1
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. Am J Hum Genet 2023; 110:1289-1303. [PMID: 37541187 PMCID: PMC10432188 DOI: 10.1016/j.ajhg.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Dandan Dong
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China; Disease Networks Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
2
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524405. [PMID: 36711639 PMCID: PMC9882314 DOI: 10.1101/2023.01.18.524405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genome-wide association studies along with expression quantitative trait loci (eQTL) mapping have identified hundreds of single nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9133 guide RNAs (gRNAs) to target 2,166 candidate SNP sites implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in the screening (FDR<0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (pvalue=1.2E-16 and 3.2E-7). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing proved the rs60464856 G allele leading to an elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in xenograft mouse model. Gene set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. An increased expression of RUVBL1 and activations of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Together, our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
|
3
|
Mitra S, Anand U, Ghorai M, Kant N, Kumar M, Radha, Jha NK, Swamy MK, Proćków J, de la Lastra JMP, Dey A. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120:82-94. [PMID: 36224758 PMCID: PMC10091730 DOI: 10.1002/bit.28260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
| | | | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| | - Nishi Kant
- Department of Chemical EngineeringIndian Institute of Technology DelhiDelhiNew DelhiIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR‐Central Institute for Research on Cotton TechnologyMumbaiMaharashtraIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanHimachal PradeshIndia
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
- Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliPunjabIndia
- Department of Biotechnology, School of Applied & Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | - Mallappa K. Swamy
- Department of BiotechnologyEast West First Grade College of ScienceBengaluruKarnatakaIndia
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Department of Life and Earth SciencesInstituto de Productos Naturales y Agrobiología‐Consejo Superior de Investigaciones Científicas, (IPNA‐CSIC)San Cristóbal de La LagunaTenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| |
Collapse
|
4
|
Zhang C, Zhang H, Zheng X, Wang Y, Ye W. Functional Characterization of Two Cell Wall Integrity Pathway Components of the MAPK Cascade in Phomopsis longicolla. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:47-58. [PMID: 36282555 DOI: 10.1094/mpmi-07-22-0156-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pathogenic fungus Phomopsis longicolla causes numerous plant diseases, such as Phomopsis seed decay, pod and stem blight, and stem canker, which seriously affect the yield and quality of soybean production worldwide. Because of a lack of technology for efficient manipulation of genes for functional genomics, understanding of P. longicolla pathogenesis is limited. Here, we developed an efficient polyethylene glycol-mediated protoplast transformation system in P. longicolla that we used to characterize the functions of two genes involved in the cell wall integrity (CWI) pathway of the mitogen-activated protein kinase (MAPK) cascade, including PlMkk1, which encodes MAPK kinase, and its downstream gene PlSlt2, which encodes MAPK. Both gene knockout mutants ΔPlMkk1 and ΔPlSlt2 displayed a reduced growth rate, fragile aerial hyphae, abnormal polarized growth and pigmentation, defects in sporulation, inadequate CWI, enhanced sensitivity to abiotic stress agents, and significant deficiencies in virulence, although there were some differences in degree. The results suggest that PlMkk1 and PlSlt2 are crucial for a series of growth and development processes as well as pathogenicity. The developed transformation system will be a useful tool for additional gene function research and will aid in the elucidation of the pathogenic mechanisms of P. longicolla. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
5
|
Gurumurthy CB, Quadros RM, Ohtsuka M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat Protoc 2022; 17:2129-2138. [PMID: 35922579 DOI: 10.1038/s41596-022-00721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
One of the major challenges of gene therapy-an approach to treat diseases caused by faulty genes-is a lack of technologies that deliver healthy gene copies to target tissues and cells. Some commonly used approaches include viral vectors or coating therapeutic nucleic acids with lipid-based nanoparticles to pass through cell membranes, but these technologies have had limited success. A revolutionary tool, the CRISPR-Cas gene-editing system, offers tremendous promise, but it too suffers from problems with delivery. Another tool, called 'SEND' (for 'selective endogenous encapsidation for cellular delivery'), seems to offer a better solution. The SEND system uses endogenous genetic components to package mRNA cargoes to deliver them to other cells via virus-like particles (VLPs). The SEND-VLP tool has enormous potential as a gene-therapy tool, if the endogenous components of SEND can be repurposed to produce VLPs containing therapeutic cargoes. However, several aspects of this newly identified phenomenon are not yet fully understood. Genetically engineered mouse (GEM) models, expressing different combinations of SEND components in a controllable and inducible fashion, could serve as valuable tools to understand more about this tool and to repurpose it for gene-therapy applications. In this Perspective, we discuss how GEM models and mouse molecular genetics tools could be used for SEND-VLP research.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA. .,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA.,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
6
|
Reverse genetics in virology: A double edged sword. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Shin S, Kim SH, Park JH, Lee JS, Lee GM. Recombinase-mediated cassette exchange-based screening of a CRISPR/Cas9 library for enhanced recombinant protein production in human embryonic kidney cells: Improving resistance to hyperosmotic stress. Metab Eng 2022; 72:247-258. [DOI: 10.1016/j.ymben.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
8
|
Miura I, Kikkawa Y, Yasuda SP, Shinogi A, Usuda D, Kumar V, Takahashi JS, Tamura M, Masuya H, Wakana S. Characterization of single nucleotide polymorphisms for a forward genetics approach using genetic crosses in C57BL/6 and BALB/c substrains of mice. Exp Anim 2021; 71:240-251. [PMID: 34980769 PMCID: PMC9130033 DOI: 10.1538/expanim.21-0181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Forward genetics is a powerful approach based on chromosomal mapping of phenotypes and has successfully led to the discovery of many mouse mutations in genes responsible for various
phenotypes. Although crossing between genetically remote strains can produce F2 and backcross mice for chromosomal mapping, the phenotypes are often affected by background effects
from the partner strains in genetic crosses. Genetic crosses between substrains might be useful in genetic mapping to avoid genetic background effects. In this study, we investigated single
nucleotide polymorphisms (SNPs) available for genetic mapping using substrains of C57BL/6 and BALB/c mice. In C57BL/6 mice, 114 SNP markers were developed and assigned to locations on all
chromosomes for full utilization for genetic mapping using genetic crosses between the C57BL/6J and C57BL/6N substrains. Moreover, genetic differences were identified in the 114 SNP markers
among the seven C57BL/6 substrains from five production breeders. In addition, 106 SNPs were detected on all chromosomes of BALB/cAJcl and BALB/cByJJcl substrains. These SNPs could be used
for genotyping in BALB/cJ, BALB/cAJcl, BALB/cAnNCrlCrlj, and BALB/cCrSlc mice, and they are particularly useful for genetic mapping using crosses between BALB/cByJJcl and other BALB/c
substrains. The SNPs characterized in this study can be utilized for genetic mapping to identify the causative mutations of the phenotypes induced by N-ethyl-N-nitrosourea mutagenesis and
the SNPs responsible for phenotypic differences between the substrains of C57BL/6 and BALB/c mice.
Collapse
Affiliation(s)
- Ikuo Miura
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Yoshiaki Kikkawa
- Division of Molecular Genetics, Department of Cooperative Graduate School, School of Medicine, Faculty of Medicine, Graduate School of Medical and Dental Sciences (Medicine), Niigata University.,Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Shumpei P Yasuda
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science
| | - Akiko Shinogi
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Daiki Usuda
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | | | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center
| | - Hiroshi Masuya
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center.,Department of Animal Experimentation, Foundation for Biomedical Research and Innovation at Kobe, Creative Lab for Innovation in Kobe
| |
Collapse
|
9
|
Namba M, Kobayashi T, Koyano T, Kohno M, Ohtsuka M, Matsuyama M. GONAD: A new method for germline genome editing in mice and rats. Dev Growth Differ 2021; 63:439-447. [PMID: 34432885 PMCID: PMC11520964 DOI: 10.1111/dgd.12746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Recent advances in the CRISPR/Cas9 system have demonstrated it to be an efficient gene-editing technology for various organisms. Laboratory mice and rats are widely used as common models of human diseases; however, the current standard method to create genome-engineered animals is laborious and involves three major steps: isolation of zygotes from females, ex vivo micromanipulation of zygotes, and implantation into pseudopregnant females. To circumvent this, we recently developed a novel method named Genome-editing via Oviductal Nucleic Acids Delivery (GONAD). This method does not require the ex vivo handling of embryos; instead, it can execute gene editing with just one step, via the delivery of a genome-editing mixture into embryos in the oviduct, by electroporation. Here, we present a further improvement of GONAD that is easily applicable to both mice and rats. It is a rapid, low-cost, and ethical approach fulfilling the 3R principles of animal experimentation: Reduction, Replacement, and Refinement. This method has been reconstructed and renamed as "improved GONAD (i-GONAD)" for mice, and "rat improved GONAD (rGONAD)" for rats.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Tomoe Kobayashi
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Takayuki Koyano
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Mayumi Kohno
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| | - Masato Ohtsuka
- Department of Molecular Life ScienceDivision of Basic Medical Science and Molecular MedicineTokai University School of MedicineIseharaJapan
- The Institute of Medical SciencesTokai UniversityIseharaJapan
| | - Makoto Matsuyama
- Division of Molecular GeneticsShigei Medical Research InstituteOkayamaJapan
| |
Collapse
|
10
|
Wang Z, He Z, Qu M, Liu Z, Wang C, Wang Y. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. FORESTRY RESEARCH 2021; 1:16. [PMID: 39524512 PMCID: PMC11524279 DOI: 10.48130/fr-2021-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2024]
Abstract
Determination of Cas9 cutting efficiency to the target sites is important for genome editing. However, this determination can only be made via an in vitro method, as the purification of Cas protein and synthesis of gRNA are necessary. Here, we developed an in vivo method, called transient CRISPR/Cas editing in plants (TCEP) to determine Cas9 cutting efficiency. The CRISPR/Cas vector for plant transformation mediated by Agrobacterium tumefaciens was constructed as normal. Using the transient transformation method we built, the Cas9 protein and gRNA were transiently expressed and formed a complex to cut its target sites, resulting in dynamic DNA breakage. The broken DNA was quantified using qPCR to measure the efficiencies of Cas9 cutting. We studied the Cas9 cutting efficiencies to different target sites in Betula platyphylla and Populus davidiana×P. bolleana plants using TCEP and an in vitro method. The results of TCEP were consistent with those of the in vitro method, suggesting that the TCEP method is reliable in determining cutting efficiency. Additionally, using the TCEP method, we showed that both heat and sonication treatment significantly improved CRISPR/Cas efficiency. Therefore, the TCEP method has broad application value and can not only be used to analyze the CRISPR/Cas efficiency but also to determine the factors involved in Cas9 cutting.
Collapse
Affiliation(s)
- Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zihang He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ming Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
11
|
Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes (Basel) 2021; 12:genes12060805. [PMID: 34070435 PMCID: PMC8227183 DOI: 10.3390/genes12060805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 01/15/2023] Open
Abstract
Usher syndrome (USH) is the leading cause of inherited combined hearing and vision loss. As an autosomal recessive trait, it affects 15,000 people in the United States alone and is responsible for ~21% of inherited blindness and 3 to 6% of early childhood deafness. Approximately 2/3 of the patients with Usher syndrome suffer from USH2, of whom 85% have mutations in the USH2A gene. Patients affected by USH2 suffer from congenital bilateral progressive sensorineural hearing loss and retinitis pigmentosa which leads to progressive loss of vision. To study the molecular mechanisms of this disease and develop a gene therapy strategy, we generated human induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells (PBMCs) obtained from a patient carrying compound heterozygous variants of USH2A c.2299delG and c.1256G>T and the patient’s healthy sibling. The pluripotency and stability were confirmed by pluripotency cell specific marker expression and molecular karyotyping. Subsequent CRISPR/Cas9 genome editing using a homology repair template was used to successfully correct the USH2A c.2299delG mutation back to normal c.2299G in the generated patient iPSCs to create an isogenic pair of lines. Importantly, this manuscript describes the first use of the recombinant Cas9 and synthetic gRNA ribonucleoprotein complex approach to correct the USH2A c.2299delG without additional genetic effects in patient-derived iPSCs, an approach that is amenable for therapeutic genome editing. This work lays a solid foundation for future ex vivo and in vivo gene therapy investigations and these patient’s iPSCs also provide an unlimited resource for disease modeling and mechanistic studies.
Collapse
|
12
|
Nourbakhsh A, Colbert BM, Nisenbaum E, El-Amraoui A, Dykxhoorn DM, Koehler KR, Chen ZY, Liu XZ. Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. J Assoc Res Otolaryngol 2021; 22:95-105. [PMID: 33507440 PMCID: PMC7943682 DOI: 10.1007/s10162-020-00781-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Brett M. Colbert
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Eric Nisenbaum
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Institut Pasteur, INSERM-UMRS1120, Sorbonne Université, 25 rue du Dr. Roux, 75015 Paris, France
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Karl Russell Koehler
- Department of Otolaryngology-Head and Neck Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Zheng-yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 USA
| | - Xue Z. Liu
- Department of Otolaryngology–Head and Neck Surgery, University of Miami Miller School of Medicine, 1120 NW 14th Street, 5th Floor, Miami, FL 33136 USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
13
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
15
|
Guinn MT, Wan Y, Levovitz S, Yang D, Rosner MR, Balázsi G. Observation and Control of Gene Expression Noise: Barrier Crossing Analogies Between Drug Resistance and Metastasis. Front Genet 2020; 11:586726. [PMID: 33193723 PMCID: PMC7662081 DOI: 10.3389/fgene.2020.586726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Stony Brook Medical Scientist Training Program, Stony Brook, NY, United States
| | - Yiming Wan
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Levovitz
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| | - Dongbo Yang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Marsha R Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
16
|
Bhatta BP, Malla S. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1360. [PMID: 33066510 PMCID: PMC7602190 DOI: 10.3390/plants9101360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Horticultural crops include a diverse array of crops comprising fruits, vegetables, nuts, flowers, aromatic and medicinal plants. They provide nutritional, medicinal, and aesthetic benefits to mankind. However, these crops undergo many biotic (e.g., diseases, pests) and abiotic stresses (e.g., drought, salinity). Conventional breeding strategies to improve traits in crops involve the use of a series of backcrossing and selection for introgression of a beneficial trait into elite germplasm, which is time and resource consuming. Recent new plant breeding tools such as clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated protein-9 (Cas9) technique have the potential to be rapid, cost-effective, and precise tools for crop improvement. In this review article, we explore the CRISPR/Cas9 technology, its history, classification, general applications, specific uses in horticultural crops, challenges, existing resources, associated regulatory aspects, and the way forward.
Collapse
Affiliation(s)
- Bed Prakash Bhatta
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| | - Subas Malla
- Texas A&M AgriLife Research and Extension Center, Uvalde, TX 78801, USA
| |
Collapse
|
17
|
Jimenez JE, Nourbakhsh A, Colbert B, Mittal R, Yan D, Green CL, Nisenbaum E, Liu G, Bencie N, Rudman J, Blanton SH, Zhong Liu X. Diagnostic and therapeutic applications of genomic medicine in progressive, late-onset, nonsyndromic sensorineural hearing loss. Gene 2020; 747:144677. [PMID: 32304785 PMCID: PMC7244213 DOI: 10.1016/j.gene.2020.144677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The progressive, late-onset, nonsyndromic, sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment globally, with presbycusis affecting greater than a third of individuals over the age of 65. The etiology underlying PNSHL include presbycusis, noise-induced hearing loss, drug ototoxicity, and delayed-onset autosomal dominant hearing loss (AD PNSHL). The objective of this article is to discuss the potential diagnostic and therapeutic applications of genomic medicine in PNSHL. Genomic factors contribute greatly to PNSHL. The heritability of presbycusis ranges from 25 to 75%. Current therapies for PNSHL range from sound amplification to cochlear implantation (CI). PNSHL is an excellent candidate for genomic medicine approaches as it is common, has well-described pathophysiology, has a wide time window for treatment, and is amenable to local gene therapy by currently utilized procedural approaches. AD PNSHL is especially suited to genomic medicine approaches that can disrupt the expression of an aberrant protein product. Gene therapy is emerging as a potential therapeutic strategy for the treatment of PNSHL. Viral gene delivery approaches have demonstrated promising results in human clinical trials for two inherited causes of blindness and are being used for PNSHL in animal models and a human trial. Non-viral gene therapy approaches are useful in situations where a transient biologic effect is needed or for delivery of genome editing reagents (such as CRISPR/Cas9) into the inner ear. Many gene therapy modalities that have proven efficacious in animal trials have potential to delay or prevent PNSHL in humans. The development of new treatment modalities for PNSHL will lead to improved quality of life of many affected individuals and their families.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brett Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos L Green
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric Nisenbaum
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - George Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicole Bencie
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason Rudman
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
18
|
Special issues raised by evolving areas of clinical research. ETHICAL CONSIDERATIONS WHEN PREPARING A CLINICAL RESEARCH PROTOCOL 2020. [PMCID: PMC7329119 DOI: 10.1016/b978-0-12-386935-7.00014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Each study presents its own set of ethical considerations. Certain kinds of ethical issues are inherent in particular areas of clinical research, regardless of specific ethical questions associated with a specific study. In this chapter, some of the most common special areas of clinical research are presented, highlighting the ethical issues most frequently associated with each.
Collapse
|
19
|
Zhang Y, Showalter AM. CRISPR/Cas9 Genome Editing Technology: A Valuable Tool for Understanding Plant Cell Wall Biosynthesis and Function. FRONTIERS IN PLANT SCIENCE 2020; 11:589517. [PMID: 33329650 PMCID: PMC7714752 DOI: 10.3389/fpls.2020.589517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
For the past 5 years, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology has appeared in the molecular biology research spotlight. As a game-changing player in genome editing, CRISPR/Cas9 technology has revolutionized animal research, including medical research and human gene therapy as well as plant science research, particularly for crop improvement. One of the most common applications of CRISPR/Cas9 is to generate genetic knock-out mutants. Recently, several multiplex genome editing approaches utilizing CRISPR/Cas9 were developed and applied in various aspects of plant research. Here we summarize these approaches as they relate to plants, particularly with respect to understanding the biosynthesis and function of the plant cell wall. The plant cell wall is a polysaccharide-rich cell structure that is vital to plant cell formation, growth, and development. Humans are heavily dependent on the byproducts of the plant cell wall such as shelter, food, clothes, and fuel. Genes involved in the assembly of the plant cell wall are often highly redundant. To identify these redundant genes, higher-order knock-out mutants need to be generated, which is conventionally done by genetic crossing. Compared with genetic crossing, CRISPR/Cas9 multi-gene targeting can greatly shorten the process of higher-order mutant generation and screening, which is especially useful to characterize cell wall related genes in plant species that require longer growth time. Moreover, CRISPR/Cas9 makes it possible to knock out genes when null T-DNA mutants are not available or are genetically linked. Because of these advantages, CRISPR/Cas9 is becoming an ideal and indispensable tool to perform functional studies in plant cell wall research. In this review, we provide perspectives on how to design CRISPR/Cas9 to achieve efficient gene editing and multi-gene targeting in plants. We also discuss the recent development of the virus-based CRISPR/Cas9 system and the application of CRISPR/Cas9 to knock in genes. Lastly, we summarized current progress on using CRISPR/Cas9 for the characterization of plant cell wall-related genes.
Collapse
Affiliation(s)
- Yuan Zhang
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
| | - Allan M. Showalter
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- *Correspondence: Allan M. Showalter,
| |
Collapse
|
20
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
21
|
Janardhan KS, Kohnken R, Turner OC, Gurumurthy CB, Kovi RC. Looking Forward: Cutting-Edge Technologies and Skills for Pathologists in the Future. Toxicol Pathol 2019; 47:1082-1087. [DOI: 10.1177/0192623319873855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toxicologic pathology is one of the most valuable fields contributing to the advancement of animal and human health. With the ever-changing technological and economic environment, the basic skill set that pathologists are equipped with may require refinement to address the current and future needs. Periodically, pathologists must add relevant, new skills to their toolbox. The Career Development and Outreach Committee of the Society of Toxicologic Pathology (STP) sponsored a career development workshop entitled “Looking Forward: Cutting-edge Technologies and Skills for Pathologists in the Future” in conjunction with the STP 38th Annual Symposium. Experts were chosen to speak on artificial intelligence, clustered regularly interspaced short palindromic repeats technology, microRNAs, and next-generation sequencing. This article provides a summary of the talks presented at the workshop.
Collapse
Affiliation(s)
| | | | - Oliver C. Turner
- Preclinical Safety, Novartis, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | | | - Ramesh C. Kovi
- Experimental Pathology Laboratories, Inc, Research Triangle Park, NC, USA
| |
Collapse
|
22
|
Abstract
Designer nucleases are versatile tools for genome modification and therapy development and have gained widespread accessibility with the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) technology. Prokaryotic RNA-guided nucleases of CRISPR/Cas type, since first being adopted as editing tools in eukaryotic cells, have experienced rapid uptake and development. Diverse modes of delivery by viral and non-viral vectors and ongoing discovery and engineering of new CRISPR/Cas-type tools with alternative target site requirements, cleavage patterns and DNA- or RNA-specific action continue to expand the versatility of this family of nucleases. CRISPR/Cas-based molecules may also act without double-strand breaks as DNA base editors or even without single-stranded cleavage, be it as epigenetic regulators, transcription factors or RNA base editors, with further scope for discovery and development. For many potential therapeutic applications of CRISPR/Cas-type molecules and their derivatives, efficiencies still need to be improved and safety issues addressed, including those of preexisting immunity against Cas molecules, off-target activity and recombination and sequence alterations relating to double-strand-break events. This review gives a concise overview of current CRISPR/Cas tools, applications, concerns and trends.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, 6 International Airport Avenue, 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
23
|
Abstract
Affordable, high-throughput DNA sequencing has accelerated the pace of genome assembly over the past decade. Genome assemblies from high-throughput, short-read sequencing, however, are often not as contiguous as the first generation of genome assemblies. Whereas early genome assembly projects were often aided by clone maps or other mapping data, many current assembly projects forego these scaffolding data and only assemble genomes into smaller segments. Recently, new technologies have been invented that allow chromosome-scale assembly at a lower cost and faster speed than traditional methods. Here, we give an overview of the problem of chromosome-scale assembly and traditional methods for tackling this problem. We then review new technologies for chromosome-scale assembly and recent genome projects that used these technologies to create highly contiguous genome assemblies at low cost.
Collapse
Affiliation(s)
- Edward S. Rice
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA;,
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA;,
- Dovetail Genomics, LLC, Santa Cruz, California 95060, USA
| |
Collapse
|
24
|
Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances. Dis Model Mech 2019; 12:dmm029462. [PMID: 30626588 PMCID: PMC6361157 DOI: 10.1242/dmm.029462] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, new methods and procedures have been developed to generate genetically engineered mouse models of human disease. This At a Glance article highlights several recent technical advances in mouse genome manipulation that have transformed our ability to manipulate and study gene expression in the mouse. We discuss how conventional gene targeting by homologous recombination in embryonic stem cells has given way to more refined methods that enable allele-specific manipulation in zygotes. We also highlight advances in the use of programmable endonucleases that have greatly increased the feasibility and ease of editing the mouse genome. Together, these and other technologies provide researchers with the molecular tools to functionally annotate the mouse genome with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Kevin C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, CA 95618, USA
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| |
Collapse
|
25
|
Kobayashi T, Namba M, Koyano T, Fukushima M, Sato M, Ohtsuka M, Matsuyama M. Successful production of genome-edited rats by the rGONAD method. BMC Biotechnol 2018; 18:19. [PMID: 29606116 PMCID: PMC5879918 DOI: 10.1186/s12896-018-0430-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent progress in development of the CRISPR/Cas9 system has been shown to be an efficient gene-editing technology in various organisms. We recently developed a novel method called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD) in mice; a novel in vivo genome editing system that does not require ex vivo handling of embryos, and this technology is newly developed and renamed as "improved GONAD" (i-GONAD). However, this technology has been limited only to mice. Therefore in this study, we challenge to apply this technology to rats. RESULTS Here, we determine the most suitable condition for in vivo gene delivery towards rat preimplantation embryos using tetramethylrhodamine-labelled dextran, termed as Rat improved GONAD (rGONAD). Then, to investigate whether this method is feasible to generate genome-edited rats by delivery of CRISPR/Cas9 components, the tyrosinase (Tyr) gene was used as a target. Some pups showed albino-colored coat, indicating disruption of wild-type Tyr gene allele. Furthermore, we confirm that rGONAD method can be used to introduce genetic changes in rat genome by the ssODN-based knock-in. CONCLUSIONS We first establish the rGONAD method for generating genome-edited rats. We demonstrate high efficiency of the rGONAD method to produce knock-out and knock-in rats, which will facilitate the production of rat genome engineering experiment. The rGONAD method can also be readily applicable in mammals such as guinea pig, hamster, cow, pig, and other mammals.
Collapse
Affiliation(s)
- Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
- Shigei Medical Research Hospital, Minami-ku, Okayama 701-0202 Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Kagoshima 890-8544 Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa 259-1193 Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193 Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama 701-0202 Japan
| |
Collapse
|
26
|
Ohtsuka M, Sato M, Miura H, Takabayashi S, Matsuyama M, Koyano T, Arifin N, Nakamura S, Wada K, Gurumurthy CB. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol 2018; 19:25. [PMID: 29482575 PMCID: PMC5828090 DOI: 10.1186/s13059-018-1400-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/30/2018] [Indexed: 11/10/2022] Open
Abstract
We present a robust method called improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) that delivers CRISPR ribonucleoproteins to E0.7 embryos via in situ electroporation. The method generates mouse models containing single-base changes, kilobase-sized deletions, and knock-ins. The efficiency of i-GONAD is comparable to that of traditional microinjection methods, which rely on ex vivo handling of zygotes and require recipient animals for embryo transfer. In contrast, i-GONAD avoids these technically difficult steps, and it can be performed at any laboratory with simple equipment and technical expertise. Further, i-GONAD-treated females retain reproductive function, suggesting future use of the method for germline gene therapy.
Collapse
Affiliation(s)
- Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Minami-ku, Okayama, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Minami-ku, Okayama, Japan
| | - Naomi Arifin
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Kenta Wada
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 2018; 13:195-215. [PMID: 29266098 PMCID: PMC6058056 DOI: 10.1038/nprot.2017.153] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of
Medicine, Tokai University, Kanagawa 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa 259-1193,
Japan
| | - Rolen M. Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical
Center, Omaha, NE, USA
| | - Channabasavaiah B. Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical
Center, Omaha, NE, USA
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska
Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of
Medicine, Tokai University, Kanagawa 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa 259-1193,
Japan
- The Institute of Medical Sciences, Tokai University, Kanagawa 259-1193, Japan
| |
Collapse
|
28
|
Ding T, Xu J, Sun M, Zhu S, Gao J. Predicting microRNA biological functions based on genes discriminant analysis. Comput Biol Chem 2017; 71:230-235. [PMID: 29033260 DOI: 10.1016/j.compbiolchem.2017.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Although thousands of microRNAs (miRNAs) have been identified in recent experimental efforts, it remains a challenge to explore their specific biological functions through molecular biological experiments. Since those members from same family share same or similar biological functions, classifying new miRNAs into their corresponding families will be helpful for their further functional analysis. In this study, we initially built a vector space by characterizing the features from miRNA sequences and structures according to their miRBase family organizations. Then we further assigned miRNAs into its specific miRNA families by developing a novel genes discriminant analysis (GDA) approach in this study. As can be seen from the results of new families from GDA, in each of these new families, there was a high degree of similarity among all members of nucleotide sequences. At the same time, we employed 10-fold cross-validation machine learning to achieve the accuracy rates of 68.68%, 80.74%, and 83.65% respectively for the original miRNA families with no less than two, three, and four members. The encouraging results suggested that the proposed GDA could not only provide a support in identifying new miRNAs' families, but also contributing to predicting their biological functions.
Collapse
Affiliation(s)
- Tao Ding
- School of Science, Jiangnan University, Wuxi, China; School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, UK.
| | - Junhua Xu
- School of Science, Jiangnan University, Wuxi, China.
| | - Mengmeng Sun
- School of Science, Jiangnan University, Wuxi, China.
| | - Shanshan Zhu
- School of Science, Jiangnan University, Wuxi, China.
| | - Jie Gao
- School of Science, Jiangnan University, Wuxi, China.
| |
Collapse
|
29
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
30
|
Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 2017; 18:92. [PMID: 28511701 PMCID: PMC5434640 DOI: 10.1186/s13059-017-1220-4] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. RESULTS Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. CONCLUSIONS Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Collapse
MESH Headings
- Animals
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Endonucleases/genetics
- Endonucleases/metabolism
- Founder Effect
- Gene Editing/methods
- Genes, Reporter
- Genetic Loci
- Integrases/genetics
- Integrases/metabolism
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/growth & development
- Microinjections
- Mutagenesis, Insertional/methods
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Recombinational DNA Repair
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Zygote/growth & development
- Zygote/metabolism
Collapse
Affiliation(s)
- Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hisako Akatsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Host Defense Mechanism, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Takehito Sato
- Department of Host Defense Mechanism, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510, Japan
- Laboratory of Recombinant Animals, MRI, TMDU, 2-3-10, 2-3-10, Surugadai, Kanda, Chiyoda, Tokyo, 101-0062, Japan
- Present address: McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ronald Redder
- High-Throughput DNA Sequencing and Genotyping Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guy P Richardson
- Sussex Neuroscience, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Sakai
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Department of Orthopaedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Shannon M Buckley
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Sarah A Zeiner
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Ashley M Jacobi
- Integrated DNA Technologies, Inc., Coralville, IA, 52241, USA
| | - Yayoi Izu
- Department of Animal Risk Management, Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
- The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE, USA.
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
31
|
Liu J, Zhou Y, Qi X, Chen J, Chen W, Qiu G, Wu Z, Wu N. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet 2016; 136:1-12. [PMID: 27807677 PMCID: PMC5214880 DOI: 10.1007/s00439-016-1739-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
The next-generation sequencing identifies a growing number of candidate genes associated with human genetic diseases, which inevitably requires efficient methods to validate the causal links between genotype and phenotype. Recently, zebrafish, with sufficiently high-throughput capabilities, has become a favored option to study human pathogenesis. In addition, CRISPR/Cas9-based approaches have radically reduced the efforts to introduce targeted genome engineering in various organisms. Here, we systemically review the basic considerations in the design of gene editing in zebrafish with CRISPR/Cas9, and explore the potential of the combination of these two to support efficient functional analysis of human genetic variants.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua University Medical School, Beijing, China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Affiliation(s)
- Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Laboratory, MC-278, 1304 West Springfield Avenue, Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Zheng-Yi Chen
- Department of Otolaryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| |
Collapse
|