1
|
Wang M, Deng H, Chen Y, Wang Y, Zhang Y, Liu C, Zhang M, Li T, Dang S, Li Y. Expression and clinical significance of pattern recognition receptor-associated genes in hand, foot and mouth disease. ASIAN PAC J TROP MED 2024; 17:173-183. [DOI: 10.4103/apjtm.apjtm_876_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/20/2024] [Indexed: 11/27/2024] Open
Abstract
Objective:
To explore which pattern recognition receptors (PRRs) play a key role in the development of hand, foot, and mouth disease (HFMD) by analyzing PRR-associated genes.
Methods:
We conducted a comparative analysis of PRR-associated gene expression in human peripheral blood mononuclear cells (PBMCs) infected with enterovirus 71 (EV-A71) which were derived from patients with HFMD of different severities and at different stages. A total of 30 PRR-associated genes were identified as significantly upregulated both over time and across different EV-A71 isolates. Subsequently, ELISA was employed to quantify the expression of the six most prominent genes among these 30 identified genes, specifically, BST2, IRF7, 1FI16, TRIM21, MX1, and DDX58.
Results:
Compared with those at the recovery stage, the expression levels of BST2 (P=0.027), IFI16 (P=0.016), MX1 (P=0.046) and DDX58 (P=0.008) in the acute stage of infection were significantly upregulated, while no significant difference in the expression levels of IRF7 (P=0.495) and TRIM21 (P=0.071) was found between different stages of the disease. The expression levels of BST2, IRF7, IFI16 and MX1 were significantly higher in children infected with single pathogen than those infected with mixed pathogens, and BST2, IRF7, IFI16 and MX1 expression levels were significantly lower in coxsackie B virus (COXB) positive patients than the negative patients. Expression levels of one or more of BST2, IRF7, IFI16, TRIM21, MX1 and DDX58 genes were correlated with PCT levels, various white blood cell counts, and serum antibody levels that reflect disease course of HFMD. Aspartate aminotransferase was correlated with BST2, MX1 and DDX58 expression levels.
Conclusions:
PRR-associated genes likely initiate the immune response in patients at the acute stage of HFMD.
Collapse
Affiliation(s)
- Muqi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an 710004, China
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yuan Chen
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an 710003, China
| | - Chenrui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
2
|
Zhang F, Zhou P, Wang L, Liao X, Liu X, Ke C, Wen S, Shu Y. Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19. BMC Infect Dis 2024; 24:270. [PMID: 38429664 PMCID: PMC10905836 DOI: 10.1186/s12879-024-09040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.
Collapse
Affiliation(s)
- Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Pingping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Simin Wen
- Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, P. R. China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, P. R. China.
| |
Collapse
|
3
|
Choudhary ML, Chaudhary U, Salve M, Shinde P, Padbidri V, Sangle SA, Salvi S, Bavdekar AR, D'costa P, Alagarasu K. Functional Single-Nucleotide Polymorphisms in the MBL2 and TLR3 Genes Influence Disease Severity in Influenza A (H1N1)pdm09 Virus-Infected Patients from Maharashtra, India. Viral Immunol 2022; 35:303-309. [PMID: 35196173 DOI: 10.1089/vim.2021.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical outcome in influenza A (H1N1)pdm09 virus-infected subjects is determined by several factors, including host genetics. In the present study, single-nucleotide polymorphisms (SNPs) in the IFITM, MBL2, TLR3, TLR8, DDX58, IFIH1, CD55, and FCGR2, genes were investigated in influenza A (H1N1)pdm09 virus-infected subjects to find out their association with disease severity. Influenza A (H1N1)pdm09 virus-infected subjects with severe disease (n = 86) and mild disease (n = 293) from western India were included in the study. The SNPs were investigated by PCR-based methods. The results revealed a higher frequency of TLR3 rs5743313 T/T genotype [odds ratio (OR) with 95% confidence interval (CI) 2.55 (1.08-6.04) p = 0.039] and TLR3 two-locus haplotype rs3775291-rs3775290 T-A [OR with 95% CI 7.94 (2.05-30.68)] in severe cases. Lower frequency of the mutant allele of MBL2 rs1800450 [OR with 95% CI 0.51 (0.27-0.87), p = 0.01] and TLR3 two-locus haplotype rs3775291-rs3775290 T-G [OR with 95% CI 0.48 (0.27-0.85)] was observed in severe cases compared with cases with mild disease. Higher frequency of TLR3 two-locus haplotype rs3775291-rs3775290 T-A was observed in severe cases [OR with 95% CI 7.9 (2.0-30.7)]. The allele and genotype frequencies of other SNPs were not different between the study categories. The results suggest that the functional SNPs in MBL2 and TLR3 are associated with severe disease in influenza A (H1N1)pdm09 virus-infected subjects.
Collapse
Affiliation(s)
| | | | | | - Pooja Shinde
- ICMR-National Institute of Virology, Pune, India
| | | | | | - Sonali Salvi
- Department of Medicine, BJ Medical College, Pune, India
| | | | | | | |
Collapse
|
4
|
Kuo CY, Ku CL, Lim HK, Hsia SH, Lin JJ, Lo CC, Ding JY, Kuo RL, Casanova JL, Zhang SY, Chang LY, Lin TY. Life-Threatening Enterovirus 71 Encephalitis in Unrelated Children with Autosomal Dominant TLR3 Deficiency. J Clin Immunol 2022; 42:606-617. [PMID: 35040013 DOI: 10.1007/s10875-021-01170-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Enterovirus A71 (EV71) causes a broad spectrum of childhood diseases, ranging from asymptomatic infection or self-limited hand-foot-and-mouth disease (HFMD) to life-threatening encephalitis. The molecular mechanisms underlying these different clinical presentations remain unknown. We hypothesized that EV71 encephalitis in children might reflect an intrinsic host single-gene defect of antiviral immunity. We searched for mutations in the toll-like receptor 3 (TLR3) gene. Such mutations have already been identified in children with herpes simplex virus encephalitis (HSE). METHODS We sequenced TLR3 and assessed the impact of the mutations identified. We tested dermal fibroblasts from a patient with EV71 encephalitis and a TLR3 mutation and other patients with known genetic defects of TLR3 or related genes, assessing the response of these cells to TLR3 agonist poly(I:C) stimulation and EV71 infection. RESULTS Three children with EV71 encephalitis were heterozygous for rare mutations-TLR3 W769X, E211K, and R867Q-all of which were shown to affect TLR3 function. Furthermore, fibroblasts from the patient heterozygous for the W769X mutation displayed an impaired, but not abolished, response to poly(I:C). We found that TLR3-deficient and TLR3-heterozygous W769X fibroblasts were highly susceptible to EV71 infection. CONCLUSIONS Autosomal dominant TLR3 deficiency may underlie severe EV71 infection with encephalitis. Human TLR3 immunity is essential to protect the central nervous system against HSV-1 and EV71. Children with severe EV71 infections, such as encephalitis in particular, should be tested for inborn errors of TLR3 immunity.
Collapse
Affiliation(s)
- Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fu-Shin St, Kwei-Shan 333, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan.
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Hye-Kyung Lim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259 Wen-Hwa 1st Road, Kwei-Shan 333, Taoyuan, Taiwan
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Immuno-Hematology Unit, Necker Hospital, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, 7, Chung-Shan South Road, Taipei, 100, Taiwan.
| | - Tzou-Yien Lin
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, No. 5, Fu-Shin St, Kwei-Shan 333, Taoyuan, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Deval H, Alagarasu K, Srivastava N, Bachal R, Mittal M, Agrawal A, Bote M, Gondhalekar A, Bondre VP, Kant R. Association of single nucleotide polymorphisms in the CD209, MMP9, TNFA and IFNG genes with susceptibility to Japanese encephalitis in children from North India. Gene 2022; 808:145962. [PMID: 34530082 DOI: 10.1016/j.gene.2021.145962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis (JE), an acute encephalitis syndrome disease caused by infection with JE virus (JEV), is an important mosquito borne disease in developing countries. The clinical outcomes of JEV infection show inter individual differences. Only in a minor percent of the infected subjects, the disease progresses into acute encephalitis syndrome. Single nucleotide polymorphisms in the host immune response related genes are known to affect susceptibility to JE. In the present study, 238 JE cases and 405 healthy controls (HCs) without any known history of encephalitis were investigated for SNPs in the CD209 MX1, TLR3, MMP9, TNFA and IFNG genes which are important in the immune response against JEV by PCR based methods. The results revealed higher frequencies of heterozygous genotypes of CD209 rs4804803, MMP9 rs17576, TNFA rs1800629 and IFNG rs2430561 in JE cases compared to HCs. These SNPs were associated with JE in an over-dominant genetic model (Odds ratio with 95% CI 1.51 (1.09-2.10) for CD209 rs4804803, 1.52 (1.09-2.11) for MMP9 rs17576, and 1.55 (1.12-2.15) for IFNG rs2430561). The association of G/A genotype of TNFA rs1800629 with JE was confirmed in a larger sample size. The results suggest the association of CD209 rs4804803, MMP9 rs17576, IFNG rs2430561 and TNFA rs1800629 polymorphisms with susceptibility to JE.
Collapse
Affiliation(s)
- Hirawati Deval
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India.
| | | | - Neha Srivastava
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India
| | - Rupali Bachal
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Mahima Mittal
- All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Apoorv Agrawal
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Minal Bote
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Vijay P Bondre
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Rajni Kant
- ICMR-Regional Research Medical Centre, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Wang X, Liu H, Li Y, Su R, Liu Y, Qiao K. Relationship between polymorphism of receptor SCARB2 gene and clinical severity of enterovirus-71 associated hand-foot-mouth disease. Virol J 2021; 18:132. [PMID: 34193186 PMCID: PMC8244142 DOI: 10.1186/s12985-021-01605-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To investigate the relationship between polymorphism of scavenger receptor class B member 2 (SCARB2) gene and clinical severity of enterovirus (EV)-71 associated hand-foot-mouth disease (HFMD). METHODS Among the 100 recruited cases, 56 were in the severe HFMD group (case group) and 44 were in the general HFMD group (control group). By screening functional single nucleotide polymorphisms (SNPs) and hot SNPs, and performing SNP site optimization, some SNP sites of SCARB2 gene were selected for analysis. Genotyping was performed using a MassArray platform. PLINK software was used for statistical processing and analysis of the correlation differences between the mutant genotypes in the severe and general HFMD groups. The relationship between the SNPs and clinical severity of enterovirus (EV)-71 associated HFMD was assessed. RESULTS 28 SNPs in SCARB2 were selected by site optimization. Then three loci were not in agreement with the minor allele frequency (MAF) in the 1000 Han Chinese in Beijing (CHB) dataset. Another three loci could not be detected. Nine loci were not suitable for further analysis (MAF < 0.01 and Hardy-Weinberg [HWE] P < 0.001). A total of 13 sites were subsequently analyzed. Through Fisher analysis, the frequency of the rs6812193 T allele was 0.134 and 0.034 in the severe and general HFMD groups, respectively (P 0.023 < 0.05, odds ratio [OR] 4.381 > 1). Logistic regression analysis of rs6812193 T alleles between the severe and general HFMD groups, respectively (P 0.023 < 0.05, OR 4.412 > 1, L95 1.210 > 1). Genotype logistic regression analysis of the rs6812193 alleles CT + TT versus CC gave an OR of 4.56 (95% confidence interval [95% CI] 1.22-17.04, P = 0.012). CONCLUSION The rs6812193 T allele was a susceptibility SNP for SHFMD, and the rs6812193 polymorphism might be significantly associated with the susceptibility to EV-71 infection.
Collapse
Affiliation(s)
- Xia Wang
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Hong Liu
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Ying Li
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China.
| | - Rui Su
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China.
| | - Yamin Liu
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| | - Kunyan Qiao
- Department of Childhood Infectious Diseases, Tianjin Second People's Hospital, Tianjin, 300192, China
| |
Collapse
|
8
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Smith SE, Busse DC, Binter S, Weston S, Diaz Soria C, Laksono BM, Clare S, Van Nieuwkoop S, Van den Hoogen BG, Clement M, Marsden M, Humphreys IR, Marsh M, de Swart RL, Wash RS, Tregoning JS, Kellam P. Interferon-Induced Transmembrane Protein 1 Restricts Replication of Viruses That Enter Cells via the Plasma Membrane. J Virol 2019; 93:e02003-18. [PMID: 30567988 PMCID: PMC6401438 DOI: 10.1128/jvi.02003-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
The acute antiviral response is mediated by a family of interferon-stimulated genes (ISGs), providing cell-intrinsic immunity. Mutations in genes encoding these proteins are often associated with increased susceptibility to viral infections. One family of ISGs with antiviral function is the interferon-inducible transmembrane proteins (IFITMs), of which IFITM3 has been studied extensively. In contrast, IFITM1 has not been studied in detail. Since IFITM1 can localize to the plasma membrane, we investigated its function with a range of enveloped viruses thought to infect cells by fusion with the plasma membrane. Overexpression of IFITM1 prevented infection by a number of Paramyxoviridae and Pneumoviridae, including respiratory syncytial virus (RSV), mumps virus, and human metapneumovirus (HMPV). IFITM1 also restricted infection with an enveloped DNA virus that can enter via the plasma membrane, herpes simplex virus 1 (HSV-1). To test the importance of plasma membrane localization for IFITM1 function, we identified blocks of amino acids in the conserved intracellular loop (CIL) domain that altered the subcellular localization of the protein and reduced antiviral activity. By screening reported data sets, 12 rare nonsynonymous single nucleotide polymorphisms (SNPs) were identified in human IFITM1, some of which are in the CIL domain. Using an Ifitm1-/- mouse, we show that RSV infection was more severe, thereby extending the range of viruses restricted in vivo by IFITM proteins and suggesting overall that IFITM1 is broadly antiviral and that this antiviral function is associated with cell surface localization.IMPORTANCE Host susceptibility to viral infection is multifactorial, but early control of viruses not previously encountered is predominantly mediated by the interferon-stimulated gene (ISG) family. There are upwards of 300 of these genes, the majority of which do not have a clearly defined function or mechanism of action. The cellular location of these proteins may have an important effect on their function. One ISG located at the plasma membrane is interferon-inducible transmembrane protein 1 (IFITM1). Here we demonstrate that IFITM1 can inhibit infection with a range of viruses that enter via the plasma membrane. Mutant IFITM1 proteins that were unable to localize to the plasma membrane did not restrict viral infection. We also observed for the first time that IFITM1 plays a role in vivo, and Ifitm1-/- mice were more susceptible to viral lung infection. These data contribute to our understanding of how ISGs prevent viral infections.
Collapse
Affiliation(s)
- S E Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - D C Busse
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - S Binter
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - S Weston
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - C Diaz Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - B M Laksono
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - S Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - S Van Nieuwkoop
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - M Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - M Marsden
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - I R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - M Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - R L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - R S Wash
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - J S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - P Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, St. Mary's Campus, London, United Kingdom
- Kymab Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
10
|
Yen TY, Shih WL, Huang YC, Lee JT, Huang LM, Chang LY. Polymorphisms in enterovirus 71 receptors associated with susceptibility and clinical severity. PLoS One 2018; 13:e0206769. [PMID: 30395634 PMCID: PMC6218064 DOI: 10.1371/journal.pone.0206769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To evaluate the association of enterovirus 71 (EV71) susceptibility and clinical severity with polymorphisms in EV71 receptors, including human scavenger receptor class B member 2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), and annexin II (ANXA2). METHODS We enrolled laboratory-confirmed EV71 cases and healthy age- and gender-matched controls in Taiwan from 2000 to 2012. We detected genetic polymorphisms in SCARB2, PSGL-1, and ANXA2 and correlated the results with EV71 susceptibility and severity. RESULTS We collected 599 EV71 cases and 98 controls. Among EV71 patients, the male to female ratio was 1.61, and the mean age was 2.99±2.47 years. For clinical severity, 117 (19.6%) had severe central nervous system involvement with or without cardiopulmonary failure. For outcomes, 46 (7.7%) had sequelae, and 14 (2.3%) died. SCARB2 polymorphisms (rs6824953 and rs11097262) were associated with susceptibility to EV71 infection (OR 1.60, 95% CI 1.07-2.39; and OR 1.64, 95% CI 1.09-2.47, respectively). PSGL-1 polymorphisms (rs7137098 and rs8179137) were significantly associated with severe EV71 infection (OR 1.46, 95% CI 1.1-1.96; and OR 1.47, 95% CI 1.07-2.03, respectively). CONCLUSIONS SCARB2 polymorphisms (rs6824953 and rs11097262) might be associated with EV71 susceptibility. PSGL-1 polymorphisms (rs7137098 and rs8179137) were associated with severe EV71 infection.
Collapse
Affiliation(s)
- Ting-Yu Yen
- Department of Pediatrics, China Medical University Children’s Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Liang Shih
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Chuan Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-Te Lee
- Department of Pediatrics, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Luan-Yin Chang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic Leukemia Restricts Enterovirus 71 Replication by Inhibiting Autophagy. Front Immunol 2018; 9:1268. [PMID: 29922292 PMCID: PMC5996053 DOI: 10.3389/fimmu.2018.01268] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The promyelocytic leukemia (PML) protein, also known as TRIM19, functions as a major organizer of PML nuclear bodies (NBs) in most mammalian cells and plays important roles in antiviral activities against both DNA and RNA viruses. In this study, we found that the downregulation of PML rendered HeLa cells more susceptible to infection by enterovirus 71 (EV71), and the overexpression of the PMLIII or PMLIV isoforms inhibited viral protein expression and resulted in viral titers that were 2–3 log units lower than those in the control. Using short interfering RNAs, the downregulation of either the PMLIII or PMLIV isoform increased both viral protein VP1 expression and viral production. The PML repression of EV71 replication was partially mediated by the inhibition of autophagy, and PML deficiency triggered autophagy. Furthermore, the EV71 infection resulted in a reduction in PML independent of the proteasome pathway. Instead, PML degradation was mediated by virus protease 3Cpro. In conclusion, PML contributes to a cellular antiviral effect by inhibiting autophagy, which is countered by a disruption of promyelocytic leukemia protein-nuclear bodies mediated by viral protease 3Cpro.
Collapse
Affiliation(s)
- Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Chunhong Feng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Affiliation(s)
- Radha Saraswathy
- Department of Biomedical Sciences, School of Biosciences & Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
13
|
Nandi SS, Sharma DK, Deshpande JM. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene. Indian J Med Res 2016; 144:38-45. [PMID: 27834324 PMCID: PMC5116896 DOI: 10.4103/0971-5916.193281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND & OBJECTIVES It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. METHODS New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. RESULTS A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. INTERPRETATION & CONCLUSIONS The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.
Collapse
|
14
|
AlFadhli S, Al-Mutairi M, Al Tameemi B, Nizam R. Influence of MX1 promoter rs2071430 G/T polymorphism on susceptibility to systemic lupus erythematosus. Clin Rheumatol 2016; 35:623-9. [DOI: 10.1007/s10067-016-3179-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
15
|
A functional polymorphism in IFNAR1 gene is associated with susceptibility and severity of HFMD with EV71 infection. Sci Rep 2015; 5:18541. [PMID: 26679744 PMCID: PMC4683517 DOI: 10.1038/srep18541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 12/15/2022] Open
Abstract
Enterovirus 71 (EV71), one of the major pathogens of Hand, foot and mouth disease (HFMD), results in millions of infections and hundreds of deaths each year in Southeast Asia. Biased infection and variable clinical manifestations of EV71 HFMD indicated that host genetic background played an important role in the occurrence and development of the disease. We identified the mRNA profiles of EV71 HFMD patients, which type I interferon (IFN) pathway related genes were down-regulated. Four single nucleotide polymorphisms (SNPs) of type I IFN receptor 1 (IFNAR1) were chosen to analyze their relationships to EV71 infection. We found that genotype GG of promoter variant rs2843710 was associated with the susceptibility and severity to EV71 HFMD. In addition, we assessed the regulatory effects of rs2843710 to IFN stimulated genes (ISGs), and found that the expressions of IFNAR1, OAS1 and MX1 were significantly lower in patients with rs2843710 genotype GG. And rs2843710 allele G showed weaker transcriptional activity compared with allele C. Our study indicated that rs2843710 of IFNAR1 was associated with the susceptibility and severity of EV71 HFMD in Chinese Han populations, acting as a functional polymorphism by regulating ISGs expression, such as OAS1 and MX1.
Collapse
|
16
|
Li MZ, Pang LL, Bai AY, Yu SC, Gong X, Liu N, Cai K, Xie GC, Gao WJ, Jin Y, Duan ZJ. Association of Chemotactic Chemokine Ligand 5 Polymorphisms with the Risk of Developing Severe Enterovirus 71 Infection. Am J Trop Med Hyg 2015; 93:709-13. [PMID: 26304916 DOI: 10.4269/ajtmh.14-0745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/26/2015] [Indexed: 02/01/2023] Open
Abstract
Respiratory damage is a main manifestation of severe Enterovirus 71 (EV71) infection. Polymorphisms of -403G/A (rs2107538), -28C/G (rs2280788), and In1.1T/C (rs2280789) in chemotactic chemokine ligand 5 (CCL5) have linked with many respiratory diseases. In this study, we explored the possible correlation of CCL5 polymorphisms with severe EV71 infection. Blood samples were obtained from 87 children hospitalized for EV71 infection. Fifty-seven healthy children were enrolled as asymptomatic controls. Genotype and allele frequencies were analyzed by logistic regression analysis. There were statistically significant differences in polymorphisms of CCL5 -403G/A and In1.1T/C for dominant model (P = 0.016; P = 0.027) and additive model (P = 0.010; P = 0.019) between patients with severe EV71 infection and asymptomatic controls. With ordinal logistic regression model analysis, statistically significant differences were found between polymorphisms of CCL5 (-403G/A) (P = 0.034) with the severity of EV71 infection after adjusting for age. The frequency of A-C-C haplotype was significantly higher in EV71 infection patients than controls (P = 0.032). These results suggest that CCL5 -403G/A and In1.1T/C polymorphisms may contribute to severe EV71 infection and individuals with haplotype of A-C-C may exhibit higher risk of developing severe EV71 infection. These findings may provide insights into pathogenic and protective mechanisms of severe EV71 infection.
Collapse
Affiliation(s)
- Mao-Zhong Li
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li-Li Pang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ai-Ying Bai
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shi-Cheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xun Gong
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Liu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kun Cai
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guang-Cheng Xie
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen-Juan Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Jin
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, China; Ji'nan Municipal Center for Disease Control and Prevention, Ji'nan, China; National Center for Public Health Surveillance and Information Services, Chinese Center for Disease Control and Prevention, Beijing, China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Nanjing Children's Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Bader El Din NG, Salum GM, Anany MA, Ibrahim MK, Dawood RM, Zayed N, El Abd YS, El-Shenawy R, El Awady MK. Association of Myxovirus Resistance Gene Promoter Polymorphism with Response to Combined Interferon Treatment and Progression of Liver Disease in Chronic HCV Egyptian Patients. J Interferon Cytokine Res 2015; 35:641-648. [PMID: 25868067 DOI: 10.1089/jir.2014.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To evaluate the frequency of single-nucleotide polymorphism at the -88 myxovirus resistance (MxA) gene promoter region in relation to the status of hepatitis C virus (HCV) progression and response to combined interferon (IFN) in chronic HCV Egyptian patients. One hundred ten subjects were enrolled in the study; 60 HCV genotype 4-infected patients who underwent combined IFN therapy and 50 healthy individuals. All subjects were genotyped for -88 MxA polymorphism by the restriction fragment length polymorphism technique. There was an increasing trend of response to combined IFN treatment as 34.9% of GG, 64.3% of GT, and 66.7% of TT genotypes were sustained responders (P=0.05). The T allele was significantly affecting the response rate more than G allele (P=0.032). Moreover, the hepatic fibrosis score and hepatitis activity were higher in GG genotypes compared with the GT and TT genotypes. The multivariate analysis showed that the MxA GG genotype was an independent factor increasing the no response to IFN therapy (P=0.04, odds ratio [OR] 3.822, 95% confidence interval [CI] 1.056-11.092), also MxA G allele (P=0.0372, OR 2.905, 95% CI 1.066-7.919). MxA -88 polymorphism might be a potential biomarker to predict response to IFN and disease progression in chronic HCV-infected patients.
Collapse
Affiliation(s)
| | - Ghada M Salum
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Mohamed A Anany
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Marwa Khalil Ibrahim
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Reham Mohamed Dawood
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Naglaa Zayed
- 2 Department of Endemic Medicine, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Yasmine S El Abd
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Reem El-Shenawy
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| | - Mostafa K El Awady
- 1 Department of Microbial Biotechnology, National Research Centre , Cairo, Egypt
| |
Collapse
|