1
|
Minhas S, Boeri L, Capogrosso P, Cocci A, Corona G, Dinkelman-Smit M, Falcone M, Jensen CF, Gül M, Kalkanli A, Kadioğlu A, Martinez-Salamanca JI, Morgado LA, Russo GI, Serefoğlu EC, Verze P, Salonia A. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2025 Update on Male Infertility. Eur Urol 2025; 87:601-616. [PMID: 40118737 DOI: 10.1016/j.eururo.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND AND OBJECTIVE To present a summary of the updated 2025 European Association of Urology (EAU) Guidelines on Sexual and Reproductive Health (SRH) on male infertility, providing practical recommendations on the clinical work-up with a focus on diagnosis, treatment and follow-up. METHODS For the 2025 SRH guidelines, new and relevant evidence was identified, collated, and appraised via a structured assessment of the literature. Databases searched included Medline, EMBASE, and the Cochrane Libraries. Recommendations within the guidelines were developed by the panel to prioritise clinically important care decisions. The strength of each recommendation was determined according to a balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including the certainty of estimates), and the nature and variability of patient values and preferences. KEY FINDINGS AND LIMITATIONS Key recommendations emphasise the importance of a thorough urological assessment of all men seeking medical help for fertility problems to ensure appropriate treatment. The guidelines also stress the clinical relevance of a parallel investigation of the female partner during the diagnostic and management work-up of the infertile couple, to promote shared-decision making in terms of timing and therapeutic strategies. Furthermore, the guidelines recommend to counsel all infertile men and men with abnormal semen parameters on the associated health risks. Key changes in the male infertility guidelines for 2025 include: the addition of two new sections addressing exome sequencing and probiotic treatment; and significant update of the evidence base and recommendations for the diagnostic work-up of male infertility. CONCLUSIONS AND CLINICAL IMPLICATIONS This overview of the 2025 SHR guidelines offers valuable insights into the diagnosis, classification, treatment and follow-up of male factor infertility and are designed for effective integration into clinical practice.
Collapse
Affiliation(s)
- Suks Minhas
- Department of Urology, Charing Cross Hospital, Imperial Healthcare NHS Trust, London, UK
| | - Luca Boeri
- Department of Urology, IRCCS Fondazione Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Capogrosso
- Department of Medicine and Technological Innovations/Unit of Urology, Circolo & Fondazione Macchi Hospital, University of Insubria, Varese, Italy
| | - Andrea Cocci
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, Florence, Italy
| | - Giovanni Corona
- Endocrinology Unit, Medical Department, Maggiore-Bellaria Hospital, Bologna, Italy
| | - Marij Dinkelman-Smit
- Department of Urology, ErasmusMC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco Falcone
- Urology Clinic, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Turin, Turin, Italy; Neurourology Clinic, A.O.U. Città della Salute e della Scienza, Unità Spinale Unipolare, Turin, Italy
| | | | - Murat Gül
- Department of Urology, School of Medicine, Selcuk University, Konya, Turkey
| | - Arif Kalkanli
- Department of Urology, Taksim Education and Research Hospital, Istanbul, Turkey
| | - Ates Kadioğlu
- Department of Urology, İstanbul University School of Medicine, Istanbul, Turkey
| | | | - L Afonso Morgado
- Urology Service, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Biomedicine, Faculty of Medicine, Porto University, Porto, Portugal
| | - Giorgio I Russo
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Ege Can Serefoğlu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | - Paolo Verze
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Fisciano, Italy
| | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy; Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
2
|
Corsini C, Pozzi E, Salonia A. Genetics of male infertility. Curr Opin Urol 2025:00042307-990000000-00239. [PMID: 40181750 DOI: 10.1097/mou.0000000000001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW The aim of this study was to outline the role of genetic abnormalities, including chromosomal anomalies, single-gene mutations, epigenetic changes, and mitochondrial DNA (mtDNA) defects, in male factor infertility. RECENT FINDINGS Recent advances in genetic research have brought incredible new perspectives to understanding male infertility, thanks in large part to next-generation sequencing. Chromosomal abnormalities like Klinefelter syndrome and Y chromosome microdeletions remain key contributors, with new insights into their variable presentations and impact on sperm retrieval. Advanced discoveries in genes such as CFTR and ADGRG2 have reframed our approach to conditions like CBAVD, while epigenetic disruptions and mitochondrial DNA mutations are revealing previously unrecognized mechanisms behind impaired spermatogenesis and sperm motility. Rare copy number variations and genetic syndromes like Kallmann and Noonan further underscore the complex interplay between systemic disorders and male fertility. SUMMARY The field of genetic infertility is rapidly evolving, offering new insights into the molecular mechanisms behind impaired spermatogenesis and fertility. These findings highlight the importance of integrating genetic testing into infertility evaluations to guide personalized management strategies.
Collapse
Affiliation(s)
- Christian Corsini
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Edoardo Pozzi
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Aitken RJ. Spermatozoa as harbingers of mortality: the curious link between semen quality and life expectancy. Hum Reprod 2025; 40:580-584. [PMID: 40037897 DOI: 10.1093/humrep/deaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Indexed: 03/06/2025] Open
Affiliation(s)
- Robert John Aitken
- Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Redouane S, Harmak H, El Hamouchi A, Charoute H, Louanjli N, Malki A, Barakat A, Rouba H. Whole exome sequencing reveals ABCD1 variant as a potential contributor to male infertility. Mol Biol Rep 2025; 52:148. [PMID: 39841288 DOI: 10.1007/s11033-025-10234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Male infertility (MI) is a polygenic condition mainly induced by spermatogenic failure/arrest or systemic disease with a large clinical spectrum. Lately, genetic sequencing allowed the identification of several variants implicated in both aforesaid situations. METHODS AND RESULTS In this case study, we performed whole exome sequencing (WES) on the genomic DNA of a 37-year-old Moroccan man with Non-Obstructive Azoospermia. Results revealed two variants in genes highly expressed in testicular tissue. The first was a heterozygous frameshift variant in the AURKC gene, causing a premature stop codon at position 71 of the AURKC protein, critical for spermatogenesis. The second was a hemizygous missense variant in the ABCD1 gene, resulting in an H299R substitution in the ABCD1 protein, essential for transporting Very Long Chain Fatty Acids (VLCFAs) into peroxisomes. ABCD1 variants are linked to X-linked Adrenoleukodystrophy (X-ALD), a disease caused by VLCFAs accumulation in cells. The patient's family pedigree suggests X-linked transmission of MI, which may be a subclinical form of late-onset X-ALD in affected members, indicating that the ABCD1 variant likely affects spermatogenesis. This hypothesis is supported by literature linking X-ALD to MI, ABCD1's high expression in human testes, and the significant impact of the H299R substitution on ABCD1 transporter's molecular dynamics. CONCLUSIONS These insights highlight the role of genetic mutations in male infertility, demonstrating that spermatogenesis can be disrupted either directly by specific mutations or indirectly through broader genetic disorders, underscoring the importance of comprehensive genetic testing.
Collapse
MESH Headings
- Humans
- Male
- Adult
- Whole Genome Sequencing
- Infertility, Male/genetics
- ATP Binding Cassette Transporter, Subfamily D, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism
- Chromosomes, Human, Y
- Mutation
- Protein Binding
- Models, Molecular
- Protein Structure, Tertiary
- Pedigree
- Female
- Adrenoleukodystrophy/genetics
Collapse
Affiliation(s)
- Salaheddine Redouane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.
- Genomic Sequencing Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sick, Hassan II University, Casablanca, Morocco.
| | - Houda Harmak
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Adil El Hamouchi
- Genomic Sequencing Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Genomic Sequencing Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Department of Biology, Faculty of Sciences Ben M'Sick, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
- Genomic Sequencing Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
5
|
Sagir L, Kaba E, Huner Yigit M, Tasci F, Uzun H. Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. J Clin Med 2025; 14:516. [PMID: 39860522 PMCID: PMC11766078 DOI: 10.3390/jcm14020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: Semen analysis is universally regarded as the gold standard for diagnosing male infertility, while ultrasonography plays a vital role as a complementary diagnostic tool. This study aims to assess the effectiveness of artificial intelligence (AI)-driven deep learning algorithms in predicting semen analysis parameters based on testicular ultrasonography images. Materials and Methods: This study included male patients aged 18-54 who sought evaluation for infertility at the Urology Outpatient Clinic of our hospital between February 2022 and April 2023. All patients underwent comprehensive assessments, including blood hormone profiling, semen analysis, and scrotal ultrasonography, with each procedure being performed by the same operator. Longitudinal-axis images of both testes were obtained and subsequently segmented. Based on the semen analysis results, the patients were categorized into groups according to sperm concentration, progressive motility, and morphology. Following the initial classification, each semen parameter was further subdivided into "low" and "normal" categories. The testicular images from both the right and left sides of all patients were organized into corresponding folders based on their associated laboratory parameters. Three distinct datasets were created from the segmented images, which were then augmented. The datasets were randomly partitioned into an 80% training set and a 20% test set. Finally, the images were classified using the VGG-16 deep learning architecture. Results: The area under the curve (AUC) values for the classification of sperm concentration (oligospermia versus normal), progressive motility (asthenozoospermia versus normal), and morphology (teratozoospermia versus normal) were 0.76, 0.89, and 0.86, respectively. Conclusions: In our study, we successfully predicted semen analysis parameters using data derived from testicular ultrasonography images through deep learning algorithms, representing an innovative application of artificial intelligence. Given the limited published research in this area, our study makes a significant contribution to the field and provides a foundation for future validation studies.
Collapse
Affiliation(s)
- Lutfullah Sagir
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey; (L.S.); (E.K.); (F.T.)
| | - Esat Kaba
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey; (L.S.); (E.K.); (F.T.)
| | - Merve Huner Yigit
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey;
| | - Filiz Tasci
- Department of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey; (L.S.); (E.K.); (F.T.)
| | - Hakki Uzun
- Department of Urology, Faculty of Medicine, Recep Tayyip Erdogan University, 53000 Rize, Turkey
| |
Collapse
|
6
|
Snider PL, Sierra Potchanant EA, Matias C, Edwards DM, Brault JJ, Conway SJ. The Loss of Tafazzin Transacetylase Activity Is Sufficient to Drive Testicular Infertility. J Dev Biol 2024; 12:32. [PMID: 39728085 DOI: 10.3390/jdb12040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several Tafazzin (Taz) mouse alleles and in a Drosophila mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived D75H point-mutant knockin mouse (TazPM) allele that expresses a mutant protein lacking transacetylase activity. Neonatal and adult TazPM testes were hypoplastic, and their epididymis lacked sperm. Histology and biomarker analysis revealed TazPM spermatogenesis is arrested prior to sexual maturation due to an inability to undergo meiosis and the generation of haploid spermatids. Moreover, TazPM testicular mitochondria were found to be structurally abnormal, and there was an elevation of p53-dependent apoptosis within TazPM seminiferous tubules. Immunoblot analysis revealed that TazPM gamete genome integrity was compromised, and both histone γ-H2Ax and Nucleoside diphosphate kinase-5 protein expression were absent in juvenile TazPM testes when compared to controls. We demonstrate that Taz-mediated transacetylase activity is required within mitochondria for normal spermatogenesis, and its absence results in meiotic arrest. We hypothesize that elevated TazPM spermatogonial apoptosis causes azoospermia and complete infertility.
Collapse
Affiliation(s)
- Paige L Snider
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Catalina Matias
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donna M Edwards
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Garrido N, Castilla JA, Gonzalvo MC, Clavero A, Molina M, Luján S, Santos-Ribeiro S, Vilches MÁ, Espuch A, Maldonado V, Galiano-Gutiérrez N, Santamaría-López E, González-Ravina C, Quintana-Ferraz F, Gómez S, Amorós D, Martínez-Granados L, Ortega-González Y, Burgos M, Pereira-Caetano I, Bulbul O, Castellano S, Romano M, Albani E, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. A comprehensive study of common and rare genetic variants in spermatogenesis-related loci identifies new risk factors for idiopathic severe spermatogenic failure. Hum Reprod Open 2024; 2024:hoae069. [PMID: 39678461 PMCID: PMC11645127 DOI: 10.1093/hropen/hoae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY QUESTION Can genome-wide genotyping data be analysed using a hypothesis-driven approach to enhance the understanding of the genetic basis of severe spermatogenic failure (SPGF) in male infertility? SUMMARY ANSWER Our findings revealed a significant association between SPGF and the SHOC1 gene and identified three novel genes (PCSK4, AP3B1, and DLK1) along with 32 potentially pathogenic rare variants in 30 genes that contribute to this condition. WHAT IS KNOWN ALREADY SPGF is a major cause of male infertility, often with an unknown aetiology. SPGF can be due to either multifactorial causes, including both common genetic variants in multiple genes and environmental factors, or highly damaging rare variants. Next-generation sequencing methods are useful for identifying rare mutations that explain monogenic forms of SPGF. Genome-wide association studies (GWASs) have become essential approaches for deciphering the intricate genetic landscape of complex diseases, offering a cost-effective and rapid means to genotype millions of genetic variants. Novel methods have demonstrated that GWAS datasets can be used to infer rare coding variants that are causal for male infertility phenotypes. However, this approach has not been previously applied to characterize the genetic component of a whole case-control cohort. STUDY DESIGN SIZE DURATION We employed a hypothesis-driven approach focusing on all genetic variation identified, using a GWAS platform and subsequent genotype imputation, encompassing over 20 million polymorphisms and a total of 1571 SPGF patients and 2431 controls. Both common (minor allele frequency, MAF > 0.01) and rare (MAF < 0.01) variants were investigated within a total of 1797 loci with a reported role in spermatogenesis. This gene panel was meticulously assembled through comprehensive searches in the literature and various databases focused on male infertility genetics. PARTICIPANTS/MATERIALS SETTING METHODS This study involved a European cohort using previously and newly generated data. Our analysis consisted of three independent methods: (i) variant-wise association analyses using logistic regression models, (ii) gene-wise association analyses using combined multivariate and collapsing burden tests, and (iii) identification and characterisation of highly damaging rare coding variants showing homozygosity only in SPGF patients. MAIN RESULTS AND THE ROLE OF CHANCE The variant-wise analyses revealed an association between SPGF and SHOC1-rs12347237 (P = 4.15E-06, odds ratio = 2.66), which was likely explained by an altered binding affinity of key transcription factors in regulatory regions and the disruptive effect of coding variants within the gene. Three additional genes (PCSK4, AP3B1, and DLK1) were identified as novel relevant players in human male infertility using the gene-wise burden test approach (P < 5.56E-04). Furthermore, we linked a total of 32 potentially pathogenic and recessive coding variants of the selected genes to 35 different cases. LARGE SCALE DATA Publicly available via GWAS catalog (accession number: GCST90239721). LIMITATIONS REASONS FOR CAUTION The analysis of low-frequency variants presents challenges in achieving sufficient statistical power to detect genetic associations. Consequently, independent studies with larger sample sizes are essential to replicate our results. Additionally, the specific roles of the identified variants in the pathogenic mechanisms of SPGF should be assessed through functional experiments. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the benefit of using GWAS genotyping to screen for both common and rare variants potentially implicated in idiopathic cases of SPGF, whether due to complex or monogenic causes. The discovery of novel genetic risk factors for SPGF and the elucidation of the underlying genetic causes provide new perspectives for personalized medicine and reproductive counselling. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Spanish Ministry of Science and Innovation through the Spanish National Plan for Scientific and Technical Research and Innovation (PID2020-120157RB-I00) and the Andalusian Government through the research projects of 'Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)' (ref. PY20_00212) and 'Proyectos de Investigación aplicada FEDER-UGR 2023' (ref. C-CTS-273-UGR23). S.G.-M. was funded by the previously mentioned projects (ref. PY20_00212 and PID2020-120157RB-I00). A.G.-J. was funded by MCIN/AEI/10.13039/501100011033 and FSE 'El FSE invierte en tu futuro' (grant ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). S.S. is supported by FCT funds (10.54499/DL57/2016/CP1363/CT0019), ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, and is also partially supported by the Portuguese Foundation for Science and Technology (UIDP/00009/2020 and UIDB/00009/2020). S. Larriba received support from Instituto de Salud Carlos III (grant: DTS18/00101), co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) and from 'Generalitat de Catalunya' (grant 2021SGR052). S. Larriba is also sponsored by the 'Researchers Consolidation Program' from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). All authors declare no conflict of interest related to this study.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), CSIC, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Marta Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Ángel Vilches
- Ovoclinic & Ovobank, Clínicas de Reproducción Asistida y Banco de óvulos, Marbella, Málaga, Spain
| | - Andrea Espuch
- Hospital Universitario Torrecárdenas, Unidad de Reproducción Humana Asistida, Almería, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | | | | | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Fernando Quintana-Ferraz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Susana Gómez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - David Amorós
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Massimo Romano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
8
|
Tan WLA, Hudson NJ, Porto Neto LR, Reverter A, Afonso J, Fortes MRS. An association weight matrix identified biological pathways associated with bull fertility traits in a multi-breed population. Anim Genet 2024; 55:495-510. [PMID: 38692842 DOI: 10.1111/age.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
Using seven indicator traits, we investigated the genetic basis of bull fertility and predicted gene interactions from SNP associations. We used percent normal sperm as the key phenotype for the association weight matrix-partial correlation information theory (AWM-PCIT) approach. Beyond a simple list of candidate genes, AWM-PCIT predicts significant gene interactions and associations for the selected traits. These interactions formed a network of 537 genes: 38 genes were transcription cofactors, and 41 genes were transcription factors. The network displayed two distinct clusters, one with 294 genes and another with 243 genes. The network is enriched in fertility-associated pathways: steroid biosynthesis, p53 signalling, and the pentose phosphate pathway. Enrichment analysis also highlighted gene ontology terms associated with 'regulation of neurotransmitter secretion' and 'chromatin formation'. Our network recapitulates some genes previously implicated in another network built with lower-density genotypes. Sequence-level data also highlights additional candidate genes relevant to bull fertility, such as FOXO4, FOXP3, GATA1, CYP27B1, and EBP. A trio of regulatory genes-KDM5C, LRRK2, and PME-was deemed core to the network because of their overarching connections. This trio probably influences bull fertility through their interaction with genes, both known and unknown as to their role in male fertility. Future studies may target the trio and their target genes to enrich our understanding of male fertility further.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Nicholas James Hudson
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Queensland, Australia
| | | | | | - Juliana Afonso
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Empresa Brasileira de Pesquisa Agropecuária, Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | |
Collapse
|
9
|
Mazzilli R, Petrucci S, Zamponi V, Golisano B, Pecora G, Mancini C, Salerno G, Alesi L, De Santis I, Libi F, Rossi C, Borro M, Raffa S, Visco V, Defeudis G, Piane M, Faggiano A. Seminological, Hormonal and Ultrasonographic Features of Male Factor Infertility Due to Genetic Causes: Results from a Large Monocentric Retrospective Study. J Clin Med 2024; 13:4399. [PMID: 39124666 PMCID: PMC11313503 DOI: 10.3390/jcm13154399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Objectives: Evaluate the prevalence of genetic factors in a large population of infertile subjects and define the seminological, hormonal, and ultrasonographic features for each alteration. Methods: This single-center retrospective study included male partners of infertile couples undergoing genetic investigations due to oligozoospermia or azoospermia evaluated from January 2012 to January 2022. The genetic investigations consist of karyotype, CFTR gene mutations plus variant of the IVS8-5T polymorphic trait, Y chromosome microdeletion, and Next Generation Sequencing panel to analyze genes implicated in congenital hypogonadotropic hypogonadism (CHH). Results: Overall, 15.4% (72/466) of patients received a diagnosis of genetic cause of infertility. Specifically, 23 patients (31.9%) harbor mutations in the CFTR gene, 22 (30.6%) have a 47, XXY karyotype, 14 (19.4%) patients show a Y chromosome microdeletion, 7 (9.7%) have structural chromosomal anomalies, and 6 (8.3%) have CHH. Overall, 80.6% of patients were azoospermic and 19.4% oligozoospermic (sperm concentration 3.5 ± 3.8 million/mL). Almost all patients presented hormonal alterations related to the specific genotype, while the main ultrasound alterations were testicular hypoplasia, calcifications/microcalcifications, and enlarged/hyperechoic epididymis. Conclusions: The prevalence of genetic abnormalities in males of infertile couples was 15.4% in our Center. CFTR gene disease-causing variants resulted in more frequent, with various clinical features, highlighting the complexity and heterogeneity of the presentation. Other investigations are needed to understand if conditions like ring chromosomes and other translocations are related to infertility or are incidental factors.
Collapse
Affiliation(s)
- Rossella Mazzilli
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Simona Petrucci
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Virginia Zamponi
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Bianca Golisano
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Giulia Pecora
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| | - Camilla Mancini
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Gerardo Salerno
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Laura Alesi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Ilaria De Santis
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Fabio Libi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Carla Rossi
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Marina Borro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Vincenzo Visco
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Giuseppe Defeudis
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (G.S.); (M.B.); (S.R.); (V.V.); (M.P.)
- UOD Medical Genetics and Advanced Cell Diagnostics, Sant’Andrea Hospital, 00189 Rome, Italy; (L.A.); (I.D.S.); (F.L.); (C.R.)
| | - Antongiulio Faggiano
- Endocrinology and Andrology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy; (R.M.); (V.Z.); (B.G.); (G.P.); (C.M.); (A.F.)
| |
Collapse
|
10
|
Phong NV, Kim HS, Park HJ, Yeom E, Yang SY. Assessing the Efficacy of Acanthoic Acid Isolated from Acanthopanax koreanum Nakai in Male Infertility: An In Vivo and In Silico Approach. Curr Issues Mol Biol 2024; 46:7411-7429. [PMID: 39057081 PMCID: PMC11276288 DOI: 10.3390/cimb46070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Acanthoic acid, a diterpene isolated from the root bark of Acanthopanax koreanum Nakai, possesses diverse pharmacological activities, including anti-inflammatory, anti-diabetic, gastrointestinal protection, and cardiovascular protection. This study is the first to investigate the egg-hatching rates of Drosophila melanogaster affected by acanthoic acid. Notably, male flies supplemented with 10 μM acanthoic acid exhibited a strong increase in hatching rates compared with controls under adverse temperature conditions, suggesting a potential protective effect against environmental stressors. Molecular docking simulations revealed the binding affinities and specific interactions between acanthoic acid and proteins related to male infertility, including SHBG, ADAM17, and DNase I, with binding affinity values of -10.2, -6.8, and -5.8 kcal/mol, respectively. Following the docking studies, molecular dynamic simulations were conducted for a duration of 100 ns to examine the stability of these interactions. Additionally, a total binding energy analysis and decomposition analysis offered insights into the underlying energetic components and identified key contributing residues.
Collapse
Affiliation(s)
- Nguyen Viet Phong
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Hyo-Sung Kim
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Jung Park
- Department of Plant Life and Resource Science, Sangji University, Wonju-si 26339, Republic of Korea;
| | - Eunbyul Yeom
- School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU-G LAMP Project Group, KNU-Institute of Basic Sciences, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
11
|
Aleshina YA, Aleshin VA. Evolutionary Changes in Primate Glutamate Dehydrogenases 1 and 2 Influence the Protein Regulation by Ligands, Targeting and Posttranslational Modifications. Int J Mol Sci 2024; 25:4341. [PMID: 38673928 PMCID: PMC11050691 DOI: 10.3390/ijms25084341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.
Collapse
Affiliation(s)
- Yulia A. Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vasily A. Aleshin
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov First Moscow State Medical University, 119048 Moscow, Russia
| |
Collapse
|
12
|
Yi S, Wang W, Su L, Meng L, Li Y, Tan C, Liu Q, Zhang H, Fan L, Lu G, Hu L, Du J, Lin G, Tan YQ, Tu C, Zhang Q. Deleterious variants in X-linked RHOXF1 cause male infertility with oligo- and azoospermia. Mol Hum Reprod 2024; 30:gaae002. [PMID: 38258527 DOI: 10.1093/molehr/gaae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.
Collapse
Affiliation(s)
- Sibing Yi
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
| | - Lilan Su
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qiang Liu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Hepatobiliary Surgery, Hunan Cancer Hospital and the Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
- Center for Biology Post-Doctoral studies, College of Life Science, Hunan Normal University, Changsha, China
- Key Laboratory of Stem Cell and Reproduction Engineering, Ministry of Health, Changsha, China
| |
Collapse
|
13
|
Aponte PM, Gutierrez-Reinoso MA, Garcia-Herreros M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life (Basel) 2023; 14:17. [PMID: 38276265 PMCID: PMC10820126 DOI: 10.3390/life14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Investigaciones en Biomedicina “One-Health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador;
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
14
|
Li J, Zheng H, Hou J, Chen J, Zhang F, Yang X, Jin F, Xi Y. X-linked RBBP7 mutation causes maturation arrest and testicular tumors. J Clin Invest 2023; 133:e171541. [PMID: 37843278 PMCID: PMC10575721 DOI: 10.1172/jci171541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Maturation arrest (MA) is a subtype of non-obstructive azoospermia, and male infertility is a known risk factor for testicular tumors. However, the genetic basis for many affected individuals remains unknown. Here, we identified a deleterious hemizygous variant of X-linked retinoblastoma-binding protein 7 (RBBP7) as a potential key cause of MA, which was also found to be associated with the development of Leydig cell tumors. This mutation resulted in premature protein translation termination, affecting the sixth WD40 domain of the RBBP7 and the interaction of the mutated RBBP7 with histone H4. Decreased BRCA1 and increased γH2AX were observed in the proband. In mouse spermatogonial and pachytene spermatocyte-derived cells, deprivation of rbbp7 led to cell cycle arrest and apoptosis. In Drosophila, knockdown of RBBP7/Caf1-55 in germ cells resulted in complete absence of germ cells and reduced testis size, whereas knockdown of RBBP7/Caf1-55 in cyst cells resulted in hyperproliferative testicular cells. Interestingly, male infertility caused by Caf1-55 deficiency was rescued by ectopic expression of wild-type human RBBP7 but not mutant variants, suggesting the importance of RBBP7 in spermatogenesis. Our study provides insights into the mechanisms underlying the co-occurrence of MA and testicular tumors and may pave the way for innovative genetic diagnostics of these 2 diseases.
Collapse
Affiliation(s)
- Jingping Li
- Department of Reproductive Endocrinology and
| | - Huimei Zheng
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaru Hou
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Chen
- Department of Pathology, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology and
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Reproductive Medicine Center, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Pausch H, Mapel XM. Review: Genetic mutations affecting bull fertility. Animal 2023; 17 Suppl 1:100742. [PMID: 37567657 DOI: 10.1016/j.animal.2023.100742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cattle are a well-suited "model organism" to study the genetic underpinnings of variation in male reproductive performance. The adoption of artificial insemination and genomic prediction in many cattle breeds provide access to microarray-derived genotypes and repeated measurements for semen quality and insemination success in several thousand bulls. Similar-sized mapping cohorts with phenotypes for male fertility are not available for most other species precluding powerful association testing. The repeated measurements of the artificial insemination bulls' semen quality enable the differentiation between transient and biologically relevant trait fluctuations, and thus, are an ideal source of phenotypes for variance components estimation and genome-wide association testing. Genome-wide case-control association testing involving bulls with either aberrant sperm quality or low insemination success revealed several causal recessive loss-of-function alleles underpinning monogenic reproductive disorders. These variants are routinely monitored with customised genotyping arrays in the male selection candidates to avoid the use of subfertile or infertile bulls for artificial insemination and natural service. Genome-wide association studies with quantitative measurements of semen quality and insemination success revealed quantitative trait loci for male fertility, but the underlying causal variants remain largely unknown. Moreover, these loci explain only a small part of the heritability of male fertility. Integrating genome-wide association studies with gene expression and other omics data from male reproductive tissues is required for the fine-mapping of candidate causal variants underlying variation in male reproductive performance in cattle.
Collapse
Affiliation(s)
- Hubert Pausch
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland.
| | - Xena Marie Mapel
- Animal Genomics, Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Liu C, Si W, Tu C, Tian S, He X, Wang S, Yang X, Yao C, Li C, Kherraf ZE, Ye M, Zhou Z, Ma Y, Gao Y, Li Y, Liu Q, Tang S, Wang J, Saiyin H, Zhao L, Yang L, Meng L, Chen B, Tang D, Zhou Y, Wu H, Lv M, Tan C, Lin G, Kong Q, Shi H, Su Z, Li Z, Yao YG, Jin L, Zheng P, Ray PF, Tan YQ, Cao Y, Zhang F. Deficiency of primate-specific SSX1 induced asthenoteratozoospermia in infertile men and cynomolgus monkey and tree shrew models. Am J Hum Genet 2023; 110:516-530. [PMID: 36796361 PMCID: PMC10027476 DOI: 10.1016/j.ajhg.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.
Collapse
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Shengnan Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zixue Zhou
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Yuhua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Qiwei Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hexige Saiyin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Liangyu Zhao
- The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Liqun Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Bingbing Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yiling Zhou
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qingpeng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Limited, Shanghai, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China; Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Wang X, Liu X, Qu M, Li H. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms. Cell Mol Life Sci 2023; 80:67. [PMID: 36814036 PMCID: PMC11072804 DOI: 10.1007/s00018-023-04723-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Male infertility can be caused by quantitative and/or qualitative abnormalities in spermatogenesis, which affects men's physical and mental health. Sertoli cell-only syndrome (SCOS) is the most severe histological phenotype of male infertility characterized by the depletion of germ cells with only Sertoli cells remaining in the seminiferous tubules. Most SCOS cases cannot be explained by the already known genetic causes including karyotype abnormalities and microdeletions of the Y chromosome. With the development of sequencing technology, studies on screening new genetic causes for SCOS are growing in recent years. Directly sequencing of target genes in sporadic cases and whole-exome sequencing applied in familial cases have identified several genes associated with SCOS. Analyses of the testicular transcriptome, proteome, and epigenetics in SCOS patients provide explanations regarding the molecular mechanisms of SCOS. In this review, we discuss the possible relationship between defective germline development and SCOS based on mouse models with SCO phenotype. We also summarize the advances and challenges in the exploration of genetic causes and mechanisms of SCOS. Knowing the genetic factors of SCOS offers a better understanding of SCO and human spermatogenesis, and it also has practical significance for improving diagnosis, making appropriate medical decisions, and genetic counseling. For therapeutic implications, SCOS research, along with the achievements in stem cell technologies and gene therapy, build the foundation to develop novel therapies for SCOS patients to produce functional spermatozoa, giving them hope to father children.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinyu Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Huazhong University of Science and Technology, Wuhan, 430000, China.
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430000, China.
| |
Collapse
|
18
|
Rocca MS, Minervini G, Vinanzi C, Bottacin A, Lia F, Foresta C, Pennuto M, Ferlin A. Mutational screening of androgen receptor gene in 8224 men of infertile couples. J Clin Endocrinol Metab 2022; 108:1181-1191. [PMID: 36394509 DOI: 10.1210/clinem/dgac671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Mutations in Androgen receptor (AR) gene might be associated with infertility mainly because they cause various degree of androgen insensitivity. OBJECTIVE The aim of the study was to evaluate the frequency and type of AR variants in a large cohort of infertile males. PATIENTS AND SETTING 8224 males of Italian idiopathic infertile couples referred University Hospital of Padova. MAIN OUTCOME MEASURES Mutational screening of AR, computational and functional analyses. RESULTS We found 131 patients (1.6%) harboring 45 variants in AR gene, of which 18 were novel missense AR variants. Patients with AR gene variants had lower sperm count (p = 0.048), higher testosterone concentration (p < 0.0001) and higher androgen sensitivity index (ASI) [LH x testosterone (T), p < 0.001] compared to patients without variants. Statistical analyses found T ≥ 15.38 nmol/l and ASI ≥180 IU × nmol/l2 as threshold values to discriminate with good accuracy patients with AR variants. Patients with oligozoospermia and T ≥ 15.38 nmol/l have a 9-fold increased risk of harboring mutations compared to patients with normal sperm count and T < 15.38 nmol/l (OR 9.29, 95% CI 5.07-17.02). Using computational and functional approaches, we identified two novel variants, L595P and L791I, as potentially pathogenic. CONCLUSION This is the largest study screening AR gene variants in men of idiopathic infertile couples. We found that the prevalence of variants increased to 3.4% in oligozoospermic subjects with T ≥ 15.38 nmol/l. Conversely, more than 80% of men with AR gene variants had low sperm count and high T levels. Based on our findings, we suggest AR sequencing as a routine genetic test in cases of idiopathic oligozoospermia with T ≥ 15.38 nmol/L.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | | | - Cinzia Vinanzi
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Alberto Bottacin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Alberto Ferlin
- Unit of Andrology and Reproductive Medicine, University Hospital of Padova, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Wyrwoll MJ, Wabschke R, Röpke A, Wöste M, Ruckert C, Perrey S, Rotte N, Hardy J, Astica L, Lupiáñez DG, Wistuba J, Westernströer B, Schlatt S, Berman AJ, Müller AM, Kliesch S, Yatsenko AN, Tüttelmann F, Friedrich C. Analysis of copy number variation in men with non-obstructive azoospermia. Andrology 2022; 10:1593-1604. [PMID: 36041235 PMCID: PMC9605881 DOI: 10.1111/andr.13267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS We performed array-based comparative genomic hybridisation (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritised the affected genes according to the literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritised genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable.
Collapse
Affiliation(s)
- M. J. Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - R. Wabschke
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - A. Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - M. Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - C. Ruckert
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - S. Perrey
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - N. Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J. Hardy
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women Research Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L. Astica
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - D. G. Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - J. Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - B. Westernströer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - S. Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - A. J. Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - A. M. Müller
- Practice for Pathology and Centre for Pediatric Pathology, University Hospital of Cologne, Cologne, Germany
| | - S. Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - A. N. Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women Research Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - F. Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - C. Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Ambulkar PS, Waghmare JE, Verma Shivkumar P, Chaudhari AR, Gangane NM, Narang P, Pal AK. The association of testis-specific hTAF7L gene variants with idiopathic azoospermic and severe oligozoospermic male infertility. Andrologia 2022; 54:e14581. [PMID: 36068176 DOI: 10.1111/and.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Spermatogenesis is regulated by complex tissue specific gene expression in the testis to achieve normal male fertility. X-chromosome specific TATA binding protein (TBP)-associated factor 7L (hTAF7L) is one of the transcriptional regulator genes considered essential for spermatogenesis. The aim of this study was to evaluate the role of variants/mutations in the testis-specific hTAF7L gene in non-obstructive azoospermia and severe oligozoospermia male infertility. We studied 156 idiopathic non-obstructive azoospermic, severe oligozoospermic infertile males and 50 fertile proven controls. Infertile males and control subjects were genotyped for variants of the hTAF7L gene using polymerase chain reaction and a direct Sanger sequencing approach. The odds ratio evaluated the association of hTAF7L gene variants with idiopathic male infertility. The variants found in the hTAF7L gene were subjected to an in-silico analysis study. In infertile study subjects, we observed 11 single base pair nucleotide changes at various exons and three frameshift variants at exon 10 in the hTAF7L gene. We also found more than one variant in some non-obstructive azoospermia and severe oligozoospermia infertile males along with control subjects. All these variants changed the amino acid sequences in the hTAF7L gene. However, similar changes were also seen in fertile subjects, and the differences were not statistically significant. In-silico tools also predicted that the variants were likely to be benign. The variants in cDNA of the hTAF7L gene were typical SNPs. It is found that the hTAF7L gene is highly polymorphic and these missense variants are not directly associated with male infertility. However, we feel that more studies are needed to elucidate the role of multiple variants of the hTAF7L gene in the process of normal spermatogenesis.
Collapse
Affiliation(s)
- Prafulla S Ambulkar
- Centre for Genetics & Genomics, Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Jwalant E Waghmare
- Centre for Genetics & Genomics, Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Poonam Verma Shivkumar
- Department of Obstetrics & Gynaecology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Ajay R Chaudhari
- Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Nitin M Gangane
- Centre for Genetics & Genomics, Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India.,Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Pratibha Narang
- Centre for Genetics & Genomics, Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India.,Department of Microbiology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Asoke K Pal
- Centre for Genetics & Genomics, Department of Anatomy, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| |
Collapse
|
21
|
Riera-Escamilla A, Vockel M, Nagirnaja L, Xavier MJ, Carbonell A, Moreno-Mendoza D, Pybus M, Farnetani G, Rosta V, Cioppi F, Friedrich C, Oud MS, van der Heijden GW, Soave A, Diemer T, Ars E, Sánchez-Curbelo J, Kliesch S, O’Bryan MK, Ruiz-Castañe E, GEMINI Consortium, Azorín F, Veltman JA, Aston KI, Conrad DF, Tüttelmann F, Krausz C. Large-scale analyses of the X chromosome in 2,354 infertile men discover recurrently affected genes associated with spermatogenic failure. Am J Hum Genet 2022; 109:1458-1471. [PMID: 35809576 PMCID: PMC9388793 DOI: 10.1016/j.ajhg.2022.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Although the evolutionary history of the X chromosome indicates its specialization in male fitness, its role in spermatogenesis has largely been unexplored. Currently only three X chromosome genes are considered of moderate-definitive diagnostic value. We aimed to provide a comprehensive analysis of all X chromosome-linked protein-coding genes in 2,354 azoospermic/cryptozoospermic men from four independent cohorts. Genomic data were analyzed and compared with data in normozoospermic control individuals and gnomAD. While updating the clinical significance of known genes, we propose 21 recurrently mutated genes strongly associated with and 34 moderately associated with azoospermia/cryptozoospermia not previously linked to male infertility (novel). The most frequently affected prioritized gene, RBBP7, was found mutated in ten men across all cohorts, and our functional studies in Drosophila support its role in germ stem cell maintenance. Collectively, our study represents a significant step towards the definition of the missing genetic etiology in idiopathic severe spermatogenic failure and significantly reduces the knowledge gap of X-linked genetic causes of azoospermia/cryptozoospermia contributing to the development of future diagnostic gene panels.
Collapse
Affiliation(s)
- Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | - Matthias Vockel
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Miguel J. Xavier
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, Barcelona, 08028 Catalonia, Spain,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Baldiri Reixac, 10, Barcelona, 08028 Catalonia, Spain
| | - Daniel Moreno-Mendoza
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain,Department of Urology, Hospital del Oriente de Asturias, Arriondas, 33540 Asturias, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025 Catalonia, Spain
| | - Ginevra Farnetani
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Viktoria Rosta
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Francesca Cioppi
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Manon S. Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen 6525, the Netherlands
| | | | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thorsten Diemer
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University, Gießen 35392, Germany
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025 Catalonia, Spain
| | - Josvany Sánchez-Curbelo
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster 48149, Germany
| | - Moira K. O’Bryan
- The School of BioScience that the Bio21 Institute, The Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eduard Ruiz-Castañe
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | | | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, Barcelona, 08028 Catalonia, Spain,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Baldiri Reixac, 10, Barcelona, 08028 Catalonia, Spain
| | - Joris A. Veltman
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Csilla Krausz
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy,Corresponding author
| |
Collapse
|
22
|
X chromosome-linked genes in the mature sperm influence semen quality and fertility of breeding bulls. Gene 2022; 839:146727. [PMID: 35835407 DOI: 10.1016/j.gene.2022.146727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.
Collapse
|
23
|
Gupta N, Sarkar S, Mehta P, Sankhwar SN, Rajender S. Polymorphisms in the HSF2, LRRC6, MEIG1 and PTIP genes correlate with sperm motility in idiopathic infertility. Andrologia 2022; 54:e14517. [PMID: 35768906 DOI: 10.1111/and.14517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to investigate the association of 24 functionally important single nucleotide polymorphisms (SNPs) with male infertility. In this cross-sectional study, we genotyped 24 functionally important single nucleotide polymorphisms in 24 infertility candidate genes in 500 oligo-/astheno-/oligoastheno-/normo-zoospermic infertile men with idiopathic infertility. Sequenom iPlex gold assay was used for genotyping. Sperm count and motility were compared between prevalent genotypes at each test locus. We did not observe any significant difference in the average sperm count between the alternate genotypes for the loci in the KLK3, LRRC6, MEIG1, HSF2, ESR2 and PTIP genes. However, we observed a significant difference in sperm motility between the alternate genotypes for the loci in the LRRC6, MEIG1, HSF2 and PTIP genes. Polymorphisms in the LRRC6 (rs200321595), MEIG1 (rs150031795), HSF2 (rs143986686) and PTIP (rs61752013) genes show association with sperm motility.
Collapse
Affiliation(s)
- Nishi Gupta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Saumya Sarkar
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Assidi M. Infertility in Men: Advances towards a Comprehensive and Integrative Strategy for Precision Theranostics. Cells 2022; 11:cells11101711. [PMID: 35626747 PMCID: PMC9139678 DOI: 10.3390/cells11101711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Male infertility is an increasing and serious medical concern, though the mechanism remains poorly understood. Impaired male reproductive function affects approximately half of infertile couples worldwide. Multiple factors related to the environment, genetics, age, and comorbidities have been associated with impaired sperm function. Present-day clinicians rely primarily on standard semen analysis to diagnose male reproductive potential and develop treatment strategies. To address sperm quality assessment bias and enhance analysis accuracy, the World Health Organization (WHO) has recommended standardized sperm testing; however, conventional diagnostic and therapeutic options for male infertility, including physical examination and semen standard analysis, remain ineffective in relieving the associated social burden. Instead, assisted reproductive techniques are becoming the primary therapeutic approach. In the post-genomic era, multiomics technologies that deeply interrogate the genome, transcriptome, proteome, and/or the epigenome, even at single-cell level, besides the breakthroughs in robotic surgery, stem cell therapy, and big data, offer promises towards solving semen quality deterioration and male factor infertility. This review highlights the complex etiology of male infertility, especially the roles of lifestyle and environmental factors, and discusses advanced technologies/methodologies used in characterizing its pathophysiology. A comprehensive combination of these innovative approaches in a global and multi-centric setting and fulfilling the suitable ethical consent could ensure optimal reproductive and developmental outcomes. These combinatorial approaches should allow for the development of diagnostic markers, molecular stratification classes, and personalized treatment strategies. Since lifestyle choices and environmental factors influence male fertility, their integration in any comprehensive approach is required for safe, proactive, cost-effective, and noninvasive precision male infertility theranostics that are affordable, accessible, and facilitate couples realizing their procreation dream.
Collapse
Affiliation(s)
- Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(012)-6402000 (ext. 69267)
- Medical Laboratory Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
25
|
Ling L, Li F, Yang P, Oates RD, Silber S, Kurischko C, Luca FC, Leu NA, Zhang J, Yue Q, Skaletsky H, Brown LG, Rozen S, Page DC, Wang PJ, Zheng K. Genetic characterization of a missense mutation in the X-linked TAF7L gene identified in an oligozoospermic man. Biol Reprod 2022; 107:157-167. [PMID: 35554494 PMCID: PMC9310510 DOI: 10.1093/biolre/ioac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
While hundreds of knockout mice show infertility as a major phenotype, causative genic mutations of male infertility in humans remain rather limited. Here we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to glycine is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptome profiles in the Taf7l (D144G) mutant testes. These results support this TAF7L mutation as a risk factor for oligozoospermia in humans.
Collapse
Affiliation(s)
- Li Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Fangfang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Robert D Oates
- Department of Urology, Boston University Medical Center, Boston, MA 02118, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO 63017, USA
| | - Cornelia Kurischko
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Laura G Brown
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore
| | - David C Page
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
26
|
Nordenström A, Ahmed SF, van den Akker E, Blair J, Bonomi M, Brachet C, Broersen LHA, Claahsen-van der Grinten HL, Dessens AB, Gawlik A, Gravholt CH, Juul A, Krausz C, Raivio T, Smyth A, Touraine P, Vitali D, Dekkers OM. Pubertal induction and transition to adult sex hormone replacement in patients with congenital pituitary or gonadal reproductive hormone deficiency: an Endo-ERN clinical practice guideline. Eur J Endocrinol 2022; 186:G9-G49. [PMID: 35353710 PMCID: PMC9066594 DOI: 10.1530/eje-22-0073] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
An Endo-European Reference Network guideline initiative was launched including 16 clinicians experienced in endocrinology, pediatric and adult and 2 patient representatives. The guideline was endorsed by the European Society for Pediatric Endocrinology, the European Society for Endocrinology and the European Academy of Andrology. The aim was to create practice guidelines for clinical assessment and puberty induction in individuals with congenital pituitary or gonadal hormone deficiency. A systematic literature search was conducted, and the evidence was graded according to the Grading of Recommendations, Assessment, Development and Evaluation system. If the evidence was insufficient or lacking, then the conclusions were based on expert opinion. The guideline includes recommendations for puberty induction with oestrogen or testosterone. Publications on the induction of puberty with follicle-stimulation hormone and human chorionic gonadotrophin in hypogonadotropic hypogonadism are reviewed. Specific issues in individuals with Klinefelter syndrome or androgen insensitivity syndrome are considered. The expert panel recommends that pubertal induction or sex hormone replacement to sustain puberty should be cared for by a multidisciplinary team. Children with a known condition should be followed from the age of 8 years for girls and 9 years for boys. Puberty induction should be individualised but considered at 11 years in girls and 12 years in boys. Psychological aspects of puberty and fertility issues are especially important to address in individuals with sex development disorders or congenital pituitary deficiencies. The transition of these young adults highlights the importance of a multidisciplinary approach, to discuss both medical issues and social and psychological issues that arise in the context of these chronic conditions.
Collapse
Affiliation(s)
- A Nordenström
- Pediatric Endocrinology, Department of Women’s and Children’s Health Karolinska Institutet, and Department of Pediatric Endocrinology and Inborn Errors of Metabolism, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to A Nordenström;
| | - S F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Royal Hospital for Children, Glasgow, UK
| | - E van den Akker
- Division of Pediatric Endocrinology and Obesity Center CGG, Department of Pediatrics, Erasmus MC Sophia Children’s Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Blair
- Department of Endocrinology, Alder Hey Children’s Hospital, Liverpool, UK
| | - M Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - C Brachet
- Pediatric Endocrinology Unit, Hôpital Universitaire des Enfants HUDERF, Université Libre de Bruxelles, Bruxelles, Belgium
| | - L H A Broersen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - H L Claahsen-van der Grinten
- Department of Pediatric Endocrinology, Amalia Childrens Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A B Dessens
- Department of Child and Adolescent Psychiatry and Psychology, Sophia Children’s Hospital Erasmus Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University Ghent, Ghent, Belgium
| | - A Gawlik
- Department of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - C H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- International Research and Research Training Centre for Endocrine Disruption in Male Reproduction and Child Health (EDMaRC) and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - C Krausz
- Department of Biochemical, Experimental and Clinical Sciences ‘Mario Serio’, University of Florence, Florence, Italy
| | - T Raivio
- New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, and Research Program Unit, Faculty of Medicine, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - A Smyth
- Turner Syndrome Support Society in the UK, ePAG ENDO-ERN, UK
| | - P Touraine
- Department of Endocrinology and Reproductive Medicine, Pitié Salpêtriere Hospital, Paris, France
- Sorbonne Université Médecine and Center for Endocrine Rare Disorders of Growth and Development and Center for Rare Gynecological Disorders, Paris, France
| | - D Vitali
- SOD ITALIA APS – Italian Patient Organization for Septo Optic Dysplasia and Other Neuroendocrine Disorders – ePAG ENDO-ERN, Rome, Italy
| | - O M Dekkers
- Department of Clinical Epidemiology, LUMC Leiden, Leiden, The Netherlands
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Bai H, Sha Y, Tan Y, Li P, Zhang Y, Xu J, Xu S, Ji Z, Wang X, Chen W, Zhang J, Yao C, Li Z, Zhi E. Deleterious variants in TAF7L cause human oligoasthenoteratozoospermia and its impairing histone to protamine exchange inducing reduced in vitro fertilization. Front Endocrinol (Lausanne) 2022; 13:1099270. [PMID: 36714566 PMCID: PMC9874084 DOI: 10.3389/fendo.2022.1099270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Oligoasthenoteratozoospermia (OAT) is a major cause of infertility in males. Only a few pathogenic genes of OAT have been clearly identified till now. A large number of OAT-affected cases remain largely unknown. METHODS Here, Whole-exome sequencing (WES) in 725 idiopathic OAT patients was performed. Ejaculated spermatozoa by OAT patients were microinjected into mouse oocytes to estimate fertilization potential. Diff-quick staining and transmission electron microscopy were performed to evaluate sperm morphology and ultrastructure. The protein expression level and localization In vitro were detected by Western Blotting and Immunocytochemistry. RESULTS We identified four X-linked hemizygous deleterious variants of TAF7L-namely, c.1301_1302del;(p.V434Afs*5), c.699G>T;(p.R233S), c.508delA; (p. T170fs), c.719dupA;(p.K240fs) -in five probands. Intracytoplasmic sperm injection (ICSI) were carried out in M1, M2-1and M3 patient's wife. However only M1 patient's wife became pregnant after embryo transfer. In vitro study demonstrated significantly reduced fertilization ability in patient with TAF7L mutation. The TAF7L mutation let to abnormal sperm head and impaired histone-to protamine exchange. Variant 719dupA (p. K240fs) resulted in producing a truncated TAF7L protein and localized massively within the nucleus. In addition, TAF7L expression were not able to be detected due to variants c.1301_1302del (p. V434Afs*5) and c.508delA (p. T170fs) In vitro. CONCLUSION Our findings support that TAF7L is one of pathogenic genes of OAT and deleterious mutations in TAF7L may cause impaired histone-to-protamine affected the chromatin compaction of sperm head.
Collapse
Affiliation(s)
- Haowei Bai
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Peng Li
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiang Zhang
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Xu
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Xu
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Ji
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Wang
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiong Zhang
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chencheng Yao, ; Zheng Li, ; Erlei Zhi,
| | - Zheng Li
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chencheng Yao, ; Zheng Li, ; Erlei Zhi,
| | - Erlei Zhi
- Department of Andrology, Center for Men’s Health, Department of ART, Institute of Urologic Medical Center, Shanghai General Hospital, Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chencheng Yao, ; Zheng Li, ; Erlei Zhi,
| |
Collapse
|
28
|
Wang Z, Meng N, Wang Y, Zhou T, Li M, Wang S, Chen S, Zheng H, Kong S, Wang H, Yan W. Ablation of the miR-465 Cluster Causes a Skewed Sex Ratio in Mice. Front Endocrinol (Lausanne) 2022; 13:893854. [PMID: 35677715 PMCID: PMC9167928 DOI: 10.3389/fendo.2022.893854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 01/31/2023] Open
Abstract
The X-linked miR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-465 cluster is still largely unknown. This study aims to dissect the role of the miR-465 cluster in murine development. Despite abundant expression in the testis, ablation of the miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed sex ratio biased toward males (60% males) was observed among miR-465 KO mice. Further analyses revealed that the female conceptuses selectively degenerated as early as embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization analyses revealed that the miRNAs encoded by the miR-465 cluster were mainly localized to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered mRNA transcriptome characterized by the dysregulation of numerous critical placental genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed that the miR-465 cluster is required for normal female placental development, and ablation of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to selective degeneration and resorption of the female conceptuses.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Nan Meng
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine Xiamen University, Xiamen, China
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Wei Yan,
| |
Collapse
|
29
|
De Santi B, Spaggiari G, Granata AR, Romeo M, Molinari F, Simoni M, Santi D. From subjective to objective: A pilot study on testicular radiomics analysis as a measure of gonadal function. Andrology 2021; 10:505-517. [PMID: 34817934 PMCID: PMC9299912 DOI: 10.1111/andr.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The connection between testicular ultrasound (US) parameters and testicular function, including both spermato- and steroidogenesis has been largely suggested, but their predictive properties are not routinely applied. Radiomics, a new engineering approach to radiological imaging, could overcome the visual limit of the sonographer. OBJECTIVES This study is aimed at extracting objective testicular US features, correlating with testicular function, including both spermato- and steroidogenesis, using an engineering approach, in order to overcome the operator-dependent subjectivity. MATERIALS AND METHODS Prospective observational pilot study from December 2019 to December 2020 on normozoospermic subjects and patients with semen variables alterations, excluding azoospermia. All patients underwent conventional semen analysis, pituitary-gonadal hormones assessment, and testicular US, performed by the same operator. US images were analyzed by Biolab (Turin) throughout image segmentation, image pre-processing, and texture features extraction. RESULTS One hundred seventy US testicular images were collected from 85 patients (age 38.6 ± 9.1 years). A total of 44 first-order and advanced features were extracted. US inhomogeneity defined by radiomics significantly correlates with the andrologist definition, showing for the first time a mathematical quantification of a subjective US evaluation. Thirteen US texture features correlated with semen parameters, predicting sperm concentration, total sperm number, progressive motility, total motility and morphology, and with gonadotropins serum levels, but not with total testosterone serum levels. Classification analyses confirmed that US textural features predicted patients' classification according to semen parameters alterations. CONCLUSIONS Radiomics texture features qualitatively describe the testicular parenchyma with objective and reliable quantitative parameters, reflecting both the testicular spermatogenic capability and the action of pituitary gonadotropins. This is an innovative model in which US texture features represent a mirror of the pituitary-gonadal homeostasis in terms of reproductive function.
Collapse
Affiliation(s)
- Bruno De Santi
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Antonio Rm Granata
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Marilina Romeo
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
30
|
Punjani N, Kang C, Lamb DJ, Schlegel PN. Current updates and future perspectives in the evaluation of azoospermia: A systematic review. Arab J Urol 2021; 19:206-214. [PMID: 34552771 PMCID: PMC8451618 DOI: 10.1080/2090598x.2021.1954415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: To provide a summary of the current evaluation of azoospermia and insights into future perspectives in the evaluation and counselling of men with azoospermia. Methods: A search of PubMed, Cochrane Reviews and Web of Science databases was performed for full-text English-language articles published between 1943 and 2020 focussing on 'future perspectives', 'azoospermia' and 'evaluation'. Results: Azoospermia represents a severe form of male infertility characterised by sperm production so impaired that there are no sperm present in the ejaculate. The current evaluation of azoospermia focusses on patient history and physical examination with selected adjunctive laboratory investigations including serum hormones, a karyotype and screening for Y chromosome microdeletions. Future diagnostics are focussed on identifying the underlying genetic aetiologies for azoospermia, as well as a greater emphasis on screening for systemic illness that men with severe infertility may be predisposed to develop. Conclusion: Azoospermia represents an extreme form of male infertility, and evaluation relies heavily on history and physical examination, as genetic evaluations for these individuals remain limited. Future evaluation will focus on next-generation sequencing and more rigorous evaluation for possible co-existing and future risk of systemic disease. ABBREVIATIONS: ADGRG2, adhesion G protein-coupled receptor G2; ASRM: American Society of Reproductive Medicine; AZF: azoospermia factor; CBAVD: congenital bilateral absence of the vas deferens; CFTR: cystic fibrosis transmembrane conductance regulator; CRKL: CRK-like proto-oncogene; E2F1: E2F transcription factor 1; HAUS7: HAUS augmin-like complex subunit 7; HR: hazard ratio; KS: Klinefelter syndrome; MAZ, MYC-associated zinc finger protein; NGS: next-generation sequencing; NOA: non-obstructive azoospermia; OA: obstructive azoospermia; RHOX: reproductive homeobox on the X chromosome; SH2: SRC homology 2; TAF7L: TATA-box binding protein associated factor 7-like; TEX11: testis-expressed 11; WES: whole-exome sequencing.
Collapse
Affiliation(s)
- Nahid Punjani
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Caroline Kang
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Dolores J. Lamb
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY, USA
| | - Peter N. Schlegel
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
- Center for Reproductive Genomics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Verrilli L, Johnstone E, Allen-Brady K, Welt C. Shared genetics between nonobstructive azoospermia and primary ovarian insufficiency. F&S REVIEWS 2021; 2:204-213. [PMID: 36177363 PMCID: PMC9518791 DOI: 10.1016/j.xfnr.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Primary ovarian insufficiency (POI) and Non-obstructive azoospermia (NOA) both represent disease states of early, and often complete, failure of gametogenesis. Because oogenesis and spermatogenesis share the same conserved steps in meiosis I, it is possible that inherited defects in meiosis I could lead to shared causes of both POI and NOA. Currently, known genes that contribute to both POI and NOA are limited. In this review article, we provide a systematic review of genetic mutations in which both POI and NOA phenotypes exist. EVIDENCE REVIEW A PubMed literature review was conducted from January 1, 2000 through October 2020. We included all studies that demonstrated human cases of POI or NOA due to a specific genetic mutation either within the same family or in separate families. RESULTS We identified 33 papers that encompassed 10 genes of interest with mutations implicated in both NOA and POI. The genes were all involved in processes of meiosis I. CONCLUSION Mutations in genes involved in processes of meiosis I may cause both NOA and POI. Identifying these unique phenotypes among shared genotypes leads to biologic plausibility that the key error occurs early in gametogenesis with an etiology shared among both male and female offspring. From a clinical standpoint, this shared relationship may help us better understand and identify individuals at high risk for gonadal failure within families and suggests that clinicians obtain history for opposite sex family members when approaching a new diagnosis of POI or NOA.
Collapse
Affiliation(s)
- Lauren Verrilli
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Erica Johnstone
- University of Utah School of Medicine, Department of Obstetrics and Gynecology, 30 N 1900 E #2B200, Salt Lake City, UT 84132
| | - Kristina Allen-Brady
- University of Utah School of Medicine, Division of Epidemiology, Department of Internal Medicine, 296 Chipeta Way, Salt Lake City, UT 84108
| | - Corrine Welt
- University of Utah School of Medicine, Division of Endocrinology, Metabolism and Diabetes, Salt Lake City, UT 84132
| |
Collapse
|
32
|
Rocca MS, Dusi L, Di Nisio A, Alviggi E, Iussig B, Bertelle S, De Toni L, Garolla A, Foresta C, Ferlin A. TERRA: A Novel Biomarker of Embryo Quality and Art Outcome. Genes (Basel) 2021; 12:genes12040475. [PMID: 33806168 PMCID: PMC8066328 DOI: 10.3390/genes12040475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Telomeres are considered to be an internal biological clock, and their progressive shortening has been associated with the risk of age-related diseases and reproductive alterations. Over recent years, an increasing number of studies have focused on the association between telomere length and fertility, identifying sperm telomere length (STL) as a novel biomarker of male fertility. Although typically considered to be repeated DNA sequences, telomeres have recently been shown to also include a long non-coding RNA (lncRNA) known as TERRA (telomeric repeat-containing RNAs). Interestingly, males with idiopathic infertility show reduced testicular TERRA expression, suggesting a link between TERRA and male fertility. The aim of this study was to investigate the role of seminal TERRA expression in embryo quality. To this end, STL and TERRA expression were quantified by Real Time qPCR in the semen of 35 men who underwent assisted reproductive technologies (ART) and 30 fertile men. We found that TERRA expression in semen and STL was reduced in patients that underwent ART (both p < 0.001). Interestingly, TERRA and STL expressions were positively correlated (p = 0.010), and TERRA expression was positively associated with embryo quality (p < 0.001). These preliminary findings suggest a role for TERRA in the maintenance of sperm telomere integrity during gametogenesis, and for the first time, TERRA expression was found as a predictive factor for embryo quality in the setting of assisted reproduction.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Ludovica Dusi
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Andrea Di Nisio
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Erminia Alviggi
- Clinica Ruesch, GENERA Center for Reproductive Medicine, 80122 Napoli, Italy;
| | - Benedetta Iussig
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Sara Bertelle
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Luca De Toni
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Andrea Garolla
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Carlo Foresta
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
- Correspondence: ; Tel.: +39-0498218517
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, 25121 Brescia, Italy;
| |
Collapse
|
33
|
Krausz C. Editorial for the special issue on the molecular genetics of male infertility. Hum Genet 2021; 140:1-5. [PMID: 33337534 DOI: 10.1007/s00439-020-02245-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
34
|
Xavier MJ, Salas-Huetos A, Oud MS, Aston KI, Veltman JA. Disease gene discovery in male infertility: past, present and future. Hum Genet 2021; 140:7-19. [PMID: 32638125 PMCID: PMC7864819 DOI: 10.1007/s00439-020-02202-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Identifying the genes causing male infertility is important to increase our biological understanding as well as the diagnostic yield and clinical relevance of genetic testing in this disorder. While significant progress has been made in some areas, mainly in our knowledge of the genes underlying rare qualitative sperm defects, the same cannot be said for the genetics of quantitative sperm defects. Technological advances and approaches in genomics are critical for the process of disease gene identification. In this review we highlight the impact of various technological developments on male infertility gene discovery as well as functional validation, going from the past to the present and the future. In particular, we draw attention to the use of unbiased genomics approaches, the development of increasingly relevant functional assays and the importance of large-scale international collaboration to advance disease gene identification in male infertility.
Collapse
Affiliation(s)
- M J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - A Salas-Huetos
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah, Salt Lake City, USA
| | - M S Oud
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - K I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah, Salt Lake City, USA.
| | - J A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
35
|
Xp;Yq Unbalanced Translocation with Pseudoautosomal Region Aberrations in a Natural Two-Generation Transmission. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4976204. [PMID: 33344636 PMCID: PMC7732387 DOI: 10.1155/2020/4976204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/03/2022]
Abstract
Translocations involving X and Y chromosomes rarely occur in humans and may affect reproductive function. We investigated an Xp:Yq unbalanced translocation with pseudoautosomal region (PAR) aberrations in a natural two-generation transmission. We report the case of an azoospermic male and his fertile mother without any other abnormal clinical phenotypes, except for short stature. Cytogenetic methods, including karyotyping and fluorescence in situ hybridization (FISH), revealed the translocation. Chromosomal microarray comparative genomic hybridization (array-CGH) was used to investigate the regions of Xp partial deletion and Yq partial duplication. Final chromosome karyotypes in the peripheral blood of the infertile male and his mother were 46,Y,der(X)t(X;Y)(p22.33;q11.22) and 46,X,der(X)t(X;Y)(p22.33;q11.22), respectively. Short-stature-homeobox gene deletion was responsible for the short stature in both subjects. PAR aberrations and AZFc duplication may be a direct genetic risk factor for spermatogenesis. This report further supports the use of routine karyotype analysis, FISH-based technology, and array-CGH analysis to identify derivative chromosomes in a complex rearrangement.
Collapse
|
36
|
Salas-Huetos A, Tüttelmann F, Wyrwoll MJ, Kliesch S, Lopes AM, Goncalves J, Boyden SE, Wöste M, Hotaling JM, Nagirnaja L, Conrad DF, Carrell DT, Aston KI. Disruption of human meiotic telomere complex genes TERB1, TERB2 and MAJIN in men with non-obstructive azoospermia. Hum Genet 2020; 140:217-227. [PMID: 33211200 DOI: 10.1007/s00439-020-02236-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Non-obstructive azoospermia (NOA), the lack of spermatozoa in semen due to impaired spermatogenesis affects nearly 1% of men. In about half of cases, an underlying cause for NOA cannot be identified. This study aimed to identify novel variants associated with idiopathic NOA. We identified a nonconsanguineous family in which multiple sons displayed the NOA phenotype. We performed whole-exome sequencing in three affected brothers with NOA, their two unaffected brothers and their father, and identified compound heterozygous frameshift variants (one novel and one extremely rare) in Telomere Repeat Binding Bouquet Formation Protein 2 (TERB2) that segregated perfectly with NOA. TERB2 interacts with TERB1 and Membrane Anchored Junction Protein (MAJIN) to form the tripartite meiotic telomere complex (MTC), which has been shown in mouse models to be necessary for the completion of meiosis and both male and female fertility. Given our novel findings of TERB2 variants in NOA men, along with the integral role of the three MTC proteins in spermatogenesis, we subsequently explored exome sequence data from 1495 NOA men to investigate the role of MTC gene variants in spermatogenic impairment. Remarkably, we identified two NOA patients with likely damaging rare homozygous stop and missense variants in TERB1 and one NOA patient with a rare homozygous missense variant in MAJIN. Available testis histology data from three of the NOA patients indicate germ cell maturation arrest, consistent with mouse phenotypes. These findings suggest that variants in MTC genes may be an important cause of NOA in both consanguineous and outbred populations.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, 48149, Münster, Germany.,Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, 48149, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, 48149, Münster, Germany
| | - Alexandra M Lopes
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135, Porto, Portugal
| | - João Goncalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, 1649-016, Lisbon, Portugal.,ToxOmics-Centro de Toxicogenómica e Saúde Humana, Nova Medical School, 1169-056, Lisbon, Portugal
| | - Steven E Boyden
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.,Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Marius Wöste
- Institute of Medical Informatics, University of Münster, 48149, Munster, Germany
| | - James M Hotaling
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.,Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | | | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
37
|
Kim WJ, Kim BS, Kim HJ, Cho YD, Shin HL, Yoon HI, Lee YS, Baek JH, Woo KM, Ryoo HM. Intratesticular Peptidyl Prolyl Isomerase 1 Protein Delivery Using Cationic Lipid-Coated Fibroin Nanoparticle Complexes Rescues Male Infertility in Mice. ACS NANO 2020; 14:13217-13231. [PMID: 32969647 DOI: 10.1021/acsnano.0c04936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Male infertility is a multifactorial condition. Unexplained male infertility is often caused by spermatogenesis dysfunction. Knockout of Pin1, an important regulator of cell proliferation and differentiation, produces male infertility phenotypes such as testicular immaturity and azoospermia with spermatogonia depletion and blood-testis barrier (BTB) dysfunction. Gene therapy has been clinically considered for the treatment of male infertility, but it is not preferred because of the risks of adverse effects in germ cells. Direct intracellular protein delivery using nanoparticles is considered an effective alternative to gene therapy; however, in vivo testicular protein delivery remains a pressing challenge. Here, we investigated the direct intracellular protein delivery strategy using a fibroin nanoparticle-encapsulated cationic lipid complex (Fibroplex) to restore intratesticular PIN1. Local intratesticular delivery of PIN1 via Fibroplex in Pin1 knockout testes produced fertile mice, achieving recovery from the infertile phenotypes. Mechanistically, PIN1-loaded Fibroplex was successfully delivered into testicular cells, including spermatogonial cells and Sertoli cells, and the sustained release of PIN1 restored the gene expression required for the proliferation of spermatogonial cells and BTB integrity in Pin1 knockout testes. Collectively, testicular PIN1 protein delivery using Fibroplex might be an effective strategy for treating male infertility.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye Lim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee In Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
38
|
Zhou Z, Wang B. Identification of male infertility-related long non-coding RNAs and their functions based on a competing endogenous RNA network. J Int Med Res 2020; 48:300060520961277. [PMID: 33054493 PMCID: PMC7580164 DOI: 10.1177/0300060520961277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To identify male infertility-related long non-coding (lnc)RNAs and an lncRNA-related competing endogenous (ce)RNA network. METHODS Expression data including 13 normospermic and eight teratozoospermic samples from postmortem donors were downloaded from the GEO database (GSE6872). The limma R package was used to discriminate dysregulated lncRNA and micro (m)RNA profiles. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of differentially expressed (DE) mRNAs were performed using the clusterProfiler R package. The ceRNA network of dysregulated genes was visualized by Cytoscape. RESULTS A total of 101 DE lncRNAs and 1722 mRNAs were identified as male infertility-specific RNAs with thresholds of |log2FoldChange| >2.0 and adjusted P-value <0.05. GO and KEGG pathways were analyzed for DE mRNAs. Gene set enrichment analysis revealed that DE genes were enriched in embryonic skeletal system development and cytokine-cytokine receptor interactions. A ceRNA network was constructed with 26 key lncRNAs, 33 microRNAs, and 133 mRNAs. DE lncRNAs in male sterility were mainly associated with transferring phosphorus-containing groups and complexes of histone methyltransferases, methyltransferases, PcG proteins, and serine/threonine protein kinases. CONCLUSION This provides a novel perspective to study lncRNA-related ceRNA networks in male infertility and assist in identifying new potential biomarkers for diagnostic purposes.
Collapse
Affiliation(s)
- Zuo Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Zibo City, Shandong Province, China
| | - Bing Wang
- Center of Reproductive Medicine, Maternal and Child Health Hospital of Zibo City, Shandong Province, China
| |
Collapse
|
39
|
Arafat M, Harlev A, Har-Vardi I, Levitas E, Priel T, Gershoni M, Searby C, Sheffield VC, Lunenfeld E, Parvari R. Mutation in CATIP (C2orf62) causes oligoteratoasthenozoospermia by affecting actin dynamics. J Med Genet 2020; 58:jmedgenet-2019-106825. [PMID: 32503832 DOI: 10.1136/jmedgenet-2019-106825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.
Collapse
Affiliation(s)
- Maram Arafat
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avi Harlev
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Iris Har-Vardi
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eliahu Levitas
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tsvia Priel
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Moran Gershoni
- ARO- The Volcani Center, Institute of Animal Science, Rehovot - Faculty of Agriculture Bet Dagan, Rishon LeZion, Israel
| | - Charles Searby
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Val C Sheffield
- Department of Pediatrics and Ophthalmology, Division of Medical Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Eitan Lunenfeld
- Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
40
|
Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet 2020; 140:135-154. [DOI: 10.1007/s00439-020-02112-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
|
41
|
Evaluating genetic causes of azoospermia: What can we learn from a complex cellular structure and single-cell transcriptomics of the human testis? Hum Genet 2020; 140:183-201. [PMID: 31950241 DOI: 10.1007/s00439-020-02116-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Azoospermia is a condition defined as the absence of spermatozoa in the ejaculate, but the testicular phenotype of men with azoospermia may be very variable, ranging from full spermatogenesis, through arrested maturation of germ cells at different stages, to completely degenerated tissue with ghost tubules. Hence, information regarding the cell-type-specific expression patterns is needed to prioritise potential pathogenic variants that contribute to the pathogenesis of azoospermia. Thanks to technological advances within next-generation sequencing, it is now possible to obtain detailed cell-type-specific expression patterns in the testis by single-cell RNA sequencing. However, to interpret single-cell RNA sequencing data properly, substantial knowledge of the highly sophisticated data processing and visualisation methods is needed. Here we review the complex cellular structure of the human testis in different types of azoospermia and outline how known genetic alterations affect the pathology of the testis. We combined the currently available single-cell RNA sequencing datasets originating from the human testis into one dataset covering 62,751 testicular cells, each with a median of 2637 transcripts quantified. We show what effects the most common data-processing steps have, and how different visualisation methods can be used. Furthermore, we calculated expression patterns in pseudotime, and show how splicing rates can be used to determine the velocity of differentiation during spermatogenesis. With the combined dataset we show expression patterns and network analysis of genes known to be involved in the pathogenesis of azoospermia. Finally, we provide the combined dataset as an interactive online resource where expression of genes and different visualisation methods can be explored ( https://testis.cells.ucsc.edu/ ).
Collapse
|