1
|
Shangguan A, Ding F, Ding R, Sun W, Li X, Bao X, Zhang T, Chi H, Xiong Q, Chen M, Zhou Y, Zhang S. Whole-genome bisulfite sequencing of X and Y sperm in Holstein bulls reveals differences in autosomal methylation status. BMC Genomics 2025; 26:282. [PMID: 40119264 PMCID: PMC11927118 DOI: 10.1186/s12864-025-11402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
A comprehensive understanding of the molecular differences between X and Y sperm in Holstein bull semen is crucial for advancing sex control technologies. While previous studies have primarily focused on proteomic and transcriptomic differences, the genome-wide DNA methylation differences between these sperm types remains largely unexplored. In this study, we employed whole-genome bisulfite sequencing to systematically compare the autosomal methylation profiles of X and Y sperm. Although global methylation patterns showed remarkable consistency between the two sperm types, our localized comparative analysis revealed 12,175 differentially methylated regions mapping to 2,041 genes (differentially methylated genes, DMGs). Functional enrichment analysis of these DMGs revealed their involvement in essential biological processes, particularly in energy metabolism and membrane voltage regulation. Notably, SPA17 and CHCHD3, identified as hypermethylated genes in X sperm in this study, have also been reported to show lower protein expression levels in X sperm compared to Y sperm. Furthermore, we identified 28 DMGs functionally associated with spermatogenesis and 5 DMGs related to fertilization. Our findings lay the foundation for thorough understanding of molecular differences between X and Y sperm in bull, providing essential insights for the development of more advanced sex control technologies in the future.
Collapse
Affiliation(s)
- Aishao Shangguan
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China
| | - Fengling Ding
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China
| | - Rui Ding
- National Center of Technology Innovation for Dairy, Hohhot, 010020, China
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Wei Sun
- National Center of Technology Innovation for Dairy, Hohhot, 010020, China
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Xihe Li
- National Center of Technology Innovation for Dairy, Hohhot, 010020, China
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Xiangnan Bao
- National Center of Technology Innovation for Dairy, Hohhot, 010020, China
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Tiezhu Zhang
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Huihui Chi
- Inner Mongolia SaiKeXing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 010020, China
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Mingxin Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Yang Zhou
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
| | - Shujun Zhang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
- National Center of Technology Innovation for Dairy, Hohhot, 010020, China.
| |
Collapse
|
2
|
Chan J, Rubbi L, Pellegrini M. DNA methylation entropy is a biomarker for aging. Aging (Albany NY) 2025; 17:685-698. [PMID: 40096548 PMCID: PMC11984425 DOI: 10.18632/aging.206220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The dynamic nature of epigenetic modifications has been leveraged to construct epigenetic clocks that accurately predict an individual's age based on DNA methylation levels. Here we explore whether the accumulation of epimutations, which can be quantified by Shannon's entropy, changes reproducibly with age. Using targeted bisulfite sequencing, we analyzed the associations between age, entropy, and methylation levels in human buccal swab samples. We find that epigenetic clocks based on the entropy of methylation states predict chronological age with similar accuracy as common approaches that are based on methylation levels of individual cytosines. Our approach suggests that across many genomic loci, methylation entropy changes reproducibly with age.
Collapse
Affiliation(s)
- Jonathan Chan
- Computational and Systems Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Inkster AM, Matthews AM, Phung TN, Plaisier SB, Wilson MA, Brown CJ, Robinson WP. Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Biol Sex Differ 2025; 16:18. [PMID: 40038810 DOI: 10.1186/s13293-025-00696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The human placenta is distinct from most organs due to its uniquely low-methylated genome. DNA methylation (DNAme) is particularly depleted in the placenta at partially methylated domains and on the inactive X chromosome (Xi) in XX samples. While Xi DNAme is known to be critical for X-chromosome inactivation (XCI) in other tissues, its role in the placenta remains unclear. Understanding X-linked DNAme variation in the placenta may provide insights into XCI and have implications for prenatal development and phenotypic sex differences. METHODS DNAme data were analyzed from over 350 human placental (chorionic villus) samples, along with samples from cord blood, amnion and chorion placental membranes, and fetal somatic tissues. We characterized X chromosome DNAme variation in the placenta relative to sample variables including cell composition, ancestry, maternal age, placental weight, and fetal birth weight, and compared these patterns to other tissues. We also evaluated the relationship between X-linked DNAme and previously reported XCI gene expression status in placenta. RESULTS Our findings confirm that the placenta exhibits significant depletion of DNAme on the Xi compared to other tissues. Additionally, we observe that X chromosome DNAme profiles in the placenta are influenced by cell composition, particularly trophoblast proportion, with minimal DNAme variation across gestation. Notably, low promoter DNAme is observed at most genes on the Xi regardless of XCI status, challenging known associations in somatic tissues between low promoter DNAme and escape from XCI. CONCLUSIONS This study provides evidence that the human placenta has a distinct Xi DNAme landscape, which may inform our understanding of sex differences during prenatal development. Future research should explore the mechanisms underlying the placenta's unique X-linked DNAme profile, and the factors involved in placental XCI maintenance.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada.
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 221 Wesbrook Mall, Vancouver, BC, V6T 1Z7, Canada
| | - Tanya N Phung
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Seema B Plaisier
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, BC, V6H 3N1, Canada
| |
Collapse
|
4
|
Cáceres A, Pérez-Jurado LA, Alegret-García A, Dwaraka VB, Smith R, González JR. Defective X-chromosome inactivation and cancer risk in women. Commun Biol 2025; 8:289. [PMID: 39987288 PMCID: PMC11846847 DOI: 10.1038/s42003-025-07691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
X-chromosome inactivation (XCI) is a fundamental mechanism in placental mammals that compensates for gene dosage differences between sexes. Using methylation levels of genes under XCI, we establish defective levels of XCI as a new source of interindividual variation among cancer types in females, characterized by a significant and consistent lowering of XIST expression and enrichment of differentially expressed genes under XCI. We show that defective XCI is an additive factor to the cancer risk of XCI escape deregulation in women. Defective XCI of more than 10% has an attributable risk of 40% among 12 different cancers from The Cancer Genome Atlas. Validations between independent studies of breast cancer samples show that defective XCI increases triple-negative subtype frequency, decreases survival rates, and is reduced by chemotherapy treatment. Mechanistically, it is associated with somatic mutations at TP53 and top MYC gains. In independent studies, defective XCI is detectable in blood and increases with aging, menopause, and cancer diagnosis.
Collapse
Affiliation(s)
- Alejandro Cáceres
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Luis A Pérez-Jurado
- Genetics Unit, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Genetics Service, Hospital del Mar and Institut Hospital del Mar d'Investigacions Mediques (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Albert Alegret-García
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | | | - Juan R González
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
5
|
Gocuk SA, Edwards TL, Jolly JK, McGuinness MB, MacLaren RE, Chen FK, Taylor LJ, McLaren TL, Lamey TM, Thompson JA, Ayton LN. Retinal Characteristics of Female Choroideremia Carriers: Multimodal Imaging, Microperimetry, and Genetics. Ophthalmol Retina 2024; 8:1200-1210. [PMID: 38936773 DOI: 10.1016/j.oret.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To describe visual function and retinal features of female carriers of choroideremia (CHM), using multimodal imaging and microperimetry. DESIGN Cross-sectional cohort study. PARTICIPANTS AND CONTROLS Choroideremia carriers seen in Australia (Melbourne or Perth) or the United Kingdom (Oxford or Cambridge) between 2012 and 2023. Healthy age-matched controls seen in Melbourne, Australia, between 2022 and 2023. METHODS Participants had visual acuity, fundus-tracked microperimetry, OCT, and fundus autofluorescence imaging performed. Choroideremia carriers were either genetically or clinically confirmed (i.e., obligate carriers). Choroideremia carriers were grouped according to their retinal phenotype and compared with healthy controls. Statistical analyses were performed on StataBE (v18.0). MAIN OUTCOME MEASURES Best-corrected visual acuity (BCVA), low-luminance visual acuity (LLVA), average retinal sensitivity, volume of macular hill of vision (HoV), inner retinal thickness, and photoreceptor complex (PRC) thickness. RESULTS Eighty-six eyes of 43 CHM carriers and 60 eyes of 30 healthy controls were examined using multimodal imaging and microperimetry. Median age was 54 and 48.5 years for CHM carriers and controls, respectively (P = 0.18). Most CHM carriers (86%) were genetically confirmed. Choroideremia carriers and controls had strong intereye correlation between eyes for BCVA and average retinal sensitivity (P < 0.001). Low-luminance visual acuity and macular HoV tests were sensitive tests to detect changes in CHM carriers with mild phenotypes (i.e., fine and coarse). Choroideremia carriers with geographic or male-pattern phenotypes had reduced BCVA, LLVA, retinal sensitivity, and retinal thinning, compared with healthy controls. Retinal thickening of the inner retina was observed in the central 1°, despite generalized thinning of the PRC in the central 7°, indicating retinal remodeling in CHM carriers, compared with controls. There were no genotype-phenotype correlations observed. CONCLUSIONS Female carriers of CHM with severe retinal phenotypes (i.e., geographic or male pattern) have significantly decreased visual function and retinal structural changes when compared with age-matched controls and those carriers with milder phenotypes. Low-luminance visual acuity and volumetric measures of the macular HoV were found to be the most sensitive functional tests to detect milder retinal disease (fine and coarse phenotypes) in CHM carriers. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sena A Gocuk
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Thomas L Edwards
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jasleen K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Cambridge, United Kingdom; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Myra B McGuinness
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Fred K Chen
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia
| | - Laura J Taylor
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Nedlands, Western Australia, Australia; Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
7
|
Morgan R, Loh E, Singh D, Mendizabal I, Yi SV. DNA methylation differences between the female and male X chromosomes in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589778. [PMID: 38659923 PMCID: PMC11042362 DOI: 10.1101/2024.04.16.589778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The mechanisms of X chromosome inactivation suggest fundamental epigenetic differences between the female and male X chromosomes. However, DNA methylation studies often exclude the X chromosomes. In addition, many previous studies relied on techniques that examine non-randomly selected subsets of positions such as array-based methods, rather than assessing the whole X chromosome. Consequently, our understanding of X chromosome DNA methylation lags behind that of autosomes. Here we addressed this gap of knowledge by studying X chromosome DNA methylation using 89 whole genome bisulfite sequencing (WGBS) maps from neurons and oligodendrocytes. Using this unbiased and comprehensive data, we show that DNA methylation of the female X chromosomes is globally reduced (hypomethylated) across the entire chromosome compared to the male X chromosomes and autosomes. On the other hand, the majority of X-linked promoters were more highly methylated (hypermethylated) in females compared to males, consistent with the role of DNA methylation in X chromosome inactivation and dosage compensation. Remarkably, hypermethylation of female X promoters was limited to a group of previously lowly methylated promoters. The other group of highly methylated promoters were both hyper- and hypo-methylated in females with no obvious association with gene expression. Therefore, X chromosome inactivation by DNA methylation was exclusive to a subset of promoters with distinctive epigenetic feature. Apart from this group of promoters, differentially methylated regions in the female and male X chromosomes were dominated by female hypomethylation. Our study furthers the understanding of X-chromosome dosage regulation by DNA methylation on the chromosomal level as well as on individual gene level.
Collapse
Affiliation(s)
- Robert Morgan
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Current address: Arbor Biotechnologies, Cambridge, MA, 02140
| | - Eddie Loh
- Department of Ecology and Evolution and Marine Biology, Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara
| | - Devika Singh
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Current address: Foundation Medicine, Inc., Boston, MA, 02210
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Translational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Soojin V Yi
- Department of Ecology and Evolution and Marine Biology, Department of Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara
| |
Collapse
|
8
|
Protti G, Rubbi L, Gören T, Sabirli R, Civlan S, Kurt Ö, Türkçüer İ, Köseler A, Pellegrini M. The methylome of buccal epithelial cells is influenced by age, sex, and physiological properties. Physiol Genomics 2023; 55:618-633. [PMID: 37781740 DOI: 10.1152/physiolgenomics.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.
Collapse
Affiliation(s)
- Giulia Protti
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| | - Tarik Gören
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ramazan Sabirli
- Emergency Department, Bakircay University Faculty of Medicine Cigli Training and Research Hospital, Izmir, Turkey
| | - Serkan Civlan
- Department of Neurosurgery, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - İbrahim Türkçüer
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Aylin Köseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| |
Collapse
|
9
|
Usman M, Jüschke C, Song F, Kastrati D, Owczarek-Lipska M, Eilers J, Pauleikhoff L, Lange C, Neidhardt J. Skewed X-inactivation is associated with retinal dystrophy in female carriers of RPGR mutations. Life Sci Alliance 2023; 6:e202201814. [PMID: 37541846 PMCID: PMC10403639 DOI: 10.26508/lsa.202201814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Progressive degeneration of rod and cone photoreceptors frequently is caused by mutations in the X-chromosomal gene Retinitis Pigmentosa GTPase Regulator (RPGR). Males hemizygous for a RPGR mutation often are affected by Retinitis Pigmentosa (RP), whereas female mutation carriers only occasionally present with severe RP phenotypes. The underlying pathomechanism leading to RP in female carriers is not well understood. Here, we analyzed a three-generation family in which two of three female carriers of a nonsense RPGR mutation presented with RP. Among two cell lines derived from the same female family members, differences were detected in RPGR transcript expression, in localization of RPGR along cilia, as well as in primary cilium length. Significantly, these differences correlated with alterations in X-chromosomal inactivation patterns found in the patient-derived cell lines from females. In summary, our data suggest that skewed X-chromosomal inactivation is an important factor that determines the disease manifestation of RP among female carriers of pathogenic sequence alterations in the RPGR gene.
Collapse
Affiliation(s)
- Muhammad Usman
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Fei Song
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dennis Kastrati
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Junior Research Group, Genetics of Childhood Brain Malformations, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Jannis Eilers
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - John Neidhardt
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Peeters S, Leung T, Fornes O, Farkas R, Wasserman W, Brown C. Refining the genomic determinants underlying escape from X-chromosome inactivation. NAR Genom Bioinform 2023; 5:lqad052. [PMID: 37260510 PMCID: PMC10227363 DOI: 10.1093/nargab/lqad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
X-chromosome inactivation (XCI) epigenetically silences one X chromosome in every cell in female mammals. Although the majority of X-linked genes are silenced, in humans 20% or more are able to escape inactivation and continue to be expressed. Such escape genes are important contributors to sex differences in gene expression, and may impact the phenotypes of X aneuploidies; yet the mechanisms regulating escape from XCI are not understood. We have performed an enrichment analysis of transcription factor binding on the X chromosome, providing new evidence for enriched factors at the transcription start sites of escape genes. The top escape-enriched transcription factors were detected at the RPS4X promoter, a well-described human escape gene previously demonstrated to escape from XCI in a transgenic mouse model. Using a cell line model system that allows for targeted integration and inactivation of transgenes on the mouse X chromosome, we further assessed combinations of RPS4X promoter and genic elements for their ability to drive escape from XCI. We identified a small transgenic construct of only 6 kb capable of robust escape from XCI, establishing that gene-proximal elements are sufficient to permit escape, and highlighting the additive effect of multiple elements that work together in a context-specific fashion.
Collapse
Affiliation(s)
- Samantha Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiffany Leung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachelle A Farkas
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
LaSalle JM. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol Psychiatry 2023; 28:1890-1901. [PMID: 36650278 PMCID: PMC10560404 DOI: 10.1038/s41380-022-01917-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental outcomes in children with a commonality in deficits in social communication and language combined with repetitive behaviors and interests. The etiology of ASD is heterogeneous, as several hundred genes have been implicated as well as multiple in utero environmental exposures. Over the past two decades, epigenetic investigations, including DNA methylation, have emerged as a novel way to capture the complex interface of multivariate ASD etiologies. More recently, epigenome-wide association studies using human brain and surrogate accessible tissues have revealed some convergent genes that are epigenetically altered in ASD, many of which overlap with known genetic risk factors. Unlike transcriptomes, epigenomic signatures defined by DNA methylation from surrogate tissues such as placenta and cord blood can reflect past differences in fetal brain gene transcription, transcription factor binding, and chromatin. For example, the discovery of NHIP (neuronal hypoxia inducible, placenta associated) through an epigenome-wide association in placenta, identified a common genetic risk for ASD that was modified by prenatal vitamin use. While epigenomic signatures are distinct between different genetic syndromic causes of ASD, bivalent chromatin and some convergent gene pathways are consistently epigenetically altered in both syndromic and idiopathic ASD, as well as some environmental exposures. Together, these epigenomic signatures hold promising clues towards improved early prediction and prevention of ASD as well genes and gene pathways to target for pharmacological interventions. Future advancements in single cell and multi-omic technologies, machine learning, as well as non-invasive screening of epigenomic signatures during pregnancy or newborn periods are expected to continue to impact the translatability of the recent discoveries in epigenomics to precision public health.
Collapse
Affiliation(s)
- Janine M LaSalle
- Department of Medical Microbiology and Immunology, Perinatal Origins of Disparities Center, MIND Institute, Genome Center, Environmental Health Sciences Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
12
|
Viuff M, Skakkebæk A, Johannsen EB, Chang S, Pedersen SB, Lauritsen KM, Pedersen MGB, Trolle C, Just J, Gravholt CH. X chromosome dosage and the genetic impact across human tissues. Genome Med 2023; 15:21. [PMID: 36978128 PMCID: PMC10053618 DOI: 10.1186/s13073-023-01169-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Sex chromosome aneuploidies (SCAs) give rise to a broad range of phenotypic traits and diseases. Previous studies based on peripheral blood samples have suggested the presence of ripple effects, caused by altered X chromosome number, affecting the methylome and transcriptome. Whether these alterations can be connected to disease-specific tissues, and thereby having clinical implication for the phenotype, remains to be elucidated. METHODS We performed a comprehensive analysis of X chromosome number on the transcriptome and methylome in blood, fat, and muscle tissue from individuals with 45,X, 46,XX, 46,XY, and 47,XXY. RESULTS X chromosome number affected the transcriptome and methylome globally across all chromosomes in a tissue-specific manner. Furthermore, 45,X and 47,XXY demonstrated a divergent pattern of gene expression and methylation, with overall gene downregulation and hypomethylation in 45,X and gene upregulation and hypermethylation in 47,XXY. In fat and muscle, a pronounced effect of sex was observed. We identified X chromosomal genes with an expression pattern different from what would be expected based on the number of X and Y chromosomes. Our data also indicate a regulatory function of Y chromosomal genes on X chromosomal genes. Fourteen X chromosomal genes were downregulated in 45,X and upregulated in 47,XXY, respectively, in all three tissues (AKAP17A, CD99, DHRSX, EIF2S3, GTPBP6, JPX, KDM6A, PP2R3B, PUDP, SLC25A6, TSIX, XIST, ZBED1, ZFX). These genes may be central in the epigenetic and genomic regulation of sex chromosome aneuploidies. CONCLUSION We highlight a tissue-specific and complex effect of X chromosome number on the transcriptome and methylome, elucidating both shared and non-shared gene-regulatory mechanism between SCAs.
Collapse
Affiliation(s)
- Mette Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Genetics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Simon Chang
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Steen Bønlykke Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Mette Glavind Bülow Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
13
|
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP. Who's afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 2023; 16:1. [PMID: 36609459 PMCID: PMC9825011 DOI: 10.1186/s13072-022-00477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inactivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex chromosome data may be included in analyses of DNA methylation (DNAme) array data. RESULTS With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investigated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromosomes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify whether including both sexes impacted processing results. We found that identification of probes that have a high detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no difference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two analytical methods suitable for XY chromosome data, the choice between which should be guided by the research question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed region, and cancer-testis gene promoters. CONCLUSION While there may be no single "best" approach for analyzing DNAme array data from the X and Y chromosome, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada.
| | - Martin T Wong
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| |
Collapse
|
14
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
15
|
Li N, Wang L, Liang H, Lin C, Yi J, Yang Q, Luo H, Luo T, Zhang L, Li X, Wu K, Li F, Li N. Detecting and monitoring bladder cancer with exfoliated cells in urine. Front Oncol 2022; 12:986692. [PMID: 36158668 PMCID: PMC9491100 DOI: 10.3389/fonc.2022.986692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Current methods for the diagnosis and monitoring of bladder cancer are invasive and have suboptimal sensitivity. Liquid biopsy as a non-invasive approach has been capturing attentions recently. To explore the ability of urine-based liquid biopsy in detecting and monitoring genitourinary tumors, we developed a method based on promoter-targeted DNA methylation of urine sediment DNA. We used samples from a primary bladder cancer cohort (n=40) and a healthy cohort (n=40) to train a model and obtained an integrated area under the curve (AUC) > 0.96 in the 10-fold cross-validation, which demonstrated the ability of our method for detecting bladder cancer from the healthy. We next validated the model with samples from a recurrent cohort (n=21) and a non-recurrent cohort (n=19) and obtained an AUC > 0.91, which demonstrated the ability of our model in monitoring the progress of bladder cancer. Moreover, 80% (4/5) of samples from patients with benign urothelial diseases had been considered to be healthy sample rather than cancer sample, preliminarily demonstrating the potential of distinguishing benign urothelial diseases from cancer. Further analysis basing on multiple-time point sampling revealed that the cancer signal in 80% (4/5) patients had decreased as expected when they achieved the recurrent-free state. All the results suggested that our method is a promising approach for noninvasive detection and prognostic monitoring of bladder cancer.
Collapse
Affiliation(s)
- Nannan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Lei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Han Liang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Cong Lin
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Ji Yi
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qin Yang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Huijuan Luo
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Tian Luo
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Liwei Zhang
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Xiaojian Li
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
| | - Kui Wu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| | - Fuqiang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| | - Ningchen Li
- Department of Urology, Peking University Shougang Hospital, Beijing, China
- Peking University Wu-jieping Urology Center, Peking University Health Science Center, Beijing, China
- *Correspondence: Kui Wu, ; Fuqiang Li, ; Ningchen Li,
| |
Collapse
|
16
|
Abstract
Background: Sex dimorphism strongly impacts tumor biology, with most cancers having a male predominance. Uniquely, thyroid cancer (TC) is the only nonreproductive cancer with striking female predominance with three- to four-fold higher incidence among females, although males generally have more aggressive disease. The molecular basis for this observation is not known, and current approaches in treatment and surveillance are not sex specific. Summary: Although TC has overall good prognosis, 6-20% of patients develop regional or distant metastasis, one third of whom are not responsive to conventional treatment approaches and suffer a 10-year survival rate of only 10%. More efficacious treatment strategies are needed for these aggressive TCs, as tyrosine kinase inhibitors and immunotherapy have major toxicities without demonstrable overall survival benefit. Emerging evidence indicates a role of sex hormones, genetics, and the immune system in modulation of both risk for TC and its progression in a sex-specific manner. Conclusion: Greater understanding of the molecular mechanisms underlying sex differences in TC pathogenesis could provide insights into the development of sex-specific, targeted, and effective strategies for prevention, diagnosis, and management. This review summarizes emerging evidence for the importance of sex in the pathogenesis, progression, and response to treatment in differentiated TC with emphasis on the role of sex hormones, genetics, and the immune system.
Collapse
Affiliation(s)
- Leila Shobab
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Kenneth D Burman
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Leonard Wartofsky
- Medstar Health Research Institute, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
18
|
Checknita D, Tiihonen J, Hodgins S, Nilsson KW. Associations of age, sex, sexual abuse, and genotype with monoamine oxidase a gene methylation. J Neural Transm (Vienna) 2021; 128:1721-1739. [PMID: 34424394 PMCID: PMC8536631 DOI: 10.1007/s00702-021-02403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Epigenome-wide studies report higher methylation among women than men with decreasing levels with age. Little is known about associations of sex and age with methylation of monoamine oxidase A (MAOA). Methylation of the first exonic and partial first intronic region of MAOA has been shown to strengthen associations of interactions of MAOA-uVNTR genotypes and adversity with aggression and substance misuse. Our study examined associations of sex and age with MAOA first exon and intron methylation levels in 252 women and 157 men aged 14–73 years. Participants included adolescents recruited at a substance misuse clinic, their siblings and parents, and healthy women. Women showed ~ 50% higher levels of exonic, and ~ 15% higher intronic, methylation than men. Methylation levels were similar between younger (M = 22.7 years) and older (M = 46.1 years) participants, and stable across age. Age modified few associations of methylation levels with sex. MAOA genotypes modified few associations of methylation with sex and age. Higher methylation levels among women were not explained by genotype, nor interaction of genotype and sexual abuse. Findings were similar after adjusting for lifetime diagnoses of substance dependence (women = 24.3%; men = 34.2%). Methylation levels were higher among women who experienced sexual abuse than women who did not. Results extend on prior studies by showing that women display higher levels of methylation than men within first intronic/exonic regions of MAOA, which did not decrease with age in either sex. Findings were not conditioned by genotype nor interactions of genotype and trauma, and indicate X-chromosome inactivation.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden. .,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden.
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Département de Psychiatrie et Addictologie, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Chen X, Ma Y, Wang L, Zhang X, Yu Y, Lü W, Xie X, Cheng X. Loss of X Chromosome Inactivation in Androgenetic Complete Hydatidiform Moles With 46, XX Karyotype. Int J Gynecol Pathol 2021; 40:333-341. [PMID: 33021557 PMCID: PMC8183483 DOI: 10.1097/pgp.0000000000000697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most complete hydatidiform moles (CHMs) showcase an androgenetic nature of the nuclear genome. In the normal female embryo, one of the 2 X chromosomes is inactive. However, the status of X chromosome inactivation (XCI) in androgenetic CHMs remains unknown. Seventy-one androgenetic CHM tissues with the 46, XX karyotype were collected. Seventy-four normal female villi and 74 normal male villi were collected as controls. The expression of XCI markers (XIST, TSIX, and XACT) and an X-linked gene (CDX4) was detected by real-time polymerase chain reaction. Other XCI-associated genes were also examined, including the methylation status of the human androgen receptor gene (HUMARA) by methylation-specific polymerase chain reaction), and the expression of H3K27me3, USP21, and Nanog by Western blot and immunofluorescence, respectively. In addition, 126 CHMs and 63 normal female villous samples were collected for CDX4 immunohistochemical staining. The expression of XIST RNA was significantly lower, and TSIX RNA expression was significantly higher in androgenetic CHMs than that in normal female villi (both P<0.01). The expression of CDX4 mRNA in androgenetic CHMs was elevated compared with that in normal male and normal female villous samples (both P<0.01), and CDX4 protein expression was also higher than that in normal female villous samples (P<0.01). The expression of H3K27me3 was lower in androgenetic CHMs compared with that in normal female villi(P<0.01). The methylation pattern of HUMARA was found lacking in androgenetic CHMs. The expression of Nanog and UPS21 protein in androgenetic CHMs was higher than that in normal villi (both P<0.01). Both X chromosomes are active in androgenetic CHMs with the 46, XX karyotype, and the USP21-Nanog pathway may be involved in the disruption of XCI during this process.
Collapse
|
20
|
Kawashima S, Hattori A, Suzuki E, Matsubara K, Toki M, Kosaki R, Hasegawa Y, Nakabayashi K, Fukami M, Kagami M. Methylation status of genes escaping from X-chromosome inactivation in patients with X-chromosome rearrangements. Clin Epigenetics 2021; 13:134. [PMID: 34193245 PMCID: PMC8244138 DOI: 10.1186/s13148-021-01121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-chromosome inactivation (XCI) is a mechanism in which one of two X chromosomes in females is randomly inactivated in order to compensate for imbalance of gene dosage between sexes. However, about 15% of genes on the inactivated X chromosome (Xi) escape from XCI. The methylation level of the promoter region of the escape gene is lower than that of the inactivated genes. Dxz4 and/or Firre have critical roles for forming the three-dimensional (3D) structure of Xi. In mice, disrupting the 3D structure of Xi by deleting both Dxz4 and Firre genes led to changing of the escape genes list. To estimate the impact for escape genes by X-chromosome rearrangements, including DXZ4 and FIRRE, we examined the methylation status of escape gene promoters in patients with various X-chromosome rearrangements. RESULTS To detect the breakpoints, we first performed array-based comparative genomic hybridization and whole-genome sequencing in four patients with X-chromosome rearrangements. Subsequently, we conducted array-based methylation analysis and reduced representation bisulfite sequencing in the four patients with X-chromosome rearrangements and controls. Of genes reported as escape genes by gene expression analysis using human hybrid cells in a previous study, 32 genes showed hypomethylation of the promoter region in both male controls and female controls. Three patients with X-chromosome rearrangements had no escape genes with abnormal methylation of the promoter region. One of four patients with the most complicated rearrangements exhibited abnormal methylation in three escape genes. Furthermore, in the patient with the deletion of the FIRRE gene and the duplication of DXZ4, most escape genes remained hypomethylated. CONCLUSION X-chromosome rearrangements are unlikely to affect the methylation status of the promoter regions of escape genes, except for a specific case with highly complex rearrangements, including the deletion of the FIRRE gene and the duplication of DXZ4.
Collapse
Affiliation(s)
- Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Machiko Toki
- Department of Pediatrics, Hiratsuka City Hospital, 1-19-1 Minamihara, Hiratsuka, Kanagawa, 254-0065, Japan.,Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
21
|
Youness A, Miquel CH, Guéry JC. Escape from X Chromosome Inactivation and the Female Predominance in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms22031114. [PMID: 33498655 PMCID: PMC7865432 DOI: 10.3390/ijms22031114] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Women represent 80% of people affected by autoimmune diseases. Although, many studies have demonstrated a role for sex hormone receptor signaling, particularly estrogens, in the direct regulation of innate and adaptive components of the immune system, recent data suggest that female sex hormones are not the only cause of the female predisposition to autoimmunity. Besides sex steroid hormones, growing evidence points towards the role of X-linked genetic factors. In female mammals, one of the two X chromosomes is randomly inactivated during embryonic development, resulting in a cellular mosaicism, where about one-half of the cells in a given tissue express either the maternal X chromosome or the paternal one. X chromosome inactivation (XCI) is however not complete and 15 to 23% of genes from the inactive X chromosome (Xi) escape XCI, thereby contributing to the emergence of a female-specific heterogeneous population of cells with bi-allelic expression of some X-linked genes. Although the direct contribution of this genetic mechanism in the female susceptibility to autoimmunity still remains to be established, the cellular mosaicism resulting from XCI escape is likely to create a unique functional plasticity within female immune cells. Here, we review recent findings identifying key immune related genes that escape XCI and the relationship between gene dosage imbalance and functional responsiveness in female cells.
Collapse
Affiliation(s)
- Ali Youness
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
| | - Charles-Henry Miquel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
- Arthritis R&D, 92200 Neuilly-Sur-Seine, France
| | - Jean-Charles Guéry
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, UPS, 31300 Toulouse, France; (A.Y.); (C.-H.M.)
- Correspondence: ; Tel.: +33-5-62-74-83-78; Fax: +33-5-62-74-45-58
| |
Collapse
|
22
|
Ludwig B, Carlberg L, Kienesberger K, Swoboda P, Mitschek MMM, Bernegger A, Koller R, Inaner M, Senft B, Meisner L, Fischer-Hansal D, Affenzeller A, Huber J, Schoenthaler S, Kapusta ND, Haslacher H, Aigner M, Weinhaeusel A, Kasper S, Schosser A. Monoamino Oxidase A Gene Single-Nucleotide Polymorphisms and Methylation Status and the Risk of Violent Suicide Attempts in Affective Disorder Patients. Front Psychiatry 2021; 12:667191. [PMID: 34421667 PMCID: PMC8378401 DOI: 10.3389/fpsyt.2021.667191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: When investigating the neurobiology of suicidal behavior, Monoamino Oxidase A (MAOA) is one of the prime suspects to consider. Interestingly, MAOA dysregulation has also been associated with violent behavior in previous publications. In the present study, we aimed to establish an association between polymorphisms of the MAOA gene and methylation status of the MAOA gene Exon I, and suicide attempts with violent methods in a sample of affective disorder patients. Methods: Eight hundred fourteen Caucasian affective disorder patients were assessed at the Department of Psychiatry and Psychotherapy of the Medical University Vienna, the Karl Landsteiner University for Health and Science and Zentren für seelische Gesundheit, BBRZ-Med Leopoldau. An assemblage of psychiatric interviews was performed (e.g., SCAN, HAMD, SBQ-R, CTQ) and DNA samples of peripheral blood cells were collected for Sequenom MassARRAY® iPLEX Gold genotyping and Multiplexed and Sensitive DNA Methylation Testing. Results: Female affective disorder patients with a history of violent suicide attempt were found to have a significantly increased frequency of the AA genotype in the rs5906957 single nucleotide polymorphism (p = 0.003). Furthermore, the MAOA gene exon I promoter region showed significantly decreased methylation in female violent suicide attempter(s) as opposed to female affective disorder patients who had no history of suicide attempt or no history of suicide attempt with violent method. Limitations: The small sample size hampers to reveal small genetic effects as to be expected in psychiatric disorders. Conclusions: This study offers promising findings about associations between the MAOA gene and violent suicide especially in women.
Collapse
Affiliation(s)
- Birgit Ludwig
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Laura Carlberg
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Klemens Kienesberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Swoboda
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marleen M M Mitschek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Bernegger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Romina Koller
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michelle Inaner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Birgit Senft
- Zentren für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Lisa Meisner
- Zentren für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Daniela Fischer-Hansal
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,Zentren für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | | | - Jasmin Huber
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Silvia Schoenthaler
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Nestor D Kapusta
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Aigner
- Department of Psychiatry and Psychotherapy, Karl Landsteiner University for Health and Science, Tulln, Austria
| | - Andreas Weinhaeusel
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schosser
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.,Zentren für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| |
Collapse
|
23
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
24
|
Understanding the Landscape of X-linked Variants Causing Intellectual Disability in Females Through Extreme X Chromosome Inactivation Skewing. Mol Neurobiol 2020; 57:3671-3684. [DOI: 10.1007/s12035-020-01981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
|
25
|
Li S, Lund JB, Christensen K, Baumbach J, Mengel-From J, Kruse T, Li W, Mohammadnejad A, Pattie A, Marioni RE, Deary IJ, Tan Q. Exploratory analysis of age and sex dependent DNA methylation patterns on the X-chromosome in whole blood samples. Genome Med 2020; 12:39. [PMID: 32345361 PMCID: PMC7189689 DOI: 10.1186/s13073-020-00736-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Large numbers of autosomal sites are found differentially methylated in the aging genome. Due to analytical difficulties in dealing with sex differences in X-chromosome content and X-inactivation (XCI) in females, this has not been explored for the X chromosome. METHODS Using data from middle age to elderly individuals (age 55+ years) from two Danish cohorts of monozygotic twins and the Scottish Lothian Birth Cohort 1921, we conducted an X-chromosome-wide analysis of age-associated DNA methylation patterns with consideration of stably inferred XCI status. RESULTS Through analysing and comparing sex-specific X-linked DNA methylation changes over age late in life, we identified 123, 293 and 55 CpG sites significant (FDR < 0.05) only in males, only in females and in both sexes of Danish twins. All findings were significantly replicated in the two Danish twin cohorts. CpG sites escaping XCI are predominantly de-methylated with increasing age across cohorts. In contrast, CpGs highly methylated in both sexes are methylated even further with increasing age. Among the replicated sites in Danish samples, 16 (13%), 24 (8.2%) and 3 (5.5%) CpGs were further validated in LBC1921 (FDR < 0.05). CONCLUSIONS The X-chromosome of whole blood leukocytes displays age- and sex-dependent DNA methylation patterns in relation to XCI across cohorts.
Collapse
Affiliation(s)
- Shuxia Li
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark
| | - Jesper B Lund
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jonas Mengel-From
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark
| | - Torben Kruse
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Weilong Li
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark
| | - Afsaneh Mohammadnejad
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, Scotland, UK
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, Faculty of Health Science, University of Southern Denmark, J. B. Winsløws Vej 9B, DK-5000, Odense C, Denmark. .,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
26
|
Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:E2269. [PMID: 32218238 PMCID: PMC7177323 DOI: 10.3390/ijms21072269] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
: Alveolar epithelial type II cells (AT2) are a heterogeneous population that have critical secretory and regenerative roles in the alveolus to maintain lung homeostasis. However, impairment to their normal functional capacity and development of a pro-fibrotic phenotype has been demonstrated to contribute to the development of idiopathic pulmonary fibrosis (IPF). A number of factors contribute to AT2 death and dysfunction. As a mucosal surface, AT2 cells are exposed to environmental stresses that can have lasting effects that contribute to fibrogenesis. Genetical risks have also been identified that can cause AT2 impairment and the development of lung fibrosis. Furthermore, aging is a final factor that adds to the pathogenic changes in AT2 cells. Here, we will discuss the homeostatic role of AT2 cells and the studies that have recently defined the heterogeneity of this population of cells. Furthermore, we will review the mechanisms of AT2 death and dysfunction in the context of lung fibrosis.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
27
|
Monoamine oxidase A genotype and methylation moderate the association of maltreatment and aggressive behaviour. Behav Brain Res 2020; 382:112476. [DOI: 10.1016/j.bbr.2020.112476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
|
28
|
Matarrese P, Tieri P, Anticoli S, Ascione B, Conte M, Franceschi C, Malorni W, Salvioli S, Ruggieri A. X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis. Cell Death Dis 2019; 10:673. [PMID: 31511496 PMCID: PMC6739406 DOI: 10.1038/s41419-019-1888-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Via dei Taurini 19, Rome, Italy.,Data Science Program, La Sapienza University of Rome, Rome, Italy
| | - Simona Anticoli
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, via San Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy.,School of Mathematical, Physical and Natural Sciences and Faculty of Medicine, University of Tor Vergata, Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. .,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, via San Giacomo 12, 40126, Bologna, Italy.
| | - Anna Ruggieri
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy.
| |
Collapse
|
29
|
Konwar C, Del Gobbo G, Yuan V, Robinson WP. Considerations when processing and interpreting genomics data of the placenta. Placenta 2019; 84:57-62. [PMID: 30642669 PMCID: PMC6612459 DOI: 10.1016/j.placenta.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
The application of genomic approaches to placental research has opened exciting new avenues to help us understand basic biological properties of the placenta, improve prenatal screening/diagnosis, and measure effects of in utero exposures on child health outcomes. In the last decade, such large-scale genomic data (including epigenomics and transcriptomics) have become more easily accessible to researchers from many disciplines due to the increasing ease of obtaining such data and the rapidly evolving computational tools available for analysis. While the potential of large-scale studies has been widely promoted, less attention has been given to some of the challenges associated with processing and interpreting such data. We hereby share some of our experiences in assessing data quality, reproducibility, and interpretation in the context of genome-wide studies of the placenta, with the aim to improve future studies. There is rarely a single "best" approach, as that can depend on the study question and sample cohort. However, being consistent, thoroughly assessing potential confounders in the data, and communicating key variables in the methods section of the manuscript are critically important to help researchers to collaborate and build on each other's work.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Giulia Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Victor Yuan
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| |
Collapse
|
30
|
Abstract
X chromosome inactivation silences one X chromosome in female mammals. However, this silencing is incomplete, and some genes escape X inactivation. We describe methods to determine the chromosome-wide X inactivation status of genes in tissues or cell lines derived from mice using a combination of skewing of X inactivation and allele-specific analyses of gene expression based on RNA-seq.
Collapse
|
31
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
32
|
Wainer Katsir K, Linial M. Human genes escaping X-inactivation revealed by single cell expression data. BMC Genomics 2019; 20:201. [PMID: 30871455 PMCID: PMC6419355 DOI: 10.1186/s12864-019-5507-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In mammals, sex chromosomes pose an inherent imbalance of gene expression between sexes. In each female somatic cell, random inactivation of one of the X-chromosomes restores this balance. While most genes from the inactivated X-chromosome are silenced, 15-25% are known to escape X-inactivation (termed escapees). The expression levels of these genes are attributed to sex-dependent phenotypic variability. RESULTS We used single-cell RNA-Seq to detect escapees in somatic cells. As only one X-chromosome is inactivated in each cell, the origin of expression from the active or inactive chromosome can be determined from the variation of sequenced RNAs. We analyzed primary, healthy fibroblasts (n = 104), and clonal lymphoblasts with sequenced parental genomes (n = 25) by measuring the degree of allelic-specific expression (ASE) from heterozygous sites. We identified 24 and 49 candidate escapees, at varying degree of confidence, from the fibroblast and lymphoblast transcriptomes, respectively. We critically test the validity of escapee annotations by comparing our findings with a large collection of independent studies. We find that most genes (66%) from the unified set were previously reported as escapees. Furthermore, out of the overlooked escapees, 11 are long noncoding RNA (lncRNAs). CONCLUSIONS X-chromosome inactivation and escaping from it are robust, permanent phenomena that are best studies at a single-cell resolution. The cumulative information from individual cells increases the potential of identifying escapees. Moreover, despite the use of a limited number of cells, clonal cells (i.e., same X- chromosomes are coordinately inhibited) with genomic phasing are valuable for detecting escapees at high confidence. Generalizing the method to uncharacterized genomic loci resulted in lncRNAs escapees which account for 20% of the listed candidates. By confirming genes as escapees and propose others as candidates from two different cell types, we contribute to the cumulative knowledge and reliability of human escapees.
Collapse
Affiliation(s)
- Kerem Wainer Katsir
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190400, Jerusalem, Israel.
| |
Collapse
|
33
|
Peeters SB, Korecki AJ, Simpson EM, Brown CJ. Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse. Hum Mol Genet 2019; 27:1252-1262. [PMID: 29401310 PMCID: PMC6159535 DOI: 10.1093/hmg/ddy039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
34
|
Hjorthaug HS, Gervin K, Mowinckel P, Munthe-Kaas MC. Exploring the influence from whole blood DNA extraction methods on Infinium 450K DNA methylation. PLoS One 2018; 13:e0208699. [PMID: 30540848 PMCID: PMC6291135 DOI: 10.1371/journal.pone.0208699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Genome-wide DNA methylation studies are becoming increasingly important in unraveling the epigenetic basis of cell biology, aging and human conditions. The aim of the present study was to explore whether different methods for extracting DNA from whole blood can affect DNA methylation outcome, potentially confounding DNA methylation studies. DNA was isolated from healthy blood donors (n = 10) using three different extraction methods (i.e. two automatic extractions methods based on magnetic beads or isopropanol precipitation, and manual organic extraction). DNA methylation was analyzed using the Infinium HumanMethylation450 Bead Chip (Infinium 450K) (n = 30 samples in total), which is a frequently used method in genome-wide DNA methylation analyses. Overall, the different extraction methods did not have a significant impact on the global DNA methylation patterns. However, DNA methylation differences between organic extraction and each of the automated methods were in general larger than differences between the two automated extraction methods. No CpG sites or regions reached genome-wide significance when testing for differential methylation between extraction methods. Although this study is based on a small sample, these results suggest that extraction method is unlikely to confound Infinium 450K methylation analysis in whole blood.
Collapse
Affiliation(s)
- Hanne Sagsveen Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- * E-mail:
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Petter Mowinckel
- Department of Pediatric and Adolescent medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
35
|
Xu SQ, Zhang Y, Wang P, Liu W, Wu XB, Zhou JY. A statistical measure for the skewness of X chromosome inactivation based on family trios. BMC Genet 2018; 19:109. [PMID: 30518319 PMCID: PMC6282303 DOI: 10.1186/s12863-018-0694-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/08/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is an important gene regulation mechanism in females to equalize the expression levels of X chromosome between two sexes. Generally, one of two X chromosomes in females is randomly chosen to be inactivated. Nonrandom XCI (XCI skewing) is also observed in females, which has been reported to play an important role in many X-linked diseases. However, there is no statistical measure available for the degree of the XCI skewing based on family data in population genetics. RESULTS In this article, we propose a statistical approach to measure the degree of the XCI skewing based on family trios, which is represented by a ratio of two genotypic relative risks in females. The point estimate of the ratio is obtained from the maximum likelihood estimates of two genotypic relative risks. When parental genotypes are missing in some family trios, the expectation-conditional-maximization algorithm is adopted to obtain the corresponding maximum likelihood estimates. Further, the confidence interval of the ratio is derived based on the likelihood ratio test. Simulation results show that the likelihood-based confidence interval has an accurate coverage probability under the situations considered. Also, we apply our proposed method to the rheumatoid arthritis data from USA for its practical use, and find out that a locus, rs2238907, may undergo the XCI skewing against the at-risk allele. But this needs to be further confirmed by molecular genetics. CONCLUSIONS The proposed statistical measure for the skewness of XCI is applicable to complete family trio data or family trio data with some paternal genotypes missing. The likelihood-based confidence interval has an accurate coverage probability under the situations considered. Therefore, our proposed statistical measure is generally recommended in practice for discovering the potential loci which undergo the XCI skewing.
Collapse
Affiliation(s)
- Si-Qi Xu
- State Key Laboratory of Organ Failure Research, Ministry of Education and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peng Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Liu
- State Key Laboratory of Organ Failure Research, Ministry of Education and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xian-Bo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Yuan Zhou
- State Key Laboratory of Organ Failure Research, Ministry of Education and Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol 2018; 41:153-164. [PMID: 30276444 DOI: 10.1007/s00281-018-0712-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.
Collapse
|
37
|
Innovative Approach of Non-Thermal Plasma Application for Improving the Growth Rate in Chickens. Int J Mol Sci 2018; 19:ijms19082301. [PMID: 30082605 PMCID: PMC6121326 DOI: 10.3390/ijms19082301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
As an innovative technology in biological applications—non-thermal plasma technique—has recently been applied to living cells and tissues. However, it is unclear whether non-thermal plasma treatment can directly regulate the growth and development of livestock. In this study, we exposed four-day-incubated fertilized eggs to plasma at 11.7 kV for 2 min, which was found to be the optimal condition in respect of highest growth rate in chickens. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Plasma treatment regulated the reactive oxygen species homeostasis by controlling the mitochondrial respiratory complex activity and up-regulating the antioxidant defense system. At the same time, growth metabolism was improved due to the increase of growth hormone and insulin-like growth factor 1 and their receptors expression, and the rise of thyroid hormones and adenosine triphosphate levels through the regulation of demethylation levels of growth and hormone biosynthesis-related genes in the skeletal muscles and thyroid glands. To our knowledge, this study was the first to evaluate the effects of a non-thermal plasma treatment on the growth rate of chickens. This safe strategy might be beneficial to the livestock industry.
Collapse
|
38
|
Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci Rep 2018; 8:10138. [PMID: 29973619 PMCID: PMC6031675 DOI: 10.1038/s41598-018-28356-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation plays a key role in X-chromosome inactivation (XCI), a process that achieves dosage compensation for X-encoded gene products between mammalian female and male cells. However, differential sex chromosome dosage complicates genome-wide epigenomic assessments, and the X chromosome is frequently excluded from female-to-male comparative analyses. Using the X chromosome in the sexually dimorphic mouse liver as a model, we provide a general framework for comparing base-resolution DNA methylation patterns across samples that have different chromosome numbers and ask at a systematic level if predictions by historical analyses of X-linked DNA methylation hold true at a base-resolution chromosome-wide level. We demonstrate that sex-specific methylation patterns on the X chromosome largely reflect the effects of XCI. While our observations concur with longstanding observations of XCI at promoter-proximal CpG islands, we provide evidence that sex-specific DNA methylation differences are not limited to CpG island boundaries. Moreover, these data support a model in which maintenance of CpG islands in the inactive state does not require complete regional methylation. Further, we validate an intragenic non-CpG methylation signature in genes escaping XCI in mouse liver. Our analyses provide insight into underlying methylation patterns that should be considered when assessing sex differences in genome-wide methylation analyses.
Collapse
|
39
|
Checknita D, Ekström TJ, Comasco E, Nilsson KW, Tiihonen J, Hodgins S. Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. J Neural Transm (Vienna) 2018; 125:1053-1064. [PMID: 29600412 PMCID: PMC5999185 DOI: 10.1007/s00702-018-1875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Childhood physical abuse (PA) and sexual abuse (SA) interact with monoamine oxidase A (MAOA) gene polymorphism to modify risk for mental disorders. In addition, PA and SA may alter gene activity through epigenetic mechanisms such as DNA methylation, thereby further modifying risk for disorders. We investigated whether methylation in a region spanning the MAOA first exon and part of the first intron was associated with PA and/or SA, MAOA genotype, alcohol dependence, drug dependence, depression disorders, anxiety disorders, and conduct disorder. 114 Swedish women completed standardized diagnostic interviews and questionnaires to report PA and SA, and provided saliva samples for DNA extraction. DNA was genotyped for MAOA-uVNTR polymorphisms, and methylation of a MAOA region of interest (chrX: 43,515,544–43,515,991) was measured. SA, not PA, was associated with hypermethylation of the MAOA first exon relative to no-abuse, and the association was robust to adjustment for psychoactive medication, alcohol and drug dependence, and current substance use. SA and MAOA-uVNTR genotype, but not their interaction, was associated with MAOA methylation. SA associated with all measured mental disorders. Hypermethylation of MAOA first exon mediated the association of SA with current depression, and both methylation levels and SA independently predicted lifetime depression. Much remains to be learned about the independent effects of SA and MAOA-uVNTR genotypes on methylation of the MAOA first exon.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden. .,Karolinska Universitetssjukhuset, Psychiatry Building R5:00 c/o Jari Tiihonen, 171 76, Stockholm, Sweden.
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Västerås, Sweden
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montreal, Canada
| |
Collapse
|
40
|
Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab 2018; 14:12-25. [PMID: 29496428 PMCID: PMC6034041 DOI: 10.1016/j.molmet.2018.01.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Type 2 diabetes (T2D) is a multifactorial, polygenic disease caused by impaired insulin secretion and insulin resistance. Genome-wide association studies (GWAS) were expected to resolve a large part of the genetic component of diabetes; yet, the single nucleotide polymorphisms identified by GWAS explain less than 20% of the estimated heritability for T2D. There was subsequently a need to look elsewhere to find disease-causing factors. Mechanisms mediating the interaction between environmental factors and the genome, such as epigenetics, may be of particular importance in the pathogenesis of T2D. Scope of Review This review summarizes knowledge of the impact of epigenetics on the pathogenesis of T2D in humans. In particular, the review will focus on alterations in DNA methylation in four human tissues of importance for the disease; pancreatic islets, skeletal muscle, adipose tissue, and the liver. Case–control studies and studies examining the impact of non-genetic and genetic risk factors on DNA methylation in humans will be considered. These studies identified epigenetic changes in tissues from subjects with T2D versus non-diabetic controls. They also demonstrate that non-genetic factors associated with T2D such as age, obesity, energy rich diets, physical activity and the intrauterine environment impact the epigenome in humans. Additionally, interactions between genetics and epigenetics seem to influence the pathogenesis of T2D. Conclusions Overall, previous studies by our group and others support a key role for epigenetics in the growing incidence of T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden.
| | - Sonia García-Calzón
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| |
Collapse
|
41
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Carè A, Bellenghi M, Matarrese P, Gabriele L, Salvioli S, Malorni W. Sex disparity in cancer: roles of microRNAs and related functional players. Cell Death Differ 2018; 25:477-485. [PMID: 29352271 PMCID: PMC5864217 DOI: 10.1038/s41418-017-0051-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023] Open
Abstract
A sexual dimorphism at the cellular level has been suggested to play a role in cancer onset and progression. In particular, very recent studies have unraveled striking differences between cells carrying XX or XY chromosomes in terms of response to stressful stimuli, indicating the presence of genetic and epigenetic differences determining sex-specific metabolic or phenotypic traits. Although this field of investigation is still in its infancy, available data suggest a key role of sexual chromosomes in determining cell life or death. In particular, cells carrying XX chromosomes exhibit a higher adaptive potential and survival behavior in response to microenvironmental variations with respect to XY cells. Cells from females also appear to be equipped with more efficient epigenetic machinery than the male counterpart. In particular, the X chromosome contains an unexpected high number of microRNAs (miRs), at present 118, in comparison with only two miRs localized on chromosome Y, and an average of 40-50 on the autosomes. The regulatory power of these small non-coding RNAs is well recognized, as 30-50% of all protein-coding genes are targeted by miRs and their role in cell fate has been well demonstrated. In addition, several further insights, including DNA methylation patterns that are different in males and females, claim for a significant gender disparity in cancer and in the immune system activity against tumors. In this brief paper, we analyze the state of the art of our knowledge on the implication of miRs encoded on sex chromosomes, and their related functional paths, in the regulation of cell homeostasis and depict possible perspectives for the epigenetic research in the field.
Collapse
Affiliation(s)
- Alessandra Carè
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Maria Bellenghi
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Paola Matarrese
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Lucia Gabriele
- Immunotherapy Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Walter Malorni
- Oncology Unit, Center for Gender-specific Medicine Istituto Superiore di Sanita', Viale Regina Elena, 299 00161, Rome, Italy.
| |
Collapse
|
43
|
Yu F, Xiong YM, Yu SC, He LL, Niu SS, Wu YM, Liu J, Qu LB, Liu LE, Wu YJ. Magnetic immunoassay using CdSe/ZnS quantum dots as fluorescent probes to detect the level of DNA methyltransferase 1 in human serum sample. Int J Nanomedicine 2018; 13:429-437. [PMID: 29403274 PMCID: PMC5777376 DOI: 10.2147/ijn.s152618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background DNA methyltransferase 1 (DNMT1), a dominant enzyme responsible for the transfer of a methyl group from the universal methyl donor to the 5-position of cytosine residues in DNA, is essential for mammalian development and closely related to cancer and a variety of age-related chronic diseases. DNMT1 has become a useful biomarker in early disease diagnosis and a potential therapeutic target in cancer therapy and drug development. However, till now, most of the studies on DNA methyltransferase (MTase) detection have focused on the prokaryote MTase and its activity. Methods A magnetic fluorescence-linked immunosorbent assay (FLISA) using CdSe/ZnS quantum dots as fluorescent probes was proposed for the rapid and sensitive detection of the DNMT1 level in this study. Key factors that affect the precision and accuracy of the determination of DNMT1 were optimized. Results Under the optimal conditions, the limit of detection was 0.1 ng/mL, the linear range was 0.1-1,500 ng/mL, the recovery was 91.67%-106.50%, and the relative standard deviations of intra- and inter-assays were respectively 5.45%-11.29% and 7.03%-11.25%. The cross-reactivity rates with DNA methyltransferases 3a and 3b were only 4.0% and 9.4%, respectively. Furthermore, FLISA was successfully used to detect the levels of DNMT1 in human serum samples, and compared with commercial enzyme-linked immunosorbent assay (ELISA) kits. The results revealed that there was a good correlation between FLISA and commercial ELISA kits (correlation coefficient r=0.866, p=0.001). The linear scope of FLISA was broader than ELISA, and the measurement time was much shorter than ELISA kits. Conclusion These indicated that the proposed FLISA method was sensitive and high throughput and can quickly screen the level of DNMT1 in serum samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | | | | |
Collapse
|
44
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
45
|
Fu Y, Xu JJ, Sun XL, Jiang H, Han DX, Liu C, Gao Y, Yuan B, Zhang JB. Function of JARID2 in bovines during early embryonic development. PeerJ 2017; 5:e4189. [PMID: 29302400 PMCID: PMC5742275 DOI: 10.7717/peerj.4189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023] Open
Abstract
Histone lysine modifications are important epigenetic modifications in early embryonic development. JARID2, which is a member of the jumonji demethylase protein family, is a regulator of early embryonic development and can regulate mouse development and embryonic stem cell (ESC) differentiation by modifying histone lysines. JARID2 can affect early embryonic development by regulating the methylation level of H3K27me3, which is closely related to normal early embryonic development. To investigate the expression pattern of JARID2 and the effect of JARID2-induced H3K27 methylation in bovine oocytes and early embryonic stages, JARID2 mRNA expression and localization were detected in bovine oocytes and early embryos via qRT-PCR and immunofluorescence in the present study. The results showed that JARID2 is highly expressed in the germinal vesicle (GV), MII, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst stages, but the relative expression level of JARID2 in bovine GV oocytes is significantly lower than that at other oocyte/embryonic stages (p < 0.05), and JARID2 is expressed primarily in the nucleus. We next detected the mRNA expression levels of embryonic development-related genes (OCT4, SOX2 and c-myc) after JARID2 knockdown through JARID2-2830-siRNA microinjection to investigate the molecularpathwayunderlying the regulation of H3K27me3 by JARID2 during early embryonic development. The results showed that the relative expression levels of these genes in 2-cell embryos weresignificantly higher than those in the blastocyst stage, and expression levels were significantly increased after JARID2 knockdown. In summary, the present study identified the expression pattern of JARID2 in bovine oocytes and at each early embryonic stage, and the results suggest that JARID2 plays a key role in early embryonic development by regulating the expression of OCT4, SOX2 and c-myc via modification of H3K27me3 expression. This work provides new data for improvements in the efficiency of in vitro embryo culture as well as a theoretical basis for further studying the regulatory mechanisms involved in early embryonic development.
Collapse
Affiliation(s)
- Yao Fu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-Jun Xu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xu-Lei Sun
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dong-Xu Han
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chang Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
46
|
A unified partial likelihood approach for X-chromosome association on time-to-event outcomes. Genet Epidemiol 2017; 42:80-94. [DOI: 10.1002/gepi.22097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 01/23/2023]
|
47
|
Shi C, Xu X, Yu X, Du Z, Luan X, Liu D, Hu T. CD3/CD28 dynabeads induce expression of tn antigen in human t cells accompanied by hypermethylation of the cosmc promoter. Mol Immunol 2017; 90:98-105. [PMID: 28708980 DOI: 10.1016/j.molimm.2017.06.250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 01/20/2023]
Abstract
Glycosylation is an important protein post-translational modification. In this process, the intermediate product, Tn antigen, arises from somatic mutations in core1β3-galactosyltransferase-specific molecular chaperone (Cosmc), which is required for the formation of active core1β3-galactosyltransferase (T-synthase). As a type of tumor-associated carbohydrate antigen, Tn antigen is mainly expressed in many human tumor cells and is absent in normal cells. Surprisingly, it is also expressed in normal activated T cells after in vitro stimulation, but the mechanism underlying its expression remains unclear. This study demonstrated that Tn antigen was expressed in activated T cells and that the percentage of positive (Tn+) cells increased and subsequently decreased within 72h after stimulation with CD3/CD28 Dynabeads, with peak expression occurring at 48h. During activation, interleukin-4 (IL-4) expression in the T-cell supernatant consistently increased with Tn+ cells, and was inversely correlated with serum interferon gamma (IFN-γ) levels. Compared with unactivated (without CD3/CD28 Dynabead stimulation) T cells, the level of T-synthase transcription in activated T cells did not significantly change, whereas T-synthase activity and Cosmc transcription significantly decreased, accompanied by a further increase in methylation of the Cosmc promoter. The results also showed that Cosmc transcription and translation decreased and then increased, and that Cosmc promoter methylation was a dynamic process during T cell activation. These data suggest that hypermethylation of the Cosmc promoter may induce the expression of Tn antigen in activated T cells.
Collapse
Affiliation(s)
- Chuanqin Shi
- Department of Immunology, Binzhou Medical University, Yantai, PR China
| | - Xue Xu
- Department of Immunology, Binzhou Medical University, Yantai, PR China
| | - Xiaofeng Yu
- Department of Clinical Microbiology, Linzi District People's Hospital, Linzi, PR China
| | - Zhenzhen Du
- Department of Pathogen biology Laboratory, Binzhou Medical University, Yantai, PR China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, PR China
| | - Dachang Liu
- Department of Immunology, Binzhou Medical University, Yantai, PR China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, PR China.
| |
Collapse
|
48
|
Barad DH, Darmon S, Weghofer A, Latham GJ, Wang Q, Kushnir VA, Albertini DF, Gleicher N. Association of skewed X-chromosome inactivation with FMR1 CGG repeat length and anti-Mullerian hormone levels: a cohort study. Reprod Biol Endocrinol 2017; 15:34. [PMID: 28454580 PMCID: PMC5410032 DOI: 10.1186/s12958-017-0250-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Premutation range CGGn repeats of the FMR1 gene denote risk toward primary ovarian insufficiency (POI), also called premature ovarian failure (POF). This prospective cohort study was undertaken to determine if X-chromosome inactivation skew (sXCI) is associated with variations in FMR1 CGG repeat length and, if so, is also associated with age adjusted antimüllerian hormone (AMH) levels as an indicator of functional ovarian reserve (FOR). METHODS DNA samples of 58 women were analyzed for methylation status and confirmation of CGGn repeat length. Based on previously described FMR1 genotypes, there were 18 women with norm FMR1 (both alleles in range of CGG n=26-34), and 40 women who had at least one allele at CGGn<26 or CGG>34 ( not-norm FMR1). As part of a routine evaluation of ovarian reserve, patients at our fertility center have their serum AMH assessed at first visit. Regression models were used to test the association of ovarian reserve, as indicated by serum AMH, with sXCI. RESULTS sXCI was significantly lower among infertility patients with norm FMR1 (6.5 ± 11.1, median and IQR) compared to those with not-norm FMR1 (12.0 ± 14.6, P = 0.005), though among young oocyte donors the opposite effect was observed. Women age >30 to 38 years old demonstrated greater ovarian reserve in the presence of lower sXCI as evidenced by significantly higher AMH levels (GLM sXCI_10%, f = 11.27; P = 0.004). CONCLUSIONS Together these findings suggest that FMR1 CGG repeat length may have a role in determining X-chromosome inactivation which could represent a possible mechanism for previously observed association of low age adjusted ovarian reserve with FMR1 variations in repeat length. Further, larger, investigations will be required to test this hypothesis.
Collapse
Affiliation(s)
- David H. Barad
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- The Foundation for Reproductive Medicine, New York, NY USA
| | - Sarah Darmon
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
| | - Andrea Weghofer
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2286 1424grid.10420.37Department of Obstetrics and Gynecology, Vienna University School of Medicine, Vienna, Austria
| | | | - Qi Wang
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
| | - Vitaly A. Kushnir
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2185 3318grid.241167.7Department of Obstetrics and Gynecology, Wake Forest University, Winston Salem, NC USA
| | - David F. Albertini
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- 0000 0001 2177 6375grid.412016.0Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas, USA
| | - Norbert Gleicher
- 0000 0004 0585 2042grid.417602.6The Center for Human Reproduction (CHR), New York, NY USA
- The Foundation for Reproductive Medicine, New York, NY USA
- 0000 0001 2166 1519grid.134907.8Stem Cell and Molecular Embryology Laboratory, The Rockefeller University, New York, NY USA
| |
Collapse
|
49
|
Hypomethylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case–control study. J Hum Hypertens 2017; 31:530-536. [DOI: 10.1038/jhh.2017.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
|
50
|
Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, Hicks B, Dagnall C, Hautman C, Jacobs KB, Abnet CC, Aldrich MC, Amos C, Amundadottir LT, Arslan AA, Beane-Freeman LE, Berndt SI, Black A, Blot WJ, Bock CH, Bracci PM, Brinton LA, Bueno-de-Mesquita HB, Burdett L, Buring JE, Butler MA, Canzian F, Carreón T, Chaffee KG, Chang IS, Chatterjee N, Chen C, Chen C, Chen K, Chung CC, Cook LS, Crous Bou M, Cullen M, Davis FG, De Vivo I, Ding T, Doherty J, Duell EJ, Epstein CG, Fan JH, Figueroa JD, Fraumeni JF, Friedenreich CM, Fuchs CS, Gallinger S, Gao YT, Gapstur SM, Garcia-Closas M, Gaudet MM, Gaziano JM, Giles GG, Gillanders EM, Giovannucci EL, Goldin L, Goldstein AM, Haiman CA, Hallmans G, Hankinson SE, Harris CC, Henriksson R, Holly EA, Hong YC, Hoover RN, Hsiung CA, Hu N, Hu W, Hunter DJ, Hutchinson A, Jenab M, Johansen C, Khaw KT, Kim HN, Kim YH, Kim YT, Klein AP, Klein R, Koh WP, Kolonel LN, Kooperberg C, Kraft P, Krogh V, Kurtz RC, LaCroix A, Lan Q, Landi MT, Marchand LL, Li D, Liang X, Liao LM, Lin D, Liu J, Lissowska J, Lu L, Magliocco AM, Malats N, et alMachiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, Hicks B, Dagnall C, Hautman C, Jacobs KB, Abnet CC, Aldrich MC, Amos C, Amundadottir LT, Arslan AA, Beane-Freeman LE, Berndt SI, Black A, Blot WJ, Bock CH, Bracci PM, Brinton LA, Bueno-de-Mesquita HB, Burdett L, Buring JE, Butler MA, Canzian F, Carreón T, Chaffee KG, Chang IS, Chatterjee N, Chen C, Chen C, Chen K, Chung CC, Cook LS, Crous Bou M, Cullen M, Davis FG, De Vivo I, Ding T, Doherty J, Duell EJ, Epstein CG, Fan JH, Figueroa JD, Fraumeni JF, Friedenreich CM, Fuchs CS, Gallinger S, Gao YT, Gapstur SM, Garcia-Closas M, Gaudet MM, Gaziano JM, Giles GG, Gillanders EM, Giovannucci EL, Goldin L, Goldstein AM, Haiman CA, Hallmans G, Hankinson SE, Harris CC, Henriksson R, Holly EA, Hong YC, Hoover RN, Hsiung CA, Hu N, Hu W, Hunter DJ, Hutchinson A, Jenab M, Johansen C, Khaw KT, Kim HN, Kim YH, Kim YT, Klein AP, Klein R, Koh WP, Kolonel LN, Kooperberg C, Kraft P, Krogh V, Kurtz RC, LaCroix A, Lan Q, Landi MT, Marchand LL, Li D, Liang X, Liao LM, Lin D, Liu J, Lissowska J, Lu L, Magliocco AM, Malats N, Matsuo K, McNeill LH, McWilliams RR, Melin BS, Mirabello L, Moore L, Olson SH, Orlow I, Park JY, Patiño-Garcia A, Peplonska B, Peters U, Petersen GM, Pooler L, Prescott J, Prokunina-Olsson L, Purdue MP, Qiao YL, Rajaraman P, Real FX, Riboli E, Risch HA, Rodriguez-Santiago B, Ruder AM, Savage SA, Schumacher F, Schwartz AG, Schwartz KL, Seow A, Wendy Setiawan V, Severi G, Shen H, Sheng X, Shin MH, Shu XO, Silverman DT, Spitz MR, Stevens VL, Stolzenberg-Solomon R, Stram D, Tang ZZ, Taylor PR, Teras LR, Tobias GS, Van Den Berg D, Visvanathan K, Wacholder S, Wang JC, Wang Z, Wentzensen N, Wheeler W, White E, Wiencke JK, Wolpin BM, Wong MP, Wu C, Wu T, Wu X, Wu YL, Wunder JS, Xia L, Yang HP, Yang PC, Yu K, Zanetti KA, Zeleniuch-Jacquotte A, Zheng W, Zhou B, Ziegler RG, Perez-Jurado LA, Caporaso NE, Rothman N, Tucker M, Dean MC, Yeager M, Chanock SJ. Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nat Commun 2016; 7:11843. [PMID: 27291797 PMCID: PMC4909985 DOI: 10.1038/ncomms11843] [Show More Authors] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
Collapse
Affiliation(s)
- Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Qi Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Christopher Hautman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Kevin B. Jacobs
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
- Bioinformed, LLC, Gaithersburg, Maryland 20877, USA
| | - Christian C. Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Melinda C. Aldrich
- Department of Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Christopher Amos
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Laufey T. Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, New York 10016, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, USA
- New York University Cancer Institute, New York, New York 10016, USA
| | - Laura E. Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- International Epidemiology Institute, Rockville, Maryland 20850, USA
| | - Cathryn H. Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), 3721 Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center, 3584 CX Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London SW7 2AZ, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Mary A. Butler
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Federico Canzian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tania Carreón
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Kari G. Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300040, China
| | - Charles C. Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Linda S. Cook
- University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Marta Crous Bou
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Cullen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Faith G. Davis
- Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Immaculata De Vivo
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ti Ding
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Jennifer Doherty
- Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03755, USA
| | - Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology (ICO-IDIBELL), 08908 Barcelona, Spain
| | - Caroline G. Epstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jin-Hu Fan
- Shanghai Cancer Institute, Shanghai 200032, China
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christine M. Friedenreich
- Department of Population Health Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada T2N 2T9
| | - Charles S. Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Steven Gallinger
- Fred A Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada M5G 1X5
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotaong University School of Medicine, Shanghai 200032, China
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Montserrat Garcia-Closas
- Division of Genetics and Epidemiology, and Breakthrough Breast Cancer Centre, Institute for Cancer Research, London SM2 5NG, UK
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - J. Michael Gaziano
- Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Massachusetts Veterans Epidemiology Research and Information Center/VA Cooperative Studies Programs, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02130, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth M. Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Edward L. Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Lynn Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christopher A. Haiman
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Goran Hallmans
- Department of Public Health and Clinical Medicine/Nutritional Research, Umeå University, 901 87 Umeå, Sweden
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Biostatistics and Epidemiology, University of Massachusetts School of Public Health and Health Sciences, Amherst, Massachusetts 01003, USA
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94143, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 151-742, Republic of Korea
| | - Robert N. Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David J. Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Christoffer Johansen
- Oncology, Finsen Centre, Rigshospitalet, 2100 Copenhagen, Denmark
- Unit of Survivorship Research, The Danish Cancer Society Research Centre, 2100 Copenhagen, Denmark
| | - Kay-Tee Khaw
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Hee Nam Kim
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yeul Hong Kim
- Department of Internal Medicine, Division of Oncology/Hematology, College of Medicine, Korea University Anam Hospital, Seoul 151-742, Republic of Korea
| | - Young Tae Kim
- Department of Thoracic and Cardiovascular Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Alison P. Klein
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Robert Klein
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, USA
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Laurence N. Kolonel
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano 20133, Italy
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Andrea LaCroix
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaolin Liang
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Linda M. Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianjun Liu
- Department of Human Genetics, Genome Institute of Singapore 138672, Singapore
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Lingeng Lu
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | | | - Nuria Malats
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Lorna H. McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, and Center for Community-Engaged Translational Research, Duncan Family Institute, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Beatrice S. Melin
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umeå, Sweden
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lee Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sara H. Olson
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Irene Orlow
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jae Yong Park
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu 101, Republic of Korea
| | - Ana Patiño-Garcia
- Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona 31080, Spain
| | - Beata Peplonska
- Nofer Institute of Occupational Medicine, Lodz 91-348, Poland
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Loreall Pooler
- University of Southern California, Los Angeles, California 90007, USA
| | - Jennifer Prescott
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - You-Lin Qiao
- Department of Epidemiology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Francisco X. Real
- Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
| | - Elio Riboli
- Division of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Harvey A. Risch
- Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Benjamin Rodriguez-Santiago
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
- Quantitative Genomic Medicine Laboratory, qGenomics, Barcelona 08003, Spain
| | - Avima M. Ruder
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio 45226, USA
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Fredrick Schumacher
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ann G. Schwartz
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kendra L. Schwartz
- Karmanos Cancer Institute and Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 119077, Singapore
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria & Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Human Genetics Foundation (HuGeF), Torino, 10126, Italy
| | - Hongbing Shen
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology, Nanjing Medical University School of Public Health, Nanjing 210029, China
| | - Xin Sheng
- University of Southern California, Los Angeles, California 90007, USA
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwanju 501-746, Republic of Korea
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Daniel Stram
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Ze-Zhong Tang
- Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, China
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Geoffrey S. Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - David Van Den Berg
- Department of Preventive Medicine, Biostatistics Division, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA
| | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21218, USA
| | - Sholom Wacholder
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - William Wheeler
- Information Management Services Inc., Calverton, Maryland, 20904, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - John K. Wiencke
- University of California San Francisco, San Francisco, California 94143, USA
| | - Brian M. Wolpin
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chen Wu
- Department of Etiology & Carcinogenesis, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tangchun Wu
- Institute of Occupational Medicine and Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan 430400, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Jay S. Wunder
- Guangdong Lung Cancer Institute, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 515200, China
| | - Lucy Xia
- University of Southern California, Los Angeles, California 90007, USA
| | - Hannah P. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Pan-Chyr Yang
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Krista A. Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anne Zeleniuch-Jacquotte
- New York University Cancer Institute, New York, New York 10016, USA
- Department of Population Health, New York University School of Medicine, New York, New York 10016, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110001, China
| | - Regina G. Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Luis A. Perez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08002, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 28029, Spain
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Michael C. Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, Leidos Biomedical Research Inc., Bethesda, Maryland 20892, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|