1
|
Qiu S, Liu J, Guo J, Zhang Z, Guo Y, Hu Y. COVID-19 infection and longevity: an observational and mendelian randomization study. J Transl Med 2025; 23:283. [PMID: 40050903 PMCID: PMC11887240 DOI: 10.1186/s12967-024-05932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/30/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Studies have indicated that COVID-19 infection may accelerate the aging process in organisms. However, it remains unknown whether contracting COVID-19 affects life expectancy. Furthermore, the underlying biological mechanisms behind these findings are still unclear. METHODS We conducted a prospective cohort study on 56,504 participants of European ancestry from the UK Biobank who reported the time and number of COVID-19 infection between January 2020 and September 2023. The parental average longevity was used as a proxy for their own longevity. Linear regression was used to assess the relationship between COVID-19 infection and longevity. Furthermore, we investigated the shared genetic basis between COVID-19 and longevity using large-scale genome-wide association studies (GWAS) for COVID-19 (122,616 cases and 2,475,240 controls) and longevity (3,484 cases and 25,483 controls). Mendelian randomization (MR) and mediation analysis were utilized to assess causal relationships and potential mediators between COVID-19 susceptibility and longevity. Shared genetic loci between the two phenotypes were identified using conjunctional false discovery rate (conjFDR) statistical frameworks. RESULTS After controlling for relevant covariates, COVID-19 infection might not be significantly correlated with longevity. In all MR methods, generalized summary-data-based Mendelian randomization (GSMR) analysis revealed a significant decrease in longevity due to severe COVID-19 infection (OR = 0.91, 95%CI: 0.84-0.98, P = 0.015). Mediation analysis identified stroke and myocardial infarction as potential mediators between COVID-19 susceptibility and reduced longevity. At conjFDR < 0.05, we identified rs62062323 (KANSL1) and rs9530111 (PIBF1) as shared loci between COVID-19 and longevity. CONCLUSION Together, our findings provided preliminary evidence for the shared genetic basics between COVID-19 and aging. This discovery may have implications for personalized medicine and preventive strategies, helping identify individuals who may be more vulnerable to severe outcomes from COVID-19 due to their genetic makeup.
Collapse
Affiliation(s)
- Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Jianhua Liu
- Beidahuang Industry Group General Hospital, Harbin, 150088, China
| | - Jiahe Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Zhishuai Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
2
|
Korec E, Ungrová L, Kalvas J, Hejnar J. Identification of genes associated with longevity in dogs: 9 candidate genes described in Cavalier King Charles Spaniel. Vet Anim Sci 2025; 27:100420. [PMID: 39823074 PMCID: PMC11737349 DOI: 10.1016/j.vas.2024.100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
In the past years, dogs have served as a convenient natural model organism for longevity due to their similarity with humans concerning not only their environment but also the diseases and complications occurring in older age. Since many dog breeds have significantly shorter lifespan than their closely related breeds, identification of genes associated with longevity may help to elucidate its background and serve as a possible tool for selective breeding of long-living dogs. This genome-wide association study (GWAS) was undertaken to identify the candidate genes associated with longevity in Cavalier King Charles Spaniel individuals that have reached the age of more than 13 years. We described 15 SNPs localized in nine genes: B3GALNT1, NLRP1 like, PARP14, IQCJ-SCHIP1, COL9A1, COL19A1, SDHAF4, B3GAT2, and DIRC2 that are associated with longevity in purebred Cavalier King Charles Spaniels. These results are promising for future research and possible selective breeding of companion dogs with extended lifespan.
Collapse
Affiliation(s)
- Evžen Korec
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
| | - Lenka Ungrová
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Josef Kalvas
- ZOO Tábor a.s., Dukelských Hrdinů 19, 170 00 Prague 7, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
3
|
Faquih TO, van Hylckama Vlieg A, Surendran P, Butterworth AS, Li-Gao R, de Mutsert R, Rosendaal FR, Noordam R, van Heemst D, Willems van Dijk K, Mook-Kanamori DO. Robust Metabolomic Age Prediction Based on a Wide Selection of Metabolites. J Gerontol A Biol Sci Med Sci 2025; 80:glae280. [PMID: 39821408 PMCID: PMC11809259 DOI: 10.1093/gerona/glae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 01/19/2025] Open
Abstract
Chronological age is a major risk factor for numerous diseases. However, chronological age does not capture the complex biological aging process. The difference between chronological age and biologically driven aging could be more informative in reflecting health status. Here, we set out to develop a metabolomic age prediction model by applying ridge regression and bootstrapping with 826 metabolites (678 endogenous and 148 xenobiotics) measured by an untargeted platform in relatively healthy blood donors aged 18-75 years from the INTERVAL study (N = 11 977; 50.2% men). After bootstrapping internal validation, the metabolomic age prediction models demonstrated high performance with an adjusted R2 of 0.83 using all metabolites and 0.82 using only endogenous metabolites. The former was significantly associated with obesity and cardiovascular disease in the Netherlands Epidemiology of Obesity study (N = 599; 47.0% men; age range = 45-65) due to the contribution of medication-derived metabolites-namely salicylate and ibuprofen-and environmental exposures such as cotinine. Additional metabolomic age prediction models using all metabolites were developed for men and women separately. The models had high performance (R² = 0.85 and 0.86) but shared a moderate correlation of 0.72. Furthermore, we observed 163 sex-dimorphic metabolites, including threonine, glycine, cholesterol, and androgenic and progesterone-related metabolites. Our strongest predictors across all models were novel and included hydroxyasparagine (Model Endo + Xeno β = 4.74), vanillylmandelate (β = 4.07), and 5,6-dihydrouridine (β = -4.2). Our study presents a robust metabolomic age model that reveals distinct sex-based age-related metabolic patterns and illustrates the value of including xenobiotic to enhance metabolomic prediction accuracy.
Collapse
Affiliation(s)
- Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Praveen Surendran
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- GSK plc., Stevenage, England, UK
| | - Adam S Butterworth
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Saran Khalid M, Shahid Quraishi I, Wasim Nawaz M, Sajjad H, Yaseen H, Mehmood A, Mahboob Ur Rahman M, Abbasi QH. A low-cost PPG sensor-based empirical study on healthy aging based on changes in PPG morphology. Physiol Meas 2025; 13:025005. [PMID: 39706154 DOI: 10.1088/1361-6579/ada246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/20/2024] [Indexed: 12/23/2024]
Abstract
Objective. We study the changes in morphology of the photoplethysmography (PPG) signals-acquired from a select group of South Asian origin-through a low-cost PPG sensor, and correlate it with healthy aging which allows us to reliably estimate the vascular age and chronological age of a healthy person as well as the age group he/she belongs to.Approach. Raw infrared PPG data is collected from the finger-tip of 173 apparently healthy subjects, aged 3-61 years, via a non-invasive low-cost MAX30102 PPG sensor. In addition, the following metadata is recorded for each subject: age, gender, height, weight, family history of cardiac disease, smoking history, vitals (heart rate and SpO2). The raw PPG data is conditioned and 62 features are then extracted based upon the first four PPG derivatives. Then, correlation-based feature-ranking is performed which retains 26 most important features. Finally, the feature set is fed to three machine learning classifiers, i.e. logistic regression, random forest, eXtreme Gradient Boosting (XGBoost), and two shallow neural networks: a feedforward neural network and a convolutional neural network.Main results. For the age group classification problem, the ensemble method XGboost stands out with an accuracy of 99% for both binary classification (3-20 years vs. 20+ years) and three-class classification (3-18 years, 18-23 years, 23+ years). For the vascular/chronological age prediction problem, the ensemble random forest method stands out with a mean absolute error of 6.97 years.Significance. The results demonstrate that PPG is indeed a promising (i.e. low-cost, non-invasive) biomarker to study the healthy aging phenomenon.
Collapse
Affiliation(s)
- Muhammad Saran Khalid
- Electrical engineering department, Information Technology University, Lahore, Pakistan
| | | | | | - Hadia Sajjad
- Electrical engineering department, Information Technology University, Lahore, Pakistan
| | - Hira Yaseen
- Electrical engineering department, Information Technology University, Lahore, Pakistan
| | - Ahsan Mehmood
- Electrical engineering department, Information Technology University, Lahore, Pakistan
| | - M Mahboob Ur Rahman
- Electrical engineering department, Information Technology University, Lahore, Pakistan
| | - Qammer H Abbasi
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
- Artificial Intelligence Research Centre, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
5
|
Kong K, Li B, Chang Y, Zhao C, Qiao H, Jin M, Wu X, Fan W, Wang L, Qi Y, Xu Y, Zhai Z, Ma P, Li H. Delivery of FGF18 using mRNA-LNP protects the cartilage against degeneration via alleviating chondrocyte senescence. J Nanobiotechnology 2025; 23:34. [PMID: 39844298 PMCID: PMC11753171 DOI: 10.1186/s12951-025-03103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with an immense unmet medical need. FGF18 protein is a potential regenerative factor for cartilage repair. However, traditional protein delivery methods have limited efficacy due to the short lifetime and shallow infiltration. RESULTS In this work, we discovered that lipid nanoparticle (LNP) can infiltrate and deliver FGF18 mRNA deeper in the cartilage than proteins. After mRNA UTR optimization and chemical modification, the expression of FGF18 can last up to 6 days in the cartilage. Furthermore, delivering FGF18 mRNA activates FOXO3a-autophagy pathway, which protects against chondrocyte degeneration and senescence. Local intra-articular injection of FGF18 mRNA-LNP significantly alleviates OA symptoms in DMM and senile OA models. Sustained expression and accessibility of FGF18-mRNA to deeper chondrocytes makes LNP-mRNA more effective than FGF18 recombinant protein. CONCLUSIONS In summary, this study presents a novel approach superior to recombinant protein alone and holds promise as a new therapeutic strategy for OA.
Collapse
Affiliation(s)
- Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Baixing Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Hua Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Minghao Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Xinru Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Wenxuan Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yansong Qi
- Orthopedic Center (Sports Medicine Center), Inner Mongolia People's Hospital, Hohhot, 010017, P.R. China
| | - Yongsheng Xu
- Orthopedic Center (Sports Medicine Center), Inner Mongolia People's Hospital, Hohhot, 010017, P.R. China.
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
6
|
Ciaglia E, Montella F, Lopardo V, Basile C, Esposito RM, Maglio C, Longo R, Maciag A, Puca AA. The Genetic and Epigenetic Arms of Human Ageing and Longevity. BIOLOGY 2025; 14:92. [PMID: 39857322 PMCID: PMC11762130 DOI: 10.3390/biology14010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
This proposed review aims to shed light on the major genetic and epigenetic contributions to the ageing process and longevity of individuals. In this context, we summarize the state of knowledge on the most important longevity and ageing genetic variants, and their interactions with the environment, in achieving a healthy lifespan. We also explore the contribution of lifestyle and the influence of non-heritable environmental factors on ageing (i.e., epigenetics). Accordingly, we discuss the role of inflammageing as one of the major targets to overcome morbidity and mortality in older people for the maintenance of healthy ageing. This more integrated view of longevity will display not only the underlying mechanisms at play but also invites the reader to rethink both our ageing process and our attitudes toward age.
Collapse
Affiliation(s)
- Elena Ciaglia
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Francesco Montella
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Valentina Lopardo
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Cristina Basile
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Roberta Maria Esposito
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Clara Maglio
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Roberta Longo
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Annibale Alessandro Puca
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
7
|
Kallianpur KJ, Obhi HK, Donlon T, Masaki K, Willcox B, Martin P. Cross-sectional and longitudinal associations between late-life depressive symptoms and cognitive deficits: 20-year follow-up of the Kuakini Honolulu-Asia aging study. Arch Gerontol Geriatr 2024; 127:105551. [PMID: 38968756 PMCID: PMC11401759 DOI: 10.1016/j.archger.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE To examine depressed affect, somatic complaints, and positive affect as longitudinal predictors of fluid, crystallized and global cognitive performance in the Kuakini Honolulu-Asia Aging Study (HAAS), a large prospective cohort study of Japanese-American men. METHODS We assessed 3,088 dementia-free Kuakini-HAAS participants aged 71-93 (77.1 ± 4.2) years at baseline (1991-1993). Depressive symptoms were evaluated by the Center for Epidemiologic Studies Depression (CES-D) Scale. Baseline CES-D depression subscales (depressed and positive affects; somatic complaints) were computed. The Cognitive Abilities Screening Instrument (CASI) measured cognitive performance on a 100-point scale; fluid and crystallized cognitive abilities were derived from CASI factor analysis. Cognition was also evaluated at 4 follow-up examinations over a 20-year period. Multiple regression assessed baseline CES-D subscales as predictors of cognitive change. The baseline covariates analyzed were CASI, age, education, prevalent stroke, APOE ε4 presence, and the longevity-associated FOXO3 genotype. RESULTS Cross-sectionally, baseline CES-D subscales were related to cognitive measures; e.g., higher depressed affect was associated with lower crystallized ability (β = -0.058, p ≤ 0.01), and somatic complaints were linked to poorer fluid ability (β = -0.045, p ≤ 0.05) and to worse global cognitive function as measured by total CASI score (β = -0.038, p ≤ 0.05). However, depression subscales did not significantly or consistently predict fluid ability, crystallized ability, or global cognitive performance over time. CONCLUSION Psychological and physical well-being were associated with contemporaneous but not subsequent cognitive functioning. Assessment of depressive symptoms may identify individuals who are likely to benefit from interventions to improve mood and somatic health and thereby maintain or enhance cognition.
Collapse
Affiliation(s)
- Kalpana J Kallianpur
- Kuakini Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI, United States; Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii-Manoa, Honolulu, HI, United States; Kamehameha Schools-Kapālama, Honolulu, HI, United States.
| | - Hardeep K Obhi
- School of Medicine Office of Research, University of California Davis, Sacramento, CA, United States
| | - Timothy Donlon
- Kuakini Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI, United States; Department of Geriatric Medicine, University of Hawaii-Manoa, Honolulu, HI, United States
| | - Kamal Masaki
- Kuakini Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI, United States; Department of Geriatric Medicine, University of Hawaii-Manoa, Honolulu, HI, United States
| | - Bradley Willcox
- Kuakini Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, HI, United States; Department of Geriatric Medicine, University of Hawaii-Manoa, Honolulu, HI, United States
| | - Peter Martin
- Department of Human Development and Family Studies, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Yu S, Wang J, Xia Y, Tang Q. The status quo and influencing factors of intrinsic capacity among community-dwelling older adults from the perspective of Ecological Systems Theory: A cross-sectional study. BMC Geriatr 2024; 24:934. [PMID: 39533175 PMCID: PMC11555801 DOI: 10.1186/s12877-024-05499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND As intrinsic capacity (IC) declines, older adults are at a significantly increased risk of frailty, care dependency, and death. Currently, the research on IC among older adults in China was still insufficient. We aimed to identify the status quo and influencing factors among community-dwelling older adults in China and explore the relationship between IC, external environment, and social network. METHODS A convenience sampling method was used to collect 312 older people from May 2023 to February 2024 in five communities in Chengdu, Sichuan Province. Data were collected using the general information questionnaire, Integrated Care of the Elderly (ICOPE) screening tool, World Health Organization Quality of live scale (WHOQOL-100), and Social Network Scale (LSNS-6). RESULTS The IC score among Chinese community-dwelling older adults was 3.39 ± 1.60, and the prevalence of IC decline was 86.9%. Marital status, age, number of chronic diseases, social network, and external environment were influencing factors of IC, which explained 35.7% of the total variance. External environment and social network were positively correlated with IC. CONCLUSIONS Chinese community-dwelling older adults had low IC scores and a high prevalence of IC decline. The government should focus on IC for older adults, especially those who are older, not married or widowed, and suffering from multiple chronic diseases. In addition, the richer the external resources available to older adults, the more social support they received, and the better the IC. These findings could provide a theoretical basis for managing and improving IC in older adults.
Collapse
Affiliation(s)
- Shiya Yu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Wenjiang District, Chengdu City, Sichuan province, 611137, China
- Department of Nursing, Chongqing Jiangbei Hospital of Traditional Chinese Medicine, No. 35, Yicun, Jianxin East Road, Jiangbei District, Chongqing, 400021, China
| | - Jialin Wang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Wenjiang District, Chengdu City, Sichuan province, 611137, China.
| | - Ying Xia
- School of Nursing, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Wenjiang District, Chengdu City, Sichuan province, 611137, China
| | - Qi Tang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Road, Wenjiang District, Chengdu City, Sichuan province, 611137, China
| |
Collapse
|
9
|
Qiu X, Lu Y, Mu C, Tang P, Liu Y, Huang Y, Luo H, Liu JY, Li X. The Biomarkers in Extreme Longevity: Insights Gained from Metabolomics and Proteomics. Int J Med Sci 2024; 21:2725-2744. [PMID: 39512690 PMCID: PMC11539388 DOI: 10.7150/ijms.98778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
The pursuit of extreme longevity is a popular topic. Advanced technologies such as metabolomics and proteomics have played a crucial role in unraveling complex molecular interactions and identifying novel longevity-related biomarkers in long-lived individuals. This review summarizes key longevity-related biomarkers identified through metabolomics, including high levels of omega-3 polyunsaturated fatty acids (PUFAs), short-chain fatty acids (SCFAs) and sphingolipids, as well as low levels of tryptophan. Proteomics analyses have highlighted longevity-related proteins such as apolipoprotein E (APOE) and pleiotrophin (PTN), along with lower S-nitrosylated and higher glycosylated proteins found from post-translational modification proteomics as potential biomarkers. We discuss the molecular mechanisms that could support the above biomarkers' potential for healthy longevity, including metabolic regulation, immune homeostasis maintenance, and resistance to cellular oxidative stress. Moreover, multi-omics studies of various long-lived cohorts are encompassed, focusing on how the integration of various omics technologies has contributed to the understanding of longevity. This comprehensive review aims to provide new biological insights and pave the way for promoting health span.
Collapse
Affiliation(s)
- Xiaorou Qiu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yixian Lu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Chao Mu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Peihua Tang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yueli Liu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yongmei Huang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemeng Li
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| |
Collapse
|
10
|
He W, Liu Z, Zhang H, Liu Q, Weng Z, Wang D, Guo W, Xu J, Wang D, Jiang Z, Gu A. Bisphenol S decreased lifespan and healthspan via insulin/IGF-1-like signaling-against mitochondrial stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117136. [PMID: 39353373 DOI: 10.1016/j.ecoenv.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol S (BPS) is widely presented and affects aging with unclear mechanisms. Here, we applied C. elegans to evaluate the effects of BPS on lifespan and healthspan and to investigate the underlying mechanisms. Both early-life and whole-life exposure to BPS at environmentally relevant doses (0.6, 6, 60 μg/L) significantly decreased lifespan, and healthspan (body bend, pharyngeal pumping, and lipofuscin accumulation). BPS exposure impaired mitochondrial structure and function, which promoted ROS production to induce oxidative stress. Furthermore, BPS increased expressions of the insulin/IGF-like signaling (IIS). Also, BPS inhibited expression of the IIS transcription factor daf-16 and its downstream anti-oxidative genes. Quercetin effectively improved BPS-induced oxidative stress byreversing BPS-regulated IIS/daf-16 pathway and anti-oxidative gene expressions. In daf-2 and daf-16 mutants, the effects of BPS and quercetin on lifespan, healthspan, oxidative stress, and anti-oxidative genes expressions were reversed, demonstrating the requirement of IIS/daf-16 for aging regulation. Molecular docking and molecular dynamics simulations confirmed the stable interaction between DAF-2 and BPS mainly via three residues (VAL1260, GLU1329, and MET1395), which was attenuated by quercetin. Our results highlighted that adverse effects of BPS on impairing lifespan and healthspan by affecting IIS/daf-16 function against mitochondrial stress, which could be inhibited by quercetin treatment. Thus, we first revealed the underlying mechanisms of BPS-induced aging and the potential treatment.
Collapse
Affiliation(s)
- Wenmiao He
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Zhiwei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongchao Zhang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Dongmei Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Acharya S, Liao S, Jung WJ, Kang YS, Moghaddam VA, Feitosa MF, Wojczynski MK, Lin S, Anema JA, Schwander K, Connell JO, Province MA, Brent MR. A methodology for gene level omics-WAS integration identifies genes influencing traits associated with cardiovascular risks: the Long Life Family Study. Hum Genet 2024; 143:1241-1252. [PMID: 39276247 PMCID: PMC11485042 DOI: 10.1007/s00439-024-02701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/15/2024] [Indexed: 09/16/2024]
Abstract
The Long Life Family Study (LLFS) enrolled 4953 participants in 539 pedigrees displaying exceptional longevity. To identify genetic mechanisms that affect cardiovascular risks in the LLFS population, we developed a multi-omics integration pipeline and applied it to 11 traits associated with cardiovascular risks. Using our pipeline, we aggregated gene-level statistics from rare-variant analysis, GWAS, and gene expression-trait association by Correlated Meta-Analysis (CMA). Across all traits, CMA identified 64 significant genes after Bonferroni correction (p ≤ 2.8 × 10-7), 29 of which replicated in the Framingham Heart Study (FHS) cohort. Notably, 20 of the 29 replicated genes do not have a previously known trait-associated variant in the GWAS Catalog within 50 kb. Thirteen modules in Protein-Protein Interaction (PPI) networks are significantly enriched in genes with low meta-analysis p-values for at least one trait, three of which are replicated in the FHS cohort. The functional annotation of genes in these modules showed a significant over-representation of trait-related biological processes including sterol transport, protein-lipid complex remodeling, and immune response regulation. Among major findings, our results suggest a role of triglyceride-associated and mast-cell functional genes FCER1A, MS4A2, GATA2, HDC, and HRH4 in atherosclerosis risks. Our findings also suggest that lower expression of ATG2A, a gene we found to be associated with BMI, may be both a cause and consequence of obesity. Finally, our results suggest that ENPP3 may play an intermediary role in triglyceride-induced inflammation. Our pipeline is freely available and implemented in the Nextflow workflow language, making it easily runnable on any compute platform ( https://nf-co.re/omicsgenetraitassociation ).
Collapse
Affiliation(s)
- Sandeep Acharya
- Division of Computational and Data Sciences, Washington University, St Louis, MO, USA
| | - Shu Liao
- Department of Computer Science and Engineering, Washington University, St Louis, MO, USA
| | - Wooseok J Jung
- Department of Computer Science and Engineering, Washington University, St Louis, MO, USA
| | - Yu S Kang
- Department of Computer Science and Engineering, Washington University, St Louis, MO, USA
| | - Vaha Akbary Moghaddam
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Shiow Lin
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Jason A Anema
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Schwander
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Jeff O Connell
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Michael R Brent
- Department of Computer Science and Engineering, Washington University, St Louis, MO, USA.
| |
Collapse
|
12
|
Pflaum JC, Gaertner VD, Brandstetter S, Apfelbacher C, Melter M, Koeninger A, Kabesch M. Defining familial longevity and developing a familial longevity score for unbiased epigenetic studies in a birth cohort. Epigenomics 2024; 16:1149-1158. [PMID: 39264702 PMCID: PMC11457659 DOI: 10.1080/17501911.2024.2370760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: Longevity accumulating in families has genetic and epigenetic components. To study early and unbiased epigenetic predictors of longevity prospectively, a birth cohort would be ideal. However, the original family longevity selection score (FLoSS) focuses on populations of elderly only.Methods: In the German birth cohort KUNO-Kids we assessed when information for such scores may be best collected and how to calculate an adapted FLoSS.Results: A total of 551 families contributed to adapted FLoSS, with a mean score of -0.15 (SD 2.33). Adapted FLoSS ≥7 as a marker of exceptional longevity occurred in 3.3% of families, comparable to original FLoSS in elderly.Conclusion: An adapted FLoSS from data collectable postnatally may be a feasible tool to study unbiased epigenetic predictors for longevity.
Collapse
Affiliation(s)
- Jasmin C Pflaum
- Department of Pediatric Pneumology & Allergy, University Children's Hospital Regensburg (KUNO), of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| | - Vincent D Gaertner
- Department of Pediatric Pneumology & Allergy, University Children's Hospital Regensburg (KUNO), of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| | - Susanne Brandstetter
- Science & Innovation Campus Regensburg (WECARE) of the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
- University Children's Hospital Regensburg (KUNO) of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| | - Christian Apfelbacher
- Science & Innovation Campus Regensburg (WECARE) of the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
- Institute of Social Medicine & Health Systems Research, Otto von Guericke University, Magdeburg, Germany
| | - Michael Melter
- University Children's Hospital Regensburg (KUNO) of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| | - Angela Koeninger
- Department of Obstetrics & Gynaecology of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology & Allergy, University Children's Hospital Regensburg (KUNO), of the University of Regensburg & the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
- Science & Innovation Campus Regensburg (WECARE) of the Order of St. John at the St. Hedwig Hospital, Regensburg, Germany
| |
Collapse
|
13
|
von Berg J, McArdle PF, Häppölä P, Haessler J, Kooperberg C, Lemmens R, Pezzini A, Thijs V, Pulit SL, Kittner SJ, Mitchell BD, de Ridder J, van der Laan SW. Evidence of survival bias in the association between APOE-Є4 and age at ischemic stroke onset. Front Genet 2024; 15:1392061. [PMID: 39286457 PMCID: PMC11403718 DOI: 10.3389/fgene.2024.1392061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Large genome-wide association studies (GWASs) using case-control study designs have now identified tens of loci associated with ischemic stroke (IS). As a complement to these studies, we performed GWAS in a case-only design to identify loci influencing the age at onset (AAO) of ischemic stroke. Methods Analyses were conducted in a discovery cohort of 10,857 ischemic stroke cases using a linear regression framework. We meta-analyzed all SNPs with p-value <1 x 10-5 in a sexcombined or sex-stratified analysis using summary data from two additional replication cohorts. Results In the women-only meta-analysis, we detected significant evidence for the association of AAO with rs429358, an exonic variant in apolipoprotein E (APOE) that encodes for the APOE-Є4 allele. Each copy of the rs429358:T>C allele was associated with a 1.29-year earlier stroke AAO (meta p-value = 2.48 x 10-11). This APOE variant has previously been associated with increased mortality and ischemic stroke AAO. We hypothesized that the association with AAO may reflect a survival bias attributable to an age-related decrease in mortality among APOE-Є4 carriers and have no association to stroke AAO per se. A simulation study showed that a variant associated with overall mortality might indeed be detected with an AAO analysis. A variant with a 2-fold increase in mortality risk would lead to an observed effect of AAO that is comparable to what we found. Discussion In conclusion, we detected a robust association of the APOE locus with stroke AAO and provided simulations to suggest that this association may be unrelated to ischemic stroke per se but related to a general survival bias.
Collapse
Affiliation(s)
- Joanna von Berg
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Patrick F. McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Robin Lemmens
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
- KU Leuven–University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
| | - Alessandro Pezzini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Stroke Care Program, Department of Emergency, Parma University Hospital, Parma, Italy
| | - Vincent Thijs
- Stroke Theme, The Florey, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Sara L. Pulit
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven J. Kittner
- Geriatric Research and Education Clinical Center, VA Maryland Healthcare System, Baltimore, MD, United States
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research and Education Clinical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Jeroen de Ridder
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center of Population Health and Genomics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Tamvaka N, Heckman MG, Johnson PW, Soto-Beasley AI, Walton RL, Koga S, Uitti RJ, Parfitt F, Graff-Radford MR, Wszolek ZK, Graff-Radford N, Valentino RR, Ross OA. Associations of mitochondrial genomic variation with successful neurological aging. Mitochondrion 2024; 78:101948. [PMID: 39179138 DOI: 10.1016/j.mito.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Mitochondrial health is an integral factor in aging, with mitochondrial dysfunction known to increase with age and contribute to the development of age-related neurodegenerative disorders. Additionally, the mitochondrial genome (mtDNA) has been shown to acquire potentially damaging somatic variation as part of the aging process, while mtDNA single nucleotide polymorphism (SNPs) have been shown to be both protective and detrimental for various neurodegenerative diseases. Yet, little is known about the involvement of mtDNA variation in longevity and successful neurological aging. In this study, we examined the association of mtDNA SNPs, in the form of mitochondrial haplogroups, with successful neurological aging in 1,405 unrelated neurologically healthy subjects. Although not quite significant after correcting for multiple testing (P < 0.0017 considered as significant), we detected a nominally significant association between the I haplogroup (N = 45, 3.2 %) and a younger age (β: -5.00, P = 0.006), indicating that this haplogroup is observed less frequently in older neurologically healthy individuals and may be associated with decreased survival. Replication of this finding in independent neurologically healthy cohorts will be imperative for shaping our understanding of the biological processes underlying healthy neurological aging.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Patrick W Johnson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francine Parfitt
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Department of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Koga HK, Grodstein F, Williams DR, Demeo DL, Kubzansky LD. Relations of optimism and purpose in life to immune markers in aging. J Psychosom Res 2024; 184:111851. [PMID: 38964200 DOI: 10.1016/j.jpsychores.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Optimism and purpose in life are associated with improved health outcomes. More information is needed on biological mechanisms, including immunosenescence. We investigated if psychological well-being is associated with healthier immunosenescence-related measures including naïve and terminally differentiated CD4+ and CD8+ T cell percentages, CD4+:CD8+, and cytomegalovirus (CMV) IgG response. METHODS Participants were adults over age 50 from the Health and Retirement Study. Optimism was measured using the Life Orientation Test Revised. Purpose in life was assessed using the subscale from the Ryff psychological well-being measure. We examined the cross-sectional associations of optimism and purpose in life with measures of T cell subsets using linear regression and with CMV IgG using ordered logit regression, controlling for potential confounding factors. RESULTS The final analytic sample ranged from 7250 to 7870. After adjusting for sociodemographic factors, a 1-SD increment in optimism was associated with the percentage of naïve CD4+ T cells increasing by 0.6 (95%CI 0.2%, 1.0%). A 1-SD increment in purpose in life was associated with the percentage of naïve CD4+ T cells increasing by 0.9 (95%CI 0.5%, 1.3%) after adjusting for sociodemographic factors and the association was maintained after further adjustments for health conditions, depression, and health behaviors. For naïve CD8+ T cell percentages, CD4:CD8 ratios, and CMV IgG antibodies, associations were seen only in models that adjusted for age. No significant associations were seen in any models for the terminally differentiated CD4+ and CD8+ T cells. CONCLUSIONS We found associations of optimism and purpose in life with naïve CD4+ T cell percentages.
Collapse
Affiliation(s)
- Hayami K Koga
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Harvard Center for Population and Development Studies, Cambridge, MA, United States of America.
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States of America
| | - David R Williams
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Department of African and African American Studies, Department of Sociology, Harvard University, Cambridge, MA, United States of America
| | - Dawn L Demeo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
16
|
Zhang Y, Murata S, Schmidt-Mende K, Ebeling M, Modig K. Do people reach 100 by surviving, delaying, or avoiding diseases? A life course comparison of centenarians and non-centenarians from the same birth cohorts. GeroScience 2024:10.1007/s11357-024-01330-w. [PMID: 39212787 DOI: 10.1007/s11357-024-01330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Centenarians are perceived as pioneers of longevity, possessing the secrets to surpassing age 100. It remains unclear whether they achieve this by surviving, delaying, or avoiding diseases to a greater extent than their shorter-lived peers. This register-based study encompassed all individuals aged 60 and older, born between 1912 and 1922 in Stockholm County, Sweden (N = 170,787). Using historical data, individuals were prospectively followed from 1972 to 2022 and stratified by their age at death. Age-specific incidence rates and remaining lifetime risk from age 60 were calculated for stroke, myocardial infarction, hip fracture, and various cancers (including colorectal, breast, and prostate), and compared between those who survived to age 100 and their shorter-lived counterparts. Centenarians had lower age-specific incidence rates for almost all diseases and ages. Despite longer life spans, their lifetime risks for all diseases except hip fracture were lower than those of non-centenarians. This suggests that centenarians delay, and even avoid, many of the major age-related diseases rather than surviving them to a higher extent. The findings that centenarians not only exhibit lower disease rates at younger ages compared to their shorter-lived peers but throughout their lives challenge the notion that longer life span inevitably leads to higher disease rates or a simple shift of diseases to older ages.
Collapse
Affiliation(s)
- Yuge Zhang
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
| | - Shunsuke Murata
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Katharina Schmidt-Mende
- Academic Primary Health Care Centre, Stockholm Region, Stockholm, Sweden
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Marcus Ebeling
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Karin Modig
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| |
Collapse
|
17
|
Pu L, Pang S, Mu W, Chen X, Zou Y, Wang Y, Ding Y, Yan Q, Huang Y, Chen X, Peng T, Luo W, Wang S. The gut mycobiome signatures in long-lived populations. iScience 2024; 27:110412. [PMID: 39081291 PMCID: PMC11284699 DOI: 10.1016/j.isci.2024.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Long-lived individuals have been extensively studied as a model to investigate the role of the gut microbiota in aging, but their gut fungi remain almost unexplored. Here, we recruited a community-dwelling cohort of 251 participants (24-108 years, including 47 centenarians) from Guangxi in China to characterize the gut mycobiome signatures. We found gut mycobiome markedly varied during aging and determined aging as a predominant factor driving these variations. For long-lived individuals, core taxa, including Penicillium and Aspergillus, were maintained and Candida enterotype was enriched when compared with old counterparts. Individuals with this enterotype were more likely to possess Bacteroides enterotype enriched in young and centenarians. Moreover, the drivers from Candida enterotype were positively linked with the bacteria components dominated in Bacteroides enterotype. We also identified potentially beneficial yeasts-enriched features to differentiate long-lived individuals from others. Our findings suggest that the gut mycobiome develops with aging, and long-lived individuals possess unique fungal signatures.
Collapse
Affiliation(s)
- Lixia Pu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shifu Pang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Wenjie Mu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaodong Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Yang Zou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yugui Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yingying Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qi Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yu Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Tao Peng
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, Guangxi, China
- Guangxi Key Laboratory of Longevity Science and Technology, AIage Life Science Corporation Ltd., Nanning, Guangxi, China
| | - Shuai Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Calvo-López M, Ortega-Paz L, Jimenez-Trinidad FR, Brugaletta S, Sabaté M, Dantas AP. Sex-associated differences in cardiac ageing: Clinical aspects and molecular mechanisms. Eur J Clin Invest 2024; 54:e14215. [PMID: 38624065 DOI: 10.1111/eci.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Despite the extensive clinical and scientific advances in prevention, diagnostics and treatment, cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality worldwide for people aged 65 and over. Of all ageing-related diseases, CVD are responsible for almost one-third of deaths in the elderly, being above all cancers combined. Age is an independent and unavoidable risk factor contributing to the impairment of heart and blood vessels. As the average age of the population in industrialized countries has doubled in the last century, and almost a fifth of the world's population is predicted to be over 65 in the next decade, we can assume that the burden of CVD will fall primarily on the elderly. Evidence from basic and clinical science has shown that sex significantly influences the onset and severity of CVD. In women, CVD usually develop later than in men and with atypical symptomatology. After menopause, however, the incidence and severity of CVD increase in women, reaching equality in both sexes. Although intrinsic sexual dimorphism in cardiovascular ageing may contribute to the sex differences in CVD progression, the molecular mechanisms associated with cardiovascular ageing and their clinical value are not known in detail. In this review, we discuss the scientific knowledge available, focusing on structural, hormonal, genetic/epigenetic and inflammatory pathways, seeking to transfer these findings to the cardiovascular clinic in terms of prevention, diagnosis, prognosis and management of these pathologies and proposing possible validation of target specifics.
Collapse
Affiliation(s)
- Margarita Calvo-López
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Luis Ortega-Paz
- Department of Medicine, Division of Cardiology, UF Health Cardiovascular Center, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, USA
| | - Francisco Rafael Jimenez-Trinidad
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Salvatore Brugaletta
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manel Sabaté
- Clínic's Cardiovascular Institute (ICCV), Hospital Clinic of Barcelona, Barcelona, Spain
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Paula Dantas
- Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Kim JH, Thiruvengadam R. Hypertension in an ageing population: Diagnosis, mechanisms, collateral health risks, treatments, and clinical challenges. Ageing Res Rev 2024; 98:102344. [PMID: 38768716 DOI: 10.1016/j.arr.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Ageing population is considerably increasing worldwide, which is considered to reflect an improved quality of life. However, longevity in the human lifespan has increased the burden of late-life illnesses including cancer, neurodegeneration, and cardiovascular dysfunction. Of these, hypertension is the most common condition with huge health risks, with an increased prevalence among the elderly. In this review, we outline the current guidelines for defining hypertension and examine the detailed mechanisms underlying the relationship between hypertension and ageing-related outcomes, including sodium sensitivity, arterial stiffness, endothelial dysfunction, isolated systolic hypertension, white coat effect, and orthostatic hypertension. As hypertension-related collateral health risk increases among the elderly, the available management strategies are necessary to overcome the clinical treatment challenges faced among elderly population. To improve longevity and reduce adverse health effects, potential approaches producing crucial information into new era of medicine should be considered in the prevention and treatment of hypertension among elderly population. This review provides an overview of mechanisms underlying hypertension and its related collateral health risk in elderly population, along with multiple approaches and management strategies to improve the clinical challenges among elderly population.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea.
| | - Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| |
Collapse
|
20
|
Onisiforou A, Zanos P, Georgiou P. Molecular signatures of premature aging in Major Depression and Substance Use Disorders. Sci Data 2024; 11:698. [PMID: 38926475 PMCID: PMC11208564 DOI: 10.1038/s41597-024-03538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Major depressive disorder (MDD) and substance-use disorders (SUDs) often lead to premature aging, increasing vulnerability to cognitive decline and other forms of dementia. This study utilized advanced systems bioinformatics to identify aging "signatures" in MDD and SUDs and evaluated the potential for known lifespan-extending drugs to target and reverse these signatures. The results suggest that inhibiting the transcriptional activation of FOS gene family members holds promise in mitigating premature aging in MDD and SUDs. Conversely, antidepressant drugs activating the PI3K/Akt/mTOR pathway, a common mechanism in rapid-acting antidepressants, may accelerate aging in MDD patients, making them unsuitable for those with comorbid aging-related conditions like dementia and Alzheimer's disease. Additionally, this innovative approach identifies potential anti-aging interventions for MDD patients, such as Deferoxamine, Resveratrol, Estradiol valerate, and natural compounds like zinc acetate, genistein, and ascorbic acid, regardless of comorbid anxiety disorders. These findings illuminate the premature aging effects of MDD and SUDs and offer insights into treatment strategies for patients with comorbid aging-related conditions, including dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus.
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
- Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
21
|
Liu QQ, Wu GH, Wang XC, Xiong XW, Rui-Wang, Yao BL. The role of Foxo3a in neuron-mediated cognitive impairment. Front Mol Neurosci 2024; 17:1424561. [PMID: 38962803 PMCID: PMC11220205 DOI: 10.3389/fnmol.2024.1424561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Le Yao
- Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
22
|
Fu Z, Zhang X, Zhong C, Gao Z, Yan Q. Association between single and mixed exposure to polycyclic aromatic hydrocarbons and biological aging. Front Public Health 2024; 12:1379252. [PMID: 38903587 PMCID: PMC11188445 DOI: 10.3389/fpubh.2024.1379252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aging is one of the most important public health issues. Previous studies on the factors affecting aging focused on genetics and lifestyle, but the association between polycyclic aromatic hydrocarbons (PAHs) and aging is still unclear. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2003-2010. A total of 8,100 participants was used to construct the biological age predictors by using recent advanced algorithms Klemera-Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes, recorded as KDM-BA acceleration and PhenoAge acceleration, were used to investigate the relationship between single PAHs and biological age using a multiple linear regression analysis, and a weighted quantile sum (WQS) model was constructed to explore the mixed effects of PAHs on biological age. Finally, we constructed the restricted cubic spline (RCS) model to assess the non-linear relationship between PAHs and biological age. Results Exposure to PAHs was associated with PhenoAge acceleration. Each unit increase in the log10-transformed level of 1-naphthol, 2-naphthol, and 2-fluorene was associated with a 0.173 (95% CI: 0.085, 0.261), 0.310 (95% CI: 0.182, 0.438), and 0.454 (95% CI: 0.309, 0.598) -year increase in PhenoAge acceleration, respectively (all corrected P < 0.05). The urinary PAH mixture was relevant to KDM-BA acceleration (β = 0.13, 95% CI: 0, 0.26, P = 0.048) and PhenoAge acceleration (β = 0.59, 95% CI: 0.47, 0.70, P < 0.001), and 2-naphthol had the highest weight in the weighted quantile sum (WQS) regression. The RCS analyses showed a non-linear association between 2-naphthol and 2-fluorene with KDM-BA acceleration (all P < 0.05) in addition to a non-linear association between 1-naphthol, 2-naphthol, 3-fluorene, 2-fluorene, and 1-pyrene with PhenoAge acceleration (all P < 0.05). Conclusion Exposure to mixed PAHs is associated with increased aging, with 2-naphthol being a key component of PAHs associated with aging. This study has identified risk factors in terms of PAH components for aging.
Collapse
Affiliation(s)
- Zuqiang Fu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Rebhun RB, York D, De Graaf FMD, Yoon P, Batcher KL, Luker ME, Ryan S, Peyton J, Kent MS, Stern JA, Bannasch DL. A variant in the 5'UTR of ERBB4 is associated with lifespan in Golden Retrievers. GeroScience 2024; 46:2849-2862. [PMID: 37855863 PMCID: PMC11009206 DOI: 10.1007/s11357-023-00968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Genome-wide association studies (GWAS) in long-lived human populations have led to identification of variants associated with Alzheimer's disease and cardiovascular disease, the latter being the most common cause of mortality in people worldwide. In contrast, naturally occurring cancer represents the leading cause of death in pet dogs, and specific breeds like the Golden Retriever (GR) carry up to a 65% cancer-related death rate. We hypothesized that GWAS of long-lived GRs might lead to the identification of genetic variants capable of modifying longevity within this cancer-predisposed breed. A GWAS was performed comparing GR dogs ≥ 14 years to dogs dying prior to age 12 which revealed a significant association to ERBB4, the only member of the epidermal growth factor receptor family capable of serving as both a tumor suppressor gene and an oncogene. No coding variants were identified, however, distinct haplotypes in the 5'UTR were associated with reduced lifespan in two separate populations of GR dogs. When all GR dogs were analyzed together (n = 304), the presence of haplotype 3 was associated with shorter survival (11.8 years vs. 12.8 years, p = 0.024). GRs homozygous for haplotype 3 had the shortest survival, and GRs homozygous for haplotype 1 had the longest survival (11.6 years vs. 13.5 years, p = 0.0008). Sub-analyses revealed that the difference in lifespan for GRs carrying at least 1 copy of haplotype 3 was specific to female dogs (p = 0.009), whereas survival remained significantly different in both male and female GRs homozygous for haplotype 1 or haplotype 3 (p = 0.026 and p = 0.009, respectively). Taken together, these findings implicate a potential role for ERBB4 in GR longevity and provide evidence that within-breed canine lifespan studies could serve as a mechanism to identify favorable or disease-modifying variants important to the axis of aging and cancer.
Collapse
Affiliation(s)
- Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA.
| | - Daniel York
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Flora M D De Graaf
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Paula Yoon
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Kevin L Batcher
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Madison E Luker
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Stephanie Ryan
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Jamie Peyton
- Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Danika L Bannasch
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
24
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
25
|
Raisi-Estabragh Z, Szabo L, Schuermans A, Salih AM, Chin CWL, Vágó H, Altmann A, Ng FS, Garg P, Pavanello S, Marwick TH, Petersen SE. Noninvasive Techniques for Tracking Biological Aging of the Cardiovascular System: JACC Family Series. JACC Cardiovasc Imaging 2024; 17:533-551. [PMID: 38597854 DOI: 10.1016/j.jcmg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/11/2024]
Abstract
Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.
| | - Liliana Szabo
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Art Schuermans
- Faculty of Medicine, KU Leuven, Leuven, Belgium; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed M Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Department of Population Health Sciences, University of Leicester, Leicester UK; Department of Computer Science, Faculty of Science, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Calvin W L Chin
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore; Cardiovascular Academic Clinical Programme, Duke National University of Singapore Medical School, Singapore, Singapore
| | - Hajnalka Vágó
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pankaj Garg
- University of East Anglia, Norwich Medical School, Norwich, United Kingdom; Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy; Padua Hospital, Occupational Medicine Unit, Padua, Italy; University Center for Space Studies and Activities "Giuseppe Colombo" - CISAS, University of Padua, Padua, Italy
| | | | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom; Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Health Data Research UK, London, United Kingdom
| |
Collapse
|
26
|
Ni X, Su H, Li GH, Li R, Lan R, Lv Y, Pang G, Zhang W, Yang Z, Hu C. Specific differences and novel key regulatory genes of sex in influencing exceptional longevity phenotypes. Diabetes Metab Syndr 2024; 18:103039. [PMID: 38762968 DOI: 10.1016/j.dsx.2024.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND AND AIMS Although the life expectancy of women systematically and robustly exceeds that of men, specific differences and molecular mechanisms of sex in influencing longevity phenotypes remain largely unknown. Therefore, we performed transcriptome sequencing of peripheral blood samples to explore regulatory mechanisms of healthy longevity by incorporating sex data. METHODS We selected 34 exceptional longevity (age: 98.26 ± 2.45 years) and 16 controls (age: 52.81 ± 9.78) without advanced outcomes from 1363 longevity and 692 controls recruited from Nanning of Guangxi for RNA sequencing 1. The transcriptome sequencing 1 data of 50 samples were compared by longevity and sex to screen differentially expressed genes (DEGs). Then, 121 aging samples (40-110 years old) without advanced outcomes from 355 longevity and 294 controls recruited from Dongxing of Guangxi were selected for RNA sequencing 2. The genes associated with aging from the transcriptome sequencing 2 of 121 aging samples were filtered out. Finally, the gender-related longevity candidate genes and their possible metabolic pathways were verified by cell model of aging and a real-time polymerase chain reaction (RT-PCR). RESULTS Metabolism differs between male and female and plays a key role in longevity. Moreover, the principal findings of this study revealed a novel key gene, UGT2B11, that plays an important role in regulating lipid metabolism through the peroxisome proliferator activated receptor gamma (PPARG) signalling pathway and ultimately improving lifespan, particularly in females. CONCLUSION The findings suggest specific differences in metabolism affecting exceptional longevity phenotypes between the sexes and offer novel therapeutic targets to extend lifespan by regulating lipid homeostasis.
Collapse
Affiliation(s)
- Xiaolin Ni
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College, Beijing, 100005, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, PR China.
| | - Huabin Su
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, PR China
| | - Rongqiao Li
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Rushu Lan
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yuan Lv
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Guofang Pang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Wei Zhang
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, 100730, PR China.
| | - Caiyou Hu
- Jiangbin Hospital, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
27
|
Nguyen TT, Corvera S. Adipose tissue as a linchpin of organismal ageing. Nat Metab 2024; 6:793-807. [PMID: 38783156 PMCID: PMC11238912 DOI: 10.1038/s42255-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ageing is a conserved biological process, modulated by intrinsic and extrinsic factors, that leads to changes in life expectancy. In humans, ageing is characterized by greatly increased prevalence of cardiometabolic disease, type 2 diabetes and disorders associated with impaired immune surveillance. Adipose tissue displays species-conserved, temporal changes with ageing, including redistribution from peripheral to central depots, loss of thermogenic capacity and expansion within the bone marrow. Adipose tissue is localized to discrete depots, and also diffusely distributed within multiple organs and tissues in direct proximity to specialized cells. Thus, through their potent endocrine properties, adipocytes are capable of modulating tissue and organ function throughout the body. In addition to adipocytes, multipotent progenitor/stem cells in adipose tissue play a crucial role in maintenance and repair of tissues throughout the lifetime. Adipose tissue may therefore be a central driver for organismal ageing and age-associated diseases. Here we review the features of adipose tissue during ageing, and discuss potential mechanisms by which these changes affect whole-body metabolism, immunity and longevity. We also explore the potential of adipose tissue-targeted therapies to ameliorate age-associated disease burdens.
Collapse
Affiliation(s)
- Tammy T Nguyen
- Department of Surgery, Division of Vascular Surgery, UMass Memorial Medical Center, Worcester, MA, USA
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA
| | - Silvia Corvera
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA, USA.
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
28
|
Bylino OV, Ogienko AA, Batin MA, Georgiev PG, Omelina ES. Genetic, Environmental, and Stochastic Components of Lifespan Variability: The Drosophila Paradigm. Int J Mol Sci 2024; 25:4482. [PMID: 38674068 PMCID: PMC11050664 DOI: 10.3390/ijms25084482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Lifespan is a complex quantitative trait involving genetic and non-genetic factors as well as the peculiarities of ontogenesis. As with all quantitative traits, lifespan shows considerable variation within populations and between individuals. Drosophila, a favourite object of geneticists, has greatly advanced our understanding of how different forms of variability affect lifespan. This review considers the role of heritable genetic variability, phenotypic plasticity and stochastic variability in controlling lifespan in Drosophila melanogaster. We discuss the major historical milestones in the development of the genetic approach to study lifespan, the breeding of long-lived lines, advances in lifespan QTL mapping, the environmental factors that have the greatest influence on lifespan in laboratory maintained flies, and the mechanisms, by which individual development affects longevity. The interplay between approaches to study ageing and lifespan limitation will also be discussed. Particular attention will be paid to the interaction of different types of variability in the control of lifespan.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Department of Regulation of Genetic Processes, Laboratory of Molecular Organization of the Genome, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Acharya S, Liao S, Jung WJ, Kang YS, Moghaddam VA, Feitosa M, Wojczynski M, Lin S, Anema JA, Schwander K, Connell JO, Province M, Brent MR. Multi-omics Integration Identifies Genes Influencing Traits Associated with Cardiovascular Risks: The Long Life Family Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303657. [PMID: 38496585 PMCID: PMC10942516 DOI: 10.1101/2024.03.04.24303657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Long Life Family Study (LLFS) enrolled 4,953 participants in 539 pedigrees displaying exceptional longevity. To identify genetic mechanisms that affect cardiovascular risks in the LLFS population, we developed a multi-omics integration pipeline and applied it to 11 traits associated with cardiovascular risks. Using our pipeline, we aggregated gene-level statistics from rare-variant analysis, GWAS, and gene expression-trait association by Correlated Meta-Analysis (CMA). Across all traits, CMA identified 64 significant genes after Bonferroni correction (p ≤ 2.8×10-7), 29 of which replicated in the Framingham Heart Study (FHS) cohort. Notably, 20 of the 29 replicated genes do not have a previously known trait-associated variant in the GWAS Catalog within 50 kb. Thirteen modules in Protein-Protein Interaction (PPI) networks are significantly enriched in genes with low meta-analysis p-values for at least one trait, three of which are replicated in the FHS cohort. The functional annotation of genes in these modules showed a significant over-representation of trait-related biological processes including sterol transport, protein-lipid complex remodeling, and immune response regulation. Among major findings, our results suggest a role of triglyceride-associated and mast-cell functional genes FCER1A, MS4A2, GATA2, HDC, and HRH4 in atherosclerosis risks. Our findings also suggest that lower expression of ATG2A, a gene we found to be associated with BMI, may be both a cause and consequence of obesity. Finally, our results suggest that ENPP3 may play an intermediary role in triglyceride-induced inflammation. Our pipeline is freely available and implemented in the Nextflow workflow language, making it easily runnable on any compute platform (https://nf-co.re/omicsgenetraitassociation).
Collapse
Affiliation(s)
- Sandeep Acharya
- Division of Computational and Data Sciences, Washington University, St Louis, MO
| | - Shu Liao
- Department of Computer Science and Engineering, Washington University, St Louis, MO
| | - Wooseok J Jung
- Department of Computer Science and Engineering, Washington University, St Louis, MO
| | - Yu S Kang
- Department of Computer Science and Engineering, Washington University, St Louis, MO
| | - Vaha A Moghaddam
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Mary Feitosa
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Mary Wojczynski
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Shiow Lin
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Jason A Anema
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Karen Schwander
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Jeff O Connell
- Department of Medicine, University of Maryland, Baltimore, MD
| | - Mike Province
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO
| | - Michael R Brent
- Department of Computer Science and Engineering, Washington University, St Louis, MO
| |
Collapse
|
30
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
31
|
de Magalhães JP, Abidi Z, dos Santos GA, Avelar RA, Barardo D, Chatsirisupachai K, Clark P, De-Souza EA, Johnson EJ, Lopes I, Novoa G, Senez L, Talay A, Thornton D, To P. Human Ageing Genomic Resources: updates on key databases in ageing research. Nucleic Acids Res 2024; 52:D900-D908. [PMID: 37933854 PMCID: PMC10767973 DOI: 10.1093/nar/gkad927] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Ageing is a complex and multifactorial process. For two decades, the Human Ageing Genomic Resources (HAGR) have aided researchers in the study of various aspects of ageing and its manipulation. Here, we present the key features and recent enhancements of these resources, focusing on its six main databases. One database, GenAge, focuses on genes related to ageing, featuring 307 genes linked to human ageing and 2205 genes associated with longevity and ageing in model organisms. AnAge focuses on ageing, longevity, and life-history across animal species, containing data on 4645 species. DrugAge includes information about 1097 longevity drugs and compounds in model organisms such as mice, rats, flies, worms and yeast. GenDR provides a list of 214 genes associated with the life-extending benefits of dietary restriction in model organisms. CellAge contains a catalogue of 866 genes associated with cellular senescence. The LongevityMap serves as a repository for genetic variants associated with human longevity, encompassing 3144 variants pertaining to 884 genes. Additionally, HAGR provides various tools as well as gene expression signatures of ageing, dietary restriction, and replicative senescence based on meta-analyses. Our databases are integrated, regularly updated, and manually curated by experts. HAGR is freely available online (https://genomics.senescence.info/).
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Zoya Abidi
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Gabriel Arantes dos Santos
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Diogo Barardo
- NOVOS Labs, 100 Park Avenue, 16th Fl, New York, NY 10017, USA
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Peter Clark
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Evandro A De-Souza
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Emily J Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Guy Novoa
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Ludovic Senez
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Angelo Talay
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Paul Ka Po To
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
32
|
Qiu S, Hu Y, Liu G. Mendelian randomization study supports the causal effects of air pollution on longevity via multiple age-related diseases. NPJ AGING 2023; 9:29. [PMID: 38114504 PMCID: PMC10730819 DOI: 10.1038/s41514-023-00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023]
Abstract
Growing evidence suggests that exposure to fine particulate matter (PM2.5) may reduce life expectancy; however, the causal pathways of PM2.5 exposure affecting life expectancy remain unknown. Here, we assess the causal effects of genetically predicted PM2.5 concentration on common chronic diseases and longevity using a Mendelian randomization (MR) statistical framework based on large-scale genome-wide association studies (GWAS) (>400,000 participants). After adjusting for other types of air pollution and smoking, we find significant causal relationships between PM2.5 concentration and angina pectoris, hypercholesterolaemia and hypothyroidism, but no causal relationship with longevity. Mediation analysis shows that although the association between PM2.5 concentration and longevity is not significant, PM2.5 exposure indirectly affects longevity via diastolic blood pressure (DBP), hypertension, angina pectoris, hypercholesterolaemia and Alzheimer's disease, with a mediated proportion of 31.5, 70.9, 2.5, 100, and 24.7%, respectively. Our findings indicate that public health policies to control air pollution may help improve life expectancy.
Collapse
Affiliation(s)
- Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, China.
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong; Department of Neurology, Second Affiliated Hospital; Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
33
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Bellomo A, Solfrizzi V, Panza F. The Impact of Apolipoprotein E ( APOE) Epigenetics on Aging and Sporadic Alzheimer's Disease. BIOLOGY 2023; 12:1529. [PMID: 38132357 PMCID: PMC10740847 DOI: 10.3390/biology12121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Sporadic Alzheimer's disease (AD) derives from an interplay among environmental factors and genetic variants, while epigenetic modifications have been expected to affect the onset and progression of its complex etiopathology. Carriers of one copy of the apolipoprotein E gene (APOE) ε4 allele have a 4-fold increased AD risk, while APOE ε4/ε4-carriers have a 12-fold increased risk of developing AD in comparison with the APOE ε3-carriers. The main longevity factor is the homozygous APOE ε3/ε3 genotype. In the present narrative review article, we summarized and described the role of APOE epigenetics in aging and AD pathophysiology. It is not fully understood how APOE variants may increase or decrease AD risk, but this gene may affect tau- and amyloid-mediated neurodegeneration directly or indirectly, also by affecting lipid metabolism and inflammation. For sporadic AD, epigenetic regulatory mechanisms may control and influence APOE expression in response to external insults. Diet, a major environmental factor, has been significantly associated with physical exercise, cognitive function, and the methylation level of several cytosine-phosphate-guanine (CpG) dinucleotide sites of APOE.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Rodolfo Sardone
- Local Healthcare Authority of Taranto, 74121 Taranto, Italy;
| | - Fabio Castellana
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Roberta Zupo
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Luisa Lampignano
- Local Healthcare Authority of Bari, ASL Bari, 70132 Bari, Italy;
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzo Solfrizzi
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Francesco Panza
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| |
Collapse
|
34
|
Accardi G, Aiello A, Aprile S, Calabrò A, Caldarella R, Caruso C, Ciaccio M, Dieli F, Ligotti ME, Meraviglia S, Candore G. The Phenotypic Characterization of the Oldest Italian Man from December 28, 2020, to September 23, 2021, A.T., Strengthens the Idea That the Immune System can Play a Key Role in the Attainment of Extreme Longevity. J Clin Med 2023; 12:7591. [PMID: 38137660 PMCID: PMC10744028 DOI: 10.3390/jcm12247591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, we present demographic, clinical, anamnestic, cognitive, and functional data, as well as haematological, haematochemical, immunological, and genetic parameters of an exceptional individual: A.T., a semi-supercentenarian who held the title of the oldest living Italian male centenarian from 28 December 2020, to 23 September 2021. The purpose of this study is to provide fresh insights into extreme phenotypes, with a particular focus on immune-inflammatory parameters. To the best of our knowledge, this study represents the first phenotypic investigation of a semi-supercentenarian, illustrating both INFLA-score, a metric designed to assess the cumulative impact of inflammatory markers and indicators of age-related immune phenotype (ARIP), recognized as significant gauges of biological ageing. The aim of this study was, indeed, to advance our understanding of the role of immune-inflammatory responses in achieving extreme longevity. The results of laboratory tests, as well as clinical history and interview data, when compared to the results of our recent study on Sicilian centenarians, demonstrate an excellent state of health considering his age. Consistent with previous studies, we observed increased IL-6 inflammatory markers and INFLA score in A.T. More interestingly, the semi-supercentenarian showed values of ARIP indicators such as naïve CD4+ cells, CD4+/CD8+ ratio, and CD4+TN/TM ratio in the range of young adult individuals, suggesting that his immune system's biological age was younger than the chronological one. The results support the notion that the immune system can play a role in promoting extreme longevity. However, this does not rule out the involvement of other body systems or organs in achieving extreme longevity.
Collapse
Affiliation(s)
- Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Stefano Aprile
- Unit of Transfusion Medicine, San Giovanni di Dio Hospital, 92100 Agrigento, Italy;
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Rosalia Caldarella
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Marcello Ciaccio
- Department of Laboratory medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (R.C.); (M.C.)
- Section of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, University Hospital “P. Giaccone”, 90127 Palermo, Italy; (F.D.); (S.M.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (G.A.); (A.A.); (A.C.); (M.E.L.); (G.C.)
| |
Collapse
|
35
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P, ALFAScore Consortium, Andrade RP, Calado S, Faleiro ML, Matos C, Marques N, Marreiros A, Nzwalo H, Pais S, Palmeirim I, Simão S, Joaquim N, Miranda R, Pêgas A, Sardo A. Measuring healthy ageing: current and future tools. Biogerontology 2023; 24:845-866. [DOI: https:/doi.org/10.1007/s10522-023-10041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 09/01/2023]
Abstract
AbstractHuman ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
|
36
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P. Measuring healthy ageing: current and future tools. Biogerontology 2023; 24:845-866. [PMID: 37439885 PMCID: PMC10615962 DOI: 10.1007/s10522-023-10041-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Human ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
Affiliation(s)
- Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal.
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal.
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
37
|
von Berg J, McArdle PF, Häppölä P, Haessler J, Kooperberg C, Lemmens R, Pezzini A, Thijs V, on behalf of SiGN, FinnGen, Women’s Health Initiative, Pulit SL, Kittner SJ, Mitchell BD, de Ridder J, van der Laan SW. Evidence of survival bias in the association between APOE-ϵ4 and age of ischemic stroke onset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23294385. [PMID: 38076909 PMCID: PMC10705635 DOI: 10.1101/2023.12.01.23294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Large genome-wide association studies (GWAS) employing case-control study designs have now identified tens of loci associated with ischemic stroke (IS). As a complement to these studies, we performed GWAS in a case-only design to identify loci influencing age at onset (AAO) of ischemic stroke. Analyses were conducted in a Discovery cohort of 10,857 ischemic stroke cases using a linear regression framework. We meta-analyzed all SNPs with p-value < 1×10-5 in a sex-combined or sex-stratified analysis using summary data from two additional replication cohorts. In the women-only meta-analysis, we detected significant evidence for association of AAO with rs429358, an exonic variant in APOE that encodes for the APOE-ϵ4 allele. Each copy of the rs429358:T>C allele was associated with a 1.29 years earlier stroke AOO (meta p-value = 2.48×10-11). This APOE variant has previously been associated with increased mortality and ischemic stroke AAO. We hypothesized that the association with AAO may reflect a survival bias attributable to an age-related decline in mortality among APOE-ϵ4 carriers and have no association to stroke AAO per se. Using a simulation study, we found that a variant associated with overall mortality might indeed be detected with an AAO analysis. A variant with a two-fold increase on mortality risk would lead to an observed effect of AAO that is comparable to what we found. In conclusion, we detected a robust association of the APOE locus with stroke AAO and provided simulations to suggest that this association may be unrelated to ischemic stroke per se but related to a general survival bias.
Collapse
Affiliation(s)
- Joanna von Berg
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick F. McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paavo Häppölä
- Institute for Molecular Medicine Finland FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seatle, WA, USA
| | - Robin Lemmens
- University Hospitals Leuven, Department of Neurology, Leuven, Belgium
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, Leuven, Belgium
| | - Alessandro Pezzini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Stroke Care Program, Department of Emergency, Parma University Hospital, Parma, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Vincent Thijs
- Stroke Theme, The Florey, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | | | - Sara L. Pulit
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Steven J. Kittner
- Geriatric Research and Education Clinical Center, VA Maryland Health Care System, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatric Research and Education Clinical Center, VA Maryland Health Care System, Baltimore, MD, USA
| | - Jeroen de Ridder
- Center for Molecular Medicine, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center of Population Health and Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
38
|
Prem P, Muneshwar KN, Agrawal S, Jaiswal A. The Impact of Increased Homozygosity on Human Fertility: A Comprehensive Review. Cureus 2023; 15:e49000. [PMID: 38111431 PMCID: PMC10726075 DOI: 10.7759/cureus.49000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023] Open
Abstract
This comprehensive review explores the multifaceted relationship between increased homozygosity and human fertility, delving into the genetic, ethical, cultural, and public health dimensions of this complex phenomenon. Homozygosity, characterized by identical alleles at specific gene loci, can result from consanguineous marriages, genetic drift, and population isolation. The review highlights key findings, including the heightened risk of recessive genetic disorders, the implications for immune system diversity, and the influence on complex traits and diseases. It underscores the critical role of genetic counseling in addressing these consequences, considering the ethical implications, and respecting cultural practices. The delicate balance between genetic diversity and cultural norms is emphasized, calling for increased awareness and community engagement. Looking ahead, the review suggests emerging technologies, longitudinal studies, and interdisciplinary research as crucial avenues for further exploration, with the ultimate goal of informing effective public health policies and interventions that safeguard genetic diversity and cultural traditions for future generations.
Collapse
Affiliation(s)
- Pranjal Prem
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Komal N Muneshwar
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
39
|
Abstract
Unlike genetic changes, epigenetics modulates gene expression without stable modification of the genome. Even though all cells, including sperm and egg, have an epigenome pattern, most of these modifications occur during lifetime and interestingly, some of them, are reversible. Lifestyle and especially nutrients as well as diet regimens are presently gaining importance due to their ability to affect the epigenome. On the other hand, since the epigenome profoundly affects gene expression profile it can be speculated that the epigenome could modulate individual response to nutrients. Recent years have thus seen growing interest on nutrients, macronutrients ratio and diet regimens capable to affect the epigenetic pattern. In fact, while genetic alterations are mostly detrimental at the individual level, reshaping the epigenome may be a feasible strategy to positively counteract the detrimental effect of aging. Here, I review nutrient consumption and diet regimens as a possible strategy to counteract aging-driven epigenome derangement.
Collapse
Affiliation(s)
- Mario G Mirisola
- STeBiCeF Department, Università di Palermo, Building 16, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
40
|
Navarro C, Salazar J, Díaz MP, Chacin M, Santeliz R, Vera I, D′Marco L, Parra H, Bernal MC, Castro A, Escalona D, García-Pacheco H, Bermúdez V. Intrinsic and environmental basis of aging: A narrative review. Heliyon 2023; 9:e18239. [PMID: 37576279 PMCID: PMC10415626 DOI: 10.1016/j.heliyon.2023.e18239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Longevity has been a topic of interest since the beginnings of humanity, yet its aetiology and precise mechanisms remain to be elucidated. Aging is currently viewed as a physiological phenomenon characterized by the gradual degeneration of organic physiology and morphology due to the passage of time where both external and internal stimuli intervene. The influence of intrinsic factors, such as progressive telomere shortening, genome instability due to mutation buildup, the direct or indirect actions of age-related genes, and marked changes in epigenetic, metabolic, and mitochondrial patterns constitute a big part of its underlying endogenous mechanisms. On the other hand, several psychosocial and demographic factors, such as diet, physical activity, smoking, and drinking habits, may have an even more significant impact on shaping the aging process. Consequentially, implementing dietary and exercise patterns has been proposed as the most viable alternative strategy for attenuating the most typical degenerative aging changes, thus increasing the likelihood of prolonging lifespan and achieving successful aging.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Maricarmen Chacin
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Luis D′Marco
- Universidad Cardenal Herrera-CEU Medicine Department, CEU Universities, 46115 Valencia, Spain
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | | | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Daniel Escalona
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo 4001, Venezuela
| | - Henry García-Pacheco
- Universidad del Zulia, Facultad de Medicina, Departamento de Cirugía. Hospital General del Sur “Dr. Pedro Iturbe”. Maracaibo, Venezuela
- Unidad de Cirugía para la Obesidad y Metabolismo (UCOM). Maracaibo, Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia
| |
Collapse
|
41
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
42
|
Bafei SEC, Shen C. Biomarkers selection and mathematical modeling in biological age estimation. NPJ AGING 2023; 9:13. [PMID: 37393295 DOI: 10.1038/s41514-023-00110-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/08/2023] [Indexed: 07/03/2023]
Abstract
Biological age (BA) is important for clinical monitoring and preventing aging-related disorders and disabilities. Clinical and/or cellular biomarkers are measured and integrated in years using mathematical models to display an individual's BA. To date, there is not yet a single or set of biomarker(s) and technique(s) that is validated as providing the BA that reflects the best real aging status of individuals. Herein, a comprehensive overview of aging biomarkers is provided and the potential of genetic variations as proxy indicators of the aging state is highlighted. A comprehensive overview of BA estimation methods is also provided as well as a discussion of their performances, advantages, limitations, and potential approaches to overcome these limitations.
Collapse
Affiliation(s)
- Solim Essomandan Clémence Bafei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
43
|
Liang S, Wang N, Wang Y, Wang M, Zhao X, Yang M, Yi H, Zhu M, Wang C, Hang D, Jiang Y, Dai J. Polygenic risk for termination of the 'healthspan' and its interactions with lifestyle factors: A prospective cohort study based on 288,359 participants. Maturitas 2023; 175:107786. [PMID: 37354644 DOI: 10.1016/j.maturitas.2023.107786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES To investigate whether a polygenic risk score (PRS) and its interactions with lifestyle factors are associated with termination of the 'healthspan' (the number of years living without serious diseases or degeneration). DESIGN, EXPOSURES AND PARTICIPANTS Death or the incidence of any of seven independent morbidities (cancer, congestive heart failure, myocardial infarction, chronic obstructive pulmonary disease, stroke, dementia, and diabetes) strongly associated with aging were considered to define the termination of the healthspan. A total of 288,359 healthy participants from the UK Biobank were included in this prospective cohort study to evaluate the associations between PRS, lifestyle, and healthspan. The PRS was generated by weighting 12 healthspan-related genetic loci, which and scores were then categorized into three groups in Cox regression models. A lifestyle index was developed that incorporated body mass index (BMI), alcohol consumption, diet, smoking, and physical activity, and these scores were also categorized into three groups. The risk of termination of the healthspan was calculated across the different PRS and lifestyle index groups using Cox regression models. Interactions were estimated with the marginal effect of lifestyle on the risk of termination of healthspan across values of the moderator PRS using kernel estimation. RESULTS During an average follow-up of 9.83 years, 68,903 healthspan-termination events occurred. It was calculated that people with high polygenic risk could reduce their risk of healthspan termination by 40 % if they maintain a favorable lifestyle. The marginal effect of lifestyle on the risk of healthspan termination increased with growing genetic risk. Smoking and diet showed monotonic changes in opposite directions, while BMI, physical activity, and alcohol had a U-shaped interaction with genetic risk. CONCLUSIONS Favorable lifestyle can attenuate the risk of termination of the healthspan, especially for people with high genetic risk. The improvement afforded by ideal lifestyle behaviors varies for each individual.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Nanxi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meiqi Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Gusu School, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Gusu School, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, China
| | - Dong Hang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Gusu School, Nanjing Medical University, Nanjing 211166, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
44
|
Olshansky SJ, Willcox B, Ashburn K, Stukey J, Willcox C. Personalized Financial Planning Using Applied Genetics. Cold Spring Harb Perspect Med 2023; 13:a041206. [PMID: 37037601 PMCID: PMC10153800 DOI: 10.1101/cshperspect.a041206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Forthcoming advances in geroscience will influence the health span of current and future generations and generate both challenges and opportunities for those approaching or reaching retirement ages. The resulting changes in the life course will influence those reaching stages in life that are commonly associated with retirement. How people plan for that later phase of life is critical-especially given that current approaches to planning are either nonexistent or outdated. In this review, we show how advances in applied genetics can yield valuable information for individuals that are facing the challenges and opportunities that will accompany anticipated advances in geroscience and their unique influence on the life span and health span of current and future generations.
Collapse
Affiliation(s)
- S Jay Olshansky
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Wealthspan Financial Partners, Grand Rapids, Michigan 49506, USA
| | - Bradley Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii Mānoa, Honolulu, Hawaii 96813, USA
| | - Kirk Ashburn
- Wealthspan Financial Partners, Grand Rapids, Michigan 49506, USA
| | - Jeffrey Stukey
- Investment Advisor, Wealthspan Investment Management, Grand Rapids, Michigan 49506, USA
| | - Craig Willcox
- Professor of Public Health and Gerontology, Okinawa International University, Urasoe City, Okinawa 901-2122, Japan
| |
Collapse
|
45
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
46
|
Cruces-Salguero S, Larrañaga I, Mar J, Matheu A. Descriptive and predictive analysis identify centenarians' characteristics from the Basque population. Front Public Health 2023; 10:1096837. [PMID: 36761329 PMCID: PMC9905795 DOI: 10.3389/fpubh.2022.1096837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background Centenarians exhibit extreme longevity and have been postulated, by some researchers, as a model for healthy aging. The identification of the characteristics of centenarians might be useful to understand the process of human aging. Methods In this retrospective study, we took advantage of demographic, clinical, biological, and functional data of deceased individuals between 2014 and 2020 in Guipúzcoa (Basque Country, Spain) taken from the Basque Health Service electronic health records data lake. Fifty characteristics derived from demographic, clinical, pharmaceutical, biological, and functional data were studied in the descriptive analysis and compared through differences in means tests. Twenty-seven of them were used to build machine learning models in the predictive analysis and their relevance for classifying centenarians was assessed. Results Most centenarians were women and lived in nursing homes. Importantly, they developed fewer diseases, took fewer drugs, and required fewer medical attendances. They also showed better biological profiles, exhibiting lower levels of glucose, hemoglobin, glycosylated hemoglobin, and triglycerides in blood analysis compared with non-centenarians. In addition, machine learning analyses revealed the main characteristics of the profiles associated with centenarians' status as being women, having fewer consultations, having fewer diagnoses of neoplasms, and having lower levels of hemoglobin. Conclusions Our results revealed the main characteristics linked to centenarians in the Basque Country using Computational Biology programs. These results expand the knowledge on the characterization of the centenarian population and hence of human longevity.
Collapse
Affiliation(s)
- Sara Cruces-Salguero
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Igor Larrañaga
- Osakidetza Basque Health Service, Debagoiena Integrated Healthcare Organisation, Research Unit, Arrasate-Mondragón, Guipúzcoa, Spain,Kronikgune Institute for Health Services Research, Barakaldo, Spain
| | - Javier Mar
- Osakidetza Basque Health Service, Debagoiena Integrated Healthcare Organisation, Research Unit, Arrasate-Mondragón, Guipúzcoa, Spain,Kronikgune Institute for Health Services Research, Barakaldo, Spain,Epidemiology and Public Health Department, Biodonostia Health Research Institute, Donostia-San Sebastián, Guipúzcoa, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento (CIBERfes), Carlos III Institute, Madrid, Spain,*Correspondence: Ander Matheu ✉
| |
Collapse
|
47
|
Zsichla L, Müller V. Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses 2023; 15:175. [PMID: 36680215 PMCID: PMC9863423 DOI: 10.3390/v15010175] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The clinical course and outcome of COVID-19 are highly variable, ranging from asymptomatic infections to severe disease and death. Understanding the risk factors of severe COVID-19 is relevant both in the clinical setting and at the epidemiological level. Here, we provide an overview of host, viral and environmental factors that have been shown or (in some cases) hypothesized to be associated with severe clinical outcomes. The factors considered in detail include the age and frailty, genetic polymorphisms, biological sex (and pregnancy), co- and superinfections, non-communicable comorbidities, immunological history, microbiota, and lifestyle of the patient; viral genetic variation and infecting dose; socioeconomic factors; and air pollution. For each category, we compile (sometimes conflicting) evidence for the association of the factor with COVID-19 outcomes (including the strength of the effect) and outline possible action mechanisms. We also discuss the complex interactions between the various risk factors.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
- National Laboratory for Health Security, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
48
|
Rasmussen KL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. Associations of Alzheimer Disease-Protective APOE Variants With Age-Related Macular Degeneration. JAMA Ophthalmol 2023; 141:13-21. [PMID: 36394841 PMCID: PMC9673029 DOI: 10.1001/jamaophthalmol.2022.4602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Importance The association of major lipid genes with and their potential as drug targets for age-related macular degeneration (AMD) is unknown. These associations are important to study because AMD is the leading cause of irreversible late-onset blindness in high-income countries. Objective To determine whether the full range of structural genetic variation in apolipoprotein E (APOE), a master gene in peripheral and cerebral lipid metabolism, is associated with risk of AMD. Design, Setting, and Participants This cohort study used data from the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS) cohorts. Participants were followed from study inclusion at the time of blood sampling to occurrence of event, death, emigration, or December 7, 2018, whichever came first. For participants in CCHS, the APOE gene was sequenced, and 9 variants with a heterozygote frequency of at least 0.0002 were genotyped in the CGPS. Observers were masked to patient groupings. Data were analyzed from March to September 2021. Exposures The exposure was APOE status, and the direct gene product in plasma, apoE levels, was measured in all participants. Main Outcomes and Measures Cox regression was applied to estimate risk of AMD associated with APOE genotype. Results A total of 105 546 participants (mean [SD] age, 57.7 [13.4] years; 58 140 [55%] female participants) were included. Compared with participants with the common ɛ33 genotype, risk of AMD was lower in participants with ε44 (multifactorially adjusted hazard ratio [aHR], 0.66; 95% CI, 0.45-0.96) and ε43 (aHR, 0.80; 95% CI, 0.71-0.90) genotypes and higher in the ε32 (aHR, 1.15; 95% CI, 1.00-1.31) genotype. Compared with noncarriers, risk of AMD was higher for participants with Gly145Asp (aHR, 3.53; 95% CI, 1.14-10.96) and Arg154Cys (aHR, 4.52; 95% CI, 1-13-18.13) heterozygotes. Results were similar after further adjustment for lipid traits and after adjustment for the APOE ε2/ε3/ε4 variant. Combining all common and rare structural variants in a weighted allele score, risk of AMD per 1-mg/dL genetically higher plasma apoE was increased in the adjusted model (aHR, 1.12; 95% CI, 1.05-1.19), the adjusted model plus APOE ɛ2/ɛ3/ɛ4 status (aHR, 1.82; 95% CI, 1.20-2.76), and the adjusted model in individuals with the ε33 genotype only (aHR, 1.77; 95% CI, 1.14-2.75). Conclusions and Relevance These findings highlight that structural variation in APOE beyond the ε2/ε3/ε4 variants may be important for risk of AMD in a population of European ancestry. Rare functional ɛ2-like variants in APOE have previously been reported to have protective associations for Alzheimer disease but the present findings suggest a simultaneous high risk of AMD. This would limit the drug target potential of mechanisms resembling these variants.
Collapse
Affiliation(s)
- Katrine L. Rasmussen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital–Herlev Gentofte, Herlev, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
49
|
He D, Liu L, Zhang Z, Yang X, Jia Y, Wen Y, Cheng S, Meng P, Li C, Zhang H, Pan C, Zhang F. Association between gut microbiota and longevity: a genetic correlation and mendelian randomization study. BMC Microbiol 2022; 22:302. [PMID: 36510142 PMCID: PMC9746102 DOI: 10.1186/s12866-022-02703-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Longevity is one of the most complex phenotypes, and its genetic basis remains unclear. This study aimed to explore the genetic correlation and potential causal association between gut microbiota and longevity. RESULTS Linkage disequilibrium score (LDSC) regression analysis and a bi-directional two-sample Mendelian Randomization (MR) analysis were performed to analyze gut microbiota and longevity-related traits. LDSC analysis detected four candidate genetic correlations, including Veillonella (genetic correlation = 0.5578, P = 4.67 × 10- 2) and Roseburia (genetic correlation = 0.4491, P = 2.67 × 10- 2) for longevity, Collinsella (genetic correlation = 0.3144, P = 4.07 × 10- 2) for parental lifespan and Sporobacter (genetic correlation = 0.2092, P = 3.53 × 10- 2) for healthspan. Further MR analysis observed suggestive causation between Collinsella and parental longevity (father's age at death) (weighted median: b = 1.79 × 10- 3, P = 3.52 × 10- 2). Reverse MR analysis also detected several causal effects of longevity-related traits on gut microbiota, such as longevity and Sporobacter (IVW: b = 7.02 × 10- 1, P = 4.21 × 10- 25). Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. CONCLUSION Our study found evidence that gut microbiota is causally associated with longevity, or vice versa, providing novel clues for understanding the roles of gut microbiota in aging development.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
50
|
Olovnikov AM. Planetary Metronome as a Regulator of Lifespan and Aging Rate: The Metronomic Hypothesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1640-1650. [PMID: 36717453 DOI: 10.1134/s0006297922120197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A metronomic mechanism for the duration control of ontogenetic cycle periods of an animal is proposed. The components of the proposed metronomic system include the ventricular system of the brain, planet Earth as a generator of metronomic signals, and temporal DNA (tDNA) as a substrate that is epigenetically marked to measure elapsed time of ontogenesis. The metronomic system generates repetitive signals in the form of hydrodynamic disturbances in the cerebrospinal fluid (CSF). The metronomic effect arises due to the superposition of two processes - the near-wall unidirectional flow of CSF and oscillations in the movement of the planet. Hydrodynamic impacts of the metronome are transformed into nerve impulses that initiate epigenetic modification of tDNA in neurons, changing the content of factors expressed by this DNA for innervated targets of the body. The duration of ontogenetic cycle periods, including duration of the adult life, depends on the rate of addition of epigenetic marks to tDNA. This rate depends mainly on the frequency of the metronomic signals used by each particular species. But epigenetic modifications can also be influenced by factors that modulate metabolism and the rate of chromatin modifications, such as a calorie-restricted diet.
Collapse
Affiliation(s)
- Alexey M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|