
adaptation to long-term drought stress.
Collapse
Affiliation(s)
- Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rémus-Borel W, Castonguay Y, Cloutier J, Michaud R, Bertrand A, Desgagnés R, Laberge S. Dehydrin variants associated with superior freezing tolerance in alfalfa (Medicago sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1163-74. [PMID: 20039014 DOI: 10.1007/s00122-009-1243-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 12/08/2009] [Indexed: 05/08/2023]
Abstract
A cDNA (msaCIG) encoding a cold-inducible Y(2)K(4) dehydrin in alfalfa (Medicago sativa spp. sativa) was shown to share extensive homology with sequences from other species and subspecies of Medicago. Differences were mainly the result of the occurrence of large indels, amino acids substitutions/deletions and sequence duplications. Using a combination of a bulk segregant analysis and RFLP hybridization, we uncovered an msaCIG polymorphism that increases in frequency in response to recurrent selection for superior freezing tolerance. Progenies from crosses between genotypes with (D+) or without (D-) the polymorphic dehydrin significantly differed in their tolerance to subfreezing temperatures. Based on the msaCIG sequence, we looked for intragenic variations that could be associated to the polymorphism detected on Southern blots. Amplifications with primers targeting the 3' half side of msaCIG revealed fragment size variations between pools of genotypes with (+) or without (-) the polymorphism. Three major groups of amplicons of approximately 370 nt (G1), 330 nt (G2), and 290 nt (G3) were distinguished. The G2 group was more intensively amplified in pools of genotypes with the polymorphic dehydrin and was associated to a superior freezing tolerance phenotype. Sequences analysis revealed that size variation in the 3' half was attributable to the variable occurrence of large indels. Single amino acid substitutions and/or deletions caused major differences in the prediction of the secondary structure of the polypeptides. The identification of dehydrin variants associated to superior freezing tolerance paves the way to the development of functional markers and the fixation of favorable alleles in various genetic backgrounds.
Collapse
Affiliation(s)
- Wilfried Rémus-Borel
- Crops and Soils Research and Development Center, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Quebec, QC, G1V-2J3, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kosová K, Tom Prásil I, Prásilová P, Vítámvás P, Chrpová J. The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas 68 x Igri cross during cold acclimation. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:343-50. [PMID: 19962784 DOI: 10.1016/j.jplph.2009.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/20/2009] [Accepted: 09/19/2009] [Indexed: 05/23/2023]
Abstract
The dynamics of a long-term cold acclimation (CA) was studied in spring barley cultivar Atlas 68, winter barley cultivar Igri and a set of doubled haploid (DH) lines derived from an Atlas 68xIgri cross. The aim was to evaluate the effect of plant development on the ability to induce frost tolerance (FT) and to accumulate dehydrin 5 (DHN5) during CA. The plant developmental stage was evaluated by phenological development of the shoot apex and by determination of days to heading after a certain period of CA. FT was determined by direct frost tests. Plant winter survival was also determined. DHN5 was evaluated by densitometric analysis of protein gel blots. Cold led to the induction of increased FT and to the accumulation of DHN5 in both spring and winter lines. However, with the progression of CA, differences between the growth habits occurred as the winter lines were able to maintain increased FT and DHN5 levels for a significantly longer period of time than the spring lines. After vegetative/reproductive transition, a significant decrease in DHN5 accumulation was found in all lines; however, a discrepancy between the acquired FT level and DHN5 accumulation in vernalized winter barley plants was found. A correlation between DHN5 accumulation and plant winter survival was found when the studied lines were differentiated according to their developmental stage and DHN5 level. Possible explanations for these phenomena are provided.
Collapse
Affiliation(s)
- Klára Kosová
- Department of Genetics and Plant Breeding, Crop Research Institute, Drnovská 507, 161 06 Prague 6, Ruzyne, Czech Republic.
| | | | | | | | | |
Collapse
|
35
|
Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. PLANT PHYSIOLOGY 2009; 150:1503-14. [PMID: 19439573 PMCID: PMC2705017 DOI: 10.1104/pp.109.136697] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/06/2009] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in alpha-helicity of the protein, and adoption of alpha-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one "K-segment," a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic alpha-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of alpha-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521-0124, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE. Comparative expression and transcript initiation of three peach dehydrin genes. PLANTA 2009; 230:107-18. [PMID: 19360436 DOI: 10.1007/s00425-009-0927-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/16/2009] [Indexed: 05/11/2023]
Abstract
Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5' rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5' leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.
Collapse
Affiliation(s)
- Carole Leavel Bassett
- USDA, ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Pedron L, Baldi P, Hietala AM, La Porta N. Genotype-specific regulation of cold-responsive genes in cypress (Cupressus sempervirens L.). Gene 2009; 437:45-53. [DOI: 10.1016/j.gene.2008.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. PLANT PHYSIOLOGY 2009; 149:1739-50. [PMID: 19211702 PMCID: PMC2663739 DOI: 10.1104/pp.108.131714] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 01/30/2009] [Indexed: 05/06/2023]
Abstract
The moss Physcomitrella patens has been shown to tolerate abiotic stresses, including salinity, cold, and desiccation. To better understand this plant's mechanism of desiccation tolerance, we have applied cellular and proteomic analyses. Gametophores were desiccated over 1 month to 10% of their original fresh weight. We report that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling, and microtubule depolymerization. Despite the severe desiccation, the membrane system maintains integrity. Through two-dimensional gel electrophoresis and image analysis, we identified 71 proteins as desiccation responsive. Following identification and functional categorization, we found that a majority of the desiccation-responsive proteins were involved in metabolism, cytoskeleton, defense, and signaling. Degradation of cytoskeletal proteins might result in cytoskeletal disassembly and consequent changes in the cell structure. Late embryogenesis abundant proteins and reactive oxygen species-scavenging enzymes are both prominently induced, and they might help to diminish the damage brought by desiccation.
Collapse
Affiliation(s)
- Xiao Qin Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3531-44. [PMID: 19561048 PMCID: PMC2724701 DOI: 10.1093/jxb/erp194] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also facilitate the genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at the transcriptional level in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme, NADP-ME, and pyruvate dehydrogenase, PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase, CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase,ALDH, ascorbate-dependent oxidoreductase, ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8, HSP17.8, and dehydrin 3, DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were possibly constitutively expressed in drought-tolerant genotypes. Among them, seven known annotated genes might enhance drought tolerance through signalling [such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP)], anti-senescence (G2 pea dark accumulated protein, GDA2), and detoxification (glutathione S-transferase, GST) pathways. In addition, 18 genes, including those encoding Delta(l)-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C), and several chaperones, were differentially expressed in all genotypes under drought; thus they were more likely to be general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Collapse
Affiliation(s)
- Peiguo Guo
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
- To whom correspondence should be addressed: E-mail:
| | - Stefania Grando
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| | - Salvatore Ceccarelli
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| | - Guihua Bai
- USDA-ARS Plant Science and Entomology Research Unit, 4008 Throckmorton Hall, Manhattan, KS 66506, USA
| | - Ronghua Li
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Rajeev K. Varshney
- Applied Genomics Laboratory, GT-Biotechnology, ICRISAT, PATANCHERU-502 324, Greater Hyderabad, India
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research Head, Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jan Valkoun
- International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria
| |
Collapse
|
40
|
Huerta L, Forment J, Gadea J, Fagoaga C, Peña L, Pérez-Amador MA, García-Martínez JL. Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. PLANT, CELL & ENVIRONMENT 2008; 31:1620-33. [PMID: 18684239 DOI: 10.1111/j.1365-3040.2008.01870.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of gibberellins (GA) on internode transcriptome was investigated in transgenic Carrizo citrange (Citrus sinensis x Poncirus trifoliata) plants overexpressing endogenous CcGA20ox1 (encoding a GA biosynthetic gene), and in non-transformed explants treated with GA(3), using a citrus cDNA microarray. Substantial modulation of gene expression was found in sense CcGA20ox plants. Extensive up-regulation of genes involved in photosynthesis and carbon utilization, and down-regulation of those involved in protein synthesis and ribosome biogenesis were shown for the first time in plants with higher GA content. Importantly, increase of net photosynthesis in attached leaves was also demonstrated. Expression of other genes belonging to functional groups not reported previously to be regulated by GA (mainly abiotic and biotic stresses, and cuticle biosynthesis), and genes involved in cell division and cell wall architecture were also differentially expressed. Culture of citrus explants for 24 h in GA(3) solution produced much lower changes in the transcriptome compared with CcGA20ox plants (1.6% versus 16%, respectively, of total genes in the microarray), suggesting that most of the changes observed in CcGA20ox plants were a consequence of a long-standing GA effect. Interestingly, genes related to abiotic and biotic stresses were similarly modulated in transgenics and GA(3)-treated explants.
Collapse
Affiliation(s)
- Laura Huerta
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Agrawal L, Chakraborty S, Jaiswal DK, Gupta S, Datta A, Chakraborty N. Comparative proteomics of tuber induction, development and maturation reveal the complexity of tuberization process in potato (Solanum tuberosum L.). J Proteome Res 2008; 7:3803-17. [PMID: 18672926 DOI: 10.1021/pr8000755] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberization in potato ( Solanum tuberosum L.) is a developmental process that serves a double function, as a storage organ and as a vegetative propagation system. It is a multistep, complex process and the underlying mechanisms governing these overlapping steps are not fully understood. To understand the molecular basis of tuberization in potato, a comparative proteomic approach has been applied to monitor differentially expressed proteins at different development stages using two-dimensional gel electrophoresis (2-DE). The differentially displayed proteomes revealed 219 protein spots that change their intensities more than 2.5-fold. The LC-ES-MS/MS analyses led to the identification of 97 differentially regulated proteins that include predicted and novel tuber-specific proteins. Nonhierarchical clustering revealed coexpression patterns of functionally similar proteins. The expression of reactive oxygen species catabolizing enzymes, viz., superoxide dismutase, ascorbate peroxidase and catalase, were induced by more than 2-fold indicating their possible role during the developmental transition from stolons into tubers. We demonstrate that nearly 100 proteins, some presumably associated with tuber cell differentiation, regulate diverse functions like protein biogenesis and storage, bioenergy and metabolism, and cell defense and rescue impinge on the complexity of tuber development in potato.
Collapse
Affiliation(s)
- Lalit Agrawal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
42
|
Kosová K, Holková L, Prásil IT, Prásilová P, Bradácová M, Vítámvás P, Capková V. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1142-1151. [PMID: 18242771 DOI: 10.1016/j.jplph.2007.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/03/2007] [Accepted: 10/05/2007] [Indexed: 05/25/2023]
Abstract
The Dhn5 gene is the major cold-inducible dehydrin gene in barley. This study deals with the relationship between Dhn5 gene expression and its protein product accumulation, and the development of frost tolerance (FT) upon cold acclimation (CA) in 10 barley cultivars of different growth habits and geographical origins. The activation of Dhn5 gene expression was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the accumulation of DHN5 protein was evaluated by protein gel blot analysis using a specific anti-dehydrin antibody, and the acquired level of FT was determined by a direct frost test. During the first 2 weeks of CA, there was a rapid increase in Dhn5 gene expression, DHN5 protein accumulation and FT in all cultivars examined. After 2 weeks of CA, differences in DHN5 accumulation and in FT measured as lethal temperature (LT(50)) were observed between the cultivars belonging to different growth habits. Specifically, intermediate (I) and winter (W) cultivars showed a higher level of DHN5 accumulation and FT than the spring (S) cultivars, which exhibited a lower level of accumulated DHN5 and FT. (Intermediate cultivars do not have vernalization requirement, but they are able to induce a relatively high level of FT upon CA.) In contrast, no differences between the cultivars belonging to different growth habits in Dhn5 mRNA accumulation were found. After 3 weeks of CA, the differences in accumulated DHN5 and FT between the individual growth habits became evident due to different developmental regulation of FT. The amount of accumulated DHN5 corresponded well with the level of FT of individual cultivars. We conclude that the amount of accumulated DHN5 after a certain period of CA differed according to the growth habits of cultivars and can be used as a marker for determination of FT in barley.
Collapse
Affiliation(s)
- Klára Kosová
- Department of Genetics and Plant Breeding, Crop Research Institute, Prague 6, Ruzyne, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
43
|
Welling A, Palva ET. Involvement of CBF transcription factors in winter hardiness in birch. PLANT PHYSIOLOGY 2008; 147:1199-211. [PMID: 18467468 PMCID: PMC2442524 DOI: 10.1104/pp.108.117812] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 04/29/2008] [Indexed: 05/18/2023]
Abstract
Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch.
Collapse
Affiliation(s)
- Annikki Welling
- Viikki Biocenter, Department of Biological and Environmental Sciences, Division of Plant Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | | |
Collapse
|
44
|
Tommasini L, Svensson JT, Rodriguez EM, Wahid A, Malatrasi M, Kato K, Wanamaker S, Resnik J, Close TJ. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Funct Integr Genomics 2008; 8:387-405. [PMID: 18512091 DOI: 10.1007/s10142-008-0081-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/01/2008] [Accepted: 04/06/2008] [Indexed: 10/22/2022]
Abstract
Low temperature and drought have major influences on plant growth and productivity. To identify barley genes involved in responses to these stresses and to specifically test the hypothesis that the dehydrin (Dhn) multigene family can serve as an indicator of the entire transcriptome response, we investigated the response of barley cv. Morex to: (1) gradual drought over 21 days and (2) low temperature including chilling, freeze-thaw cycles, and deacclimation over 33 days. We found 4,153 genes that responded to at least one component of these two stress regimes, about one fourth of all genes called "present" under any condition. About 44% (1,822 of 4,153) responded specifically to drought, whereas only 3.8% (158 of 4,153) were chilling specific and 2.8% (119 of 4,153) freeze-thaw specific, with 34.1% responsive to freeze-thaw and drought. The intersection between chilling and drought (31.9%) was somewhat smaller than the intersection between freeze-thaw and drought, implying an element of osmotic stress response to freeze-thaw. About 82.4% of the responsive genes were similar to Arabidopsis genes. The expression of 13 barley Dhn genes mirrored the global clustering of all transcripts, with specific combinations of Dhn genes providing an excellent indicator of each stress response. Data from these studies provide a robust reference data set for abiotic stress.
Collapse
Affiliation(s)
- Livia Tommasini
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barrera-Figueroa BE, Peña-Castro JM, Acosta-Gallegos JA, Ruiz-Medrano R, Xoconostle-Cázares B. Isolation of dehydration-responsive genes in a drought tolerant common bean cultivar and expression of a group 3 late embryogenesis abundant mRNA in tolerant and susceptible bean cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:368-381. [PMID: 32689364 DOI: 10.1071/fp06224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Accepted: 02/08/2007] [Indexed: 06/11/2023]
Abstract
Drought is one of the main constraints for common bean (Phaseolus vulgaris L.) production in Latin America. The aim of this work was to identify upregulated genes in the drought-tolerant common bean cv. Pinto Villa, grown under water-deficit conditions. Twenty-eight cDNAs representing differentially-expressed mRNAs in roots and/or leaves were isolated via suppression subtractive hybridisation. Their expression profiles in plants under intermediate and severe dehydration stress were tested. Three cDNAs corresponded to genes already described as associated to drought stress in P. vulgaris, 12 were known P. vulgaris sequences without previous association with drought response, and 13 were new P. vulgaris sequences. Analysis of the deduced proteins encoded by the cDNAs revealed putative functions in cellular protection, sugar metabolism, and protein synthesis, folding and turnover. Additionally, a new member of group 3 late embryogenesis abundant (LEA) genes (PvLEA3) was cloned and its complete sequence was obtained. Given the lack of reports comparing expression of dehydration-responsive genes in bean cultivars with different response to drought, the expression of PvLEA3 transcript in five bean cultivars from different origin was analysed. The induction of PvLEA3 was directly associated with the level of drought tolerance in the cultivars studied.
Collapse
Affiliation(s)
- Blanca E Barrera-Figueroa
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, 07360 San Pedro Zacatenco, México
| | - Julián M Peña-Castro
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, 07360 San Pedro Zacatenco, México
| | - Jorge A Acosta-Gallegos
- Programa de Mejoramiento del Frijol, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Bajío. Km. 6.5 carretera Celaya - San Miguel de Allende, 38010 Celaya, Guanajuato, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, 07360 San Pedro Zacatenco, México
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, 07360 San Pedro Zacatenco, México
| |
Collapse
|
46
|
Natali L, Giordani T, Lercari B, Maestrini P, Cozza R, Pangaro T, Vernieri P, Martinelli F, Cavallini A. Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.). JOURNAL OF PLANT PHYSIOLOGY 2007; 164:263-73. [PMID: 16542755 DOI: 10.1016/j.jplph.2006.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 01/24/2006] [Indexed: 05/07/2023]
Abstract
The effects of light quality on the expression of a sunflower dehydrin-encoding gene, HaDhn1, were studied during seedling de-etiolation. Seeds were germinated in the dark and, after 5 days, seedlings were maintained well watered and de-etiolated under different lights for 3, 6, 12, and 24h. Exposure to white light stimulated HaDhn1 transcript accumulation in the cotyledons of these seedlings, contrary to seedlings grown in the dark. HaDhn1 transcripts increased also treating plantlets with monochromatic lights, especially red light. The increase of HaDhn1 transcripts is provoked by the formation of the active form of phytochrome. Further experiments, performed saturating active phytochrome by yellow light, in combination or not with blue light, showed that also cryptochrome can increase HaDhn1 transcripts accumulation after exposure to light. In situ analysis of HaDhn1 expression domains in cotyledons of light-treated seedlings showed a hybridisation signal spread in all mesophyll cells, especially in the basal portion and in the vascular tissue. In the distal portion of the cotyledons, less intense signal was observed. Western blot analysis indicated that HaDhn1 transcription is not followed by dehydrin-protein accumulation. The isolated putative promoter sequence of the HaDhn1 gene showed that different putative cis-elements recognisable by transcription factors occur in the isolated sequence, including a putative light-responsive G-box. On the whole, our results indicate that HaDhn1 gene expression is induced by light during de-etiolation, in absence of water stress.
Collapse
Affiliation(s)
- Lucia Natali
- Dipartimento di Biologia delle Piante Agrarie della Università, Via Matteotti 1/B, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Qian G, Han Z, Zhao T, Deng G, Pan Z, Yu M. Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. ACTA ACUST UNITED AC 2007. [DOI: 10.1071/ar06300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are thought to protect against water stress in plants. Characteristics of sequence and expression of barley gene HVA1, a member of LEA group 3 protein, were investigated in hulless barley (Hordeum vulgare ssp. vulgare), associated with phenotypically diverse drought-tolerant genotypes. Sensitive and tolerant genotypes were identified from Tibetan populations of cultivated hulless barley, based on scores of water loss rate (WLR), maldondialdehyde (MDA), and proline content. The results indicated that lower MDA contents, lower scores of WLR, and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Notably, differential trends of expression patterns were detected among the selected contrasting genotypes, depending on the duration of dehydration stress. The HVA1 gene tended to respond earlier in the tolerance (after 2 h) compared with sensitive genotypes (after 4 h). Results of quantitative real-time PCR indicated that the relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2–4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 to 12 h of stress. Variable numbers of the 11-amino-acid-motif in LEA3 proteins were not consistent with the lines of drought resistance in hulless barley. Molecular characteristic of LEA3 protein in tolerant lines existed in the consistency of Gln32, Arg33, and Ala195 in Tibetan hulless barley. The present study may indicate that the differential HVA1 gene has a functional role in the dehydration tolerance in hulless barley. The authors suggested that the observed variability in sequence and expression of HVA1 could be related to the diverse drought-tolerant genotypes in crops.
Collapse
|
48
|
Panza V, Distéfano AJ, Carjuzaa P, Láinez V, Del Vas M, Maldonado S. Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds. PROTOPLASMA 2007; 231:1-5. [PMID: 17602273 DOI: 10.1007/s00709-007-0248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 10/10/2006] [Indexed: 05/16/2023]
Abstract
Euterpe edulis Martius, a tropical palm species characterized as highly recalcitrant, accumulated dehydrin proteins in both the endosperm and the embryo of the mature seed, as detected by Western blot analysis and immunogold electron microscopy. Three major bands at molecular masses of approximately 16, 18, and 24 kDa were identified in both samples analysed. Immunogold electron microscopy studies detected the presence of dehydrins in the embryo and endosperm. In both cases, dehydrins were immunolocalized in cytoplasm and chromatin. No labelling associated with either membranes or organelles was detected. It is known that dehydrins are produced as part of the developmental program of orthodox seeds and are also present in some recalcitrant seeds of temperate regions. The constitutive presence of dehydrins in embryos of extremely recalcitrant species of tropical origin has not been previously reported.
Collapse
Affiliation(s)
- V Panza
- Instituto de Recursos Biológicos, Centro de Investigación de Recursos Naturales, Instituto Nacional de Tecnología Agropecuria, Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C. Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. PLANT, CELL & ENVIRONMENT 2006; 29:2143-52. [PMID: 17081248 DOI: 10.1111/j.1365-3040.2006.01588.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Water deficit is a severe environmental stress and the major constraint on plant productivity with an evident effect on plant growth. The aim of this work was to study Triticum and Aegilops seedlings differing in their response to drought stress at the physiological and molecular levels. The identification of resistant and sensitive genotypes was firstly based on the relative water content (RWC) measurement. Further characterization of genotypes contrasting in their response to water stress was performed at the physiological level by determination of RWC, water loss rate (WLR) and free proline content after different hours of dehydration. Modification in the expression level of five dehydrin (DHN) genes was also analysed by reverse transcription-polymerase chain reaction (RT-PCR). Five cDNAs coding for different DHNs were identified and characterized. These genes are not expressed in the well-watered plants, but only in the stressed plants. Four of these cDNAs are related to novel DHN sequences. The results obtained clearly indicate a relation between the expression of these genes and tissue water content. In particular, in the resistant genotypes the expression of DHN genes is initiated even though tissue hydration levels are still high, indicating also in wheat the involvement of these proteins in water retention.
Collapse
Affiliation(s)
- Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, via prov. le Monteroni, Lecce, Italy
| | | | | | | | | |
Collapse
|
50
|
Rorat T. Plant dehydrins--tissue location, structure and function. Cell Mol Biol Lett 2006; 11:536-56. [PMID: 16983453 PMCID: PMC6275985 DOI: 10.2478/s11658-006-0044-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/28/2006] [Indexed: 11/21/2022] Open
Abstract
Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Phi-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: Y(n)SK(n), Y(n)Kn, SK(n), K(n) and K(n)S. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSK(n)-type) bind to lipid vesicles that contain acidic phospholipids, and others (K(n)S) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87-94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SK(n)-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.
Collapse
|