1
|
Stratos I, Behrendt AK, Anselm C, Gonzalez A, Mittlmeier T, Vollmar B. Inhibition of TNF-α Restores Muscle Force, Inhibits Inflammation, and Reduces Apoptosis of Traumatized Skeletal Muscles. Cells 2022; 11:2397. [PMID: 35954240 PMCID: PMC9367740 DOI: 10.3390/cells11152397] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Muscle injuries are common in humans and are often associated with irrecoverable damage and disability. Upon muscle injury, TNF-α signaling pathways modulate the healing process and are predominantly associated with tissue degradation. In this study we assumed that TNF-α inhibition could reduce the TNF-α-associated tissue degradation after muscle injury. MATERIALS AND METHODS Therefore, the left soleus muscle of 42 male Wistar rats was injured using a standardized open muscle injury model. All rats were treated immediately after injury either with infliximab (single i.p. injection; 10 mg/kg b.w.) or saline solution i.p. Final measurements were conducted at day one, four, and 14 post injury. The muscle force, the muscle cell proliferation, the muscle cell coverage as well as the myofiber diameter served as read out parameters of our experiment. RESULTS Systemic application of infliximab could significantly reduce the TNF-α levels in the injured muscle at day four upon trauma compared to saline treated animals. The ratio of muscle weight to body weight was increased and the twitch muscle force showed a significant rise 14 days after trauma and TNF-α inhibition. Quantification of myofiber diameter in the penumbra zone showed a significant difference between both groups at day one and four after injury, indicated by muscle hypertrophy in the infliximab group. Planimetric analysis of the injured muscle at day 14 revealed increased muscle tissue fraction in the infliximab group compared to the control animals. Muscle cell proliferation did not differ between both groups. CONCLUSIONS These data provide evidence that the TNF-α blockade positively regulates the restauration of skeletal muscles upon injury.
Collapse
Affiliation(s)
- Ioannis Stratos
- Department of Orthopaedic Surgery, Julius-Maximilians University Wuerzburg, 97074 Wuerzburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Ann-Kathrin Behrendt
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Christian Anselm
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Aldebarani Gonzalez
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| | - Thomas Mittlmeier
- Department of Trauma, Hand and Reconstructive Surgery, University of Rostock, 18057 Rostock, Germany; (A.-K.B.); (A.G.); (T.M.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (C.A.); (B.V.)
| |
Collapse
|
2
|
Ma H, Qin S, Zhao S. Osteoarthritis is Prevented in Rats by Verbascoside via Nuclear Factor kappa B (NF-κB) Pathway Downregulation. Med Sci Monit 2020; 26:e921276. [PMID: 32249762 PMCID: PMC7160605 DOI: 10.12659/msm.921276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Cartilage degeneration during osteoarthritis (OA) most adversely affects the quality of life by hindering the movement. The present study investigated the role of verbascoside in the protection of cartilage degeneration induced by osteoarthritis. Material/Methods The enzyme-linked immunosorbent (ELISA) and western blot assays were used for determination of inflammatory cytokine secretion in serum and cartilage tissues, respectively. Results Treatment of the OA rats with verbascoside inhibited overproduction of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β in serum as well as cartilage tissues. The expression of P2X7R and matrix metalloproteinase (MMP)-13 was much higher in the rats induced with OA. However, administration of verbascoside reversed the OA-induced upregulation of P2X7R and MMP-13 expression in the cartilage tissues. The OA-mediated increase in substance P (SP) and prostaglandin E2 (PGE2) expression was also reduced in the cartilage tissues by the verbascoside treatment. Western blot assay revealed that verbascoside treatment markedly decreased the activation of IκBα and NF-κB p65 in the OA rats. Conclusions Thus, verbascoside inhibited inflammatory cytokine secretion in the OA rats by targeting P2X7R expression, production of matrix metalloproteinase, PGE2 and downregulation of NF-κB signaling pathway. Therefore, verbascoside may be used as potent agent for osteoarthritis treatment.
Collapse
Affiliation(s)
- Hongbing Ma
- Department of Orthopedics, Chengdu Second People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Shourong Qin
- Department of Traumatic Orthopaedics, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Shaoheng Zhao
- Department of Orthopedic, Xi'an No.3 Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
3
|
He J, Zheng S. NF-κB Phosphorylation Inhibition Prevents Articular Cartilage Degradation in Osteoarthritis Rats via 2-Aminoquinoline. Med Sci Monit 2020; 26:e920346. [PMID: 31978040 PMCID: PMC6998790 DOI: 10.12659/msm.920346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis is a chronic degenerative disease of the joints that is common in older people worldwide. The characteristic features of osteoarthritis include cartilage degradation, synovitis, and remodelling of subchondral bone. The present study investigated the effect of 2-aminoquinoline on knee articular cartilage degradation in an osteoarthritis rat model. Material/Methods The rat model of osteoarthritis was established in Wistar rats by intra-articular injection of monosodium iodoacetate. The rats were randomly divided into 6 groups of 10 rats each: a normal control group, an untreated group, and 4 (5, 10, 15 and 20 mg/kg) treatment groups. The rats in treatment groups received 5, 10, 15, or 20 mg/kg doses of 2-aminoquinoline on day 2 of monosodium iodoacetate injection. Results The 2-aminoquinoline treatment of monosodium iodoacetate-injected rats markedly decreased weight-bearing asymmetry, inhibited edema formation, and improved paw withdrawal thresholds. The expression of inflammatory cytokines was markedly higher in the osteoarthritis rats. Treatment with 2-aminoquinoline led to a significant reduction in inflammatory cytokine expression in osteoarthritis rats in a dose-dependent manner. In osteoarthritis rats, the expressions of prostaglandin E2 (PGE2), matrix metalloproteinase-13 (MMP-13), and substance P were also higher in comparison to the control group. The 2-aminoquinoline treatment supressed PGE2, MMP-13, and substance P levels in osteoarthritis rats. Moreover, the expression of phosphorylated nuclear factor kappaB (p-NF-κB) was markedly higher in the untreated rats. However, activation of NF-κB was downregulated in the osteoarthritis rats by treatment with 2-aminoquinoline. Conclusions The present study demonstrated that 2-aminoquinoline prevents articular cartilage damage in osteoarthritis rats through inhibition of inflammatory factors and downregulation of NF-κB activation, suggesting that 2-aminoquinoline would be effective in treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jinlong He
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Shicheng Zheng
- Department of Integrated Traditional Chinese Medicine (TCM) and Western Medicine Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
4
|
NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:267-279. [PMID: 30390256 DOI: 10.1007/978-981-13-1435-3_12] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atrophy is a classical hallmark of an array of disorders that affect skeletal muscle, ranging from inherited dystrophies, acquired inflammatory myopathies, ageing (sarcopenia) and critical illness (sepsis). The loss of muscle mass and function in these instances is associated with disability, poor quality of life and in some cases mortality. The mechanisms which underpin muscle atrophy are complex; however, significant research has demonstrated an important role for inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), mediated by the generation of reactive oxygen species (ROS) in muscle wasting. Moreover, activation of the transcription factor nuclear factor kappa B (NF-κB) is a key lynchpin in the overall processes that mediate muscle atrophy. The significance of NF-κB as a key regulator of muscle atrophy has been emphasised by several in vivo studies, which have demonstrated that NF-κB-targeted therapies can abrogate muscle atrophy. In this chapter, we will summarise current knowledge on the role of cytokines (TNF-α) and NF-κB in the loss of muscle mass and function and highlight perspectives towards future research and potential therapies to combat muscle atrophy.
Collapse
|
5
|
Georgakopoulou E, Scully C. Biological agents: what they are, how they affect oral health and how they can modulate oral healthcare. Br Dent J 2017; 218:671-7. [PMID: 26114697 DOI: 10.1038/sj.bdj.2015.439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Biological agents - biologics, biologicals or biopharmaceuticals - are any medicinal product manufactured in, or extracted from, a biological source. They are often generated by DNA recombinant biotechnology and several dozen therapeutic monoclonal antibodies (mAbs) are now marketed for a variety of indications, increasingly in the management of inflammatory immune-mediated disorders, transplantation rejection and cancer treatments. Immunomodulatory mAbs are expensive, must be given by injection or infusion and can have adverse effects but are increasingly used and can be highly effective agents. This paper reviews these agents and their increasing relevance to oral science and healthcare.
Collapse
Affiliation(s)
- E Georgakopoulou
- Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | - C Scully
- 1] WHO Collaborating Centre for Oral Health-General Health Co-Director London [2] Royal College of Surgeons of Edinburgh King James IV Professor London [3] UCL Emeritus Professor, London
| |
Collapse
|
6
|
Hu H, Yang B, Li Y, Zhang S, Li Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-κB pathways in the cartilage tissue of rats with osteoarthritis. Int J Mol Med 2016; 38:1922-1932. [PMID: 27748894 DOI: 10.3892/ijmm.2016.2770] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
P2X purinoceptor 7 (P2X7) receptor (P2X7R) is known to play a significant role in inflammation and pain-causing diseases, including osteoarthritis (OA). However, the mechanisms of action of P2X7R and its role in OA remain unclear. The articular cartilage is the crucial region in which pathological changes occur in OA, involving the dysregulation of degradation and maintenance mechanisms. In this study, we aimed to reveal the molecular mechanisms of action of P2X7R in articular cartilage in OA-induced pain and inflammation by using AZD9056, an antagonist of P2X7R. We created an animal model of OA by using Wistar rats administered (by intra-articular injection) monosodium iodoacetate (MIA), and the rats with OA were then treated with the P2X7R antagonist, AZD9056. We found that treatment with AZD9056 exerted pain-relieving and anti-inflammatory effects. Importantly, we found that the upregulated expression of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-13 (MMP-13), substance P (SP) and prostaglandin E2 (PGE2) which was induced by MIA in cartilage tissues was reversed by AZD9056. Western blot analysis was used to examine the expression of inhibitor of nuclear factor-κB (NF-κB) kinase (IKK)α, IKKβ, inhibitor of NF-κB (IκB)α, NF-κB p65 and their phosphorylation forms; they were found to be significantly increased in the knee cartilage tissues from rats with OA; however, opposite effects were observed by the injection of AZD9056. These results implied that P2X7R was associated with the activation of the NF-κB pathway in the development of OA. Our results also revealed that helenalin, an NF-κB pathway inhibitor, decreased the expression of P2X7R, IL-1β, IL-6, TNF-α, SP, PGE2 and MMP-13, which was induced by MIA, in the knee cartilage tissues of rats with OA. On the whole, our findings suggest that P2X7R regulates the MMP-13 and NF-κB pathways in cartilage tissue and mediate OA-induced pain and inflammation.
Collapse
Affiliation(s)
- Hongbo Hu
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Baohui Yang
- Department of Οrthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yumin Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Subin Zhang
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Zheng Li
- Second Department of Orthopaedics, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
7
|
Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice hearts at later stages of dystrophy. Nutrition 2016; 32:855-62. [DOI: 10.1016/j.nut.2016.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/06/2016] [Accepted: 01/20/2016] [Indexed: 12/29/2022]
|
8
|
Benny Klimek ME, Sali A, Rayavarapu S, Van der Meulen JH, Nagaraju K. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice. PLoS One 2016; 11:e0155944. [PMID: 27213537 PMCID: PMC4877010 DOI: 10.1371/journal.pone.0155944] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with inhibitors that completely block IL-1β, pathways upstream of IL-1β production or combining various inhibitors may produce more favorable outcomes.
Collapse
Affiliation(s)
- Margaret E. Benny Klimek
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Arpana Sali
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Jack H. Van der Meulen
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children’s National Medical Center, Washington, District of Columbia, United States of America
- Department of Integrative Systems Biology, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle. Stem Cells 2016; 33:1173-86. [PMID: 25534849 DOI: 10.1002/stem.1927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.
Collapse
Affiliation(s)
- Pamela A Tebebi
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, USA; Frank Lab, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Barros Maranhão J, de Oliveira Moreira D, Maurício AF, de Carvalho SC, Ferretti R, Pereira JA, Santo Neto H, Marques MJ. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles. Int J Exp Pathol 2015; 96:285-93. [PMID: 26515458 DOI: 10.1111/iep.12142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), the search for new biomarkers to follow the evolution of the disease is of fundamental importance in the light of the evolving gene and pharmacological therapies. In addition to the lack of dystrophin, secondary events including changes in calcium levels, inflammation and fibrosis greatly contribute to DMD progression and the molecules involved in these events may represent potential biomarkers. In this study, we performed a comparative evaluation of the progression of dystrophy within muscles that are differently affected by dystrophy (diaphragm; DIA and quadriceps; QDR) or spared (intrinsic laryngeal muscles) using the mdx mice model of DMD. We assessed muscle levels of calsequestrin (calcium-related protein), tumour necrosis factor (TNF-α; pro-inflammatory cytokine), tumour growth factor (TGF-β; pro-fibrotic factor) and MyoD (muscle proliferation) vs. histopathology at early (1 and 4 months of age) and late (9 months of age) stages of dystrophy. Fibrosis was the primary feature in the DIA of mdx mice (9 months: 32% fibrosis), which was greater than in the QDR (9 months: 0.6% fibrosis). Muscle regeneration was the primary feature in the QDR (9 months: 90% of centrally nucleated fibres areas vs. 33% in the DIA). The QDR expressed higher levels of calsequestrin than the DIA. Laryngeal muscles showed normal levels of TNF-α, TGF-β and MyoD. A positive correlation between histopathology and cytokine levels was observed only in the diaphragm, suggesting that TNF-α and TGF-β serve as markers of dystrophy primarily for the diaphragm.
Collapse
Affiliation(s)
| | - Drielen de Oliveira Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Fogagnolo Maurício
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Samara Camaçari de Carvalho
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Renato Ferretti
- Departamento de Anatomia, Instituto de Biociencias de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Juliano Alves Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Humberto Santo Neto
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Maria Julia Marques
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Tumor necrosis factor inhibition increases the revascularization of ischemic hind-limbs in diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1053-60. [DOI: 10.1007/s00210-015-1138-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 02/08/2023]
|
12
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
13
|
Bobadilla M, Sáinz N, Rodriguez JA, Abizanda G, Orbe J, de Martino A, García Verdugo JM, Páramo JA, Prósper F, Pérez-Ruiz A. MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 2014; 32:447-61. [PMID: 24123596 DOI: 10.1002/stem.1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs), a family of endopeptidases that are involved in the degradation of extracellular matrix components, have been implicated in skeletal muscle regeneration. Among the MMPs, MMP-2 and MMP-9 are upregulated in Duchenne muscular dystrophy (DMD), a fatal X-linked muscle disorder. However, inhibition or overexpression of specific MMPs in a mouse model of DMD (mdx) has yielded mixed results regarding disease progression, depending on the MMP studied. Here, we have examined the role of MMP-10 in muscle regeneration during injury and muscular dystrophy. We found that skeletal muscle increases MMP-10 protein expression in response to damage (notexin) or disease (mdx mice), suggesting its role in muscle regeneration. In addition, we found that MMP-10-deficient muscles displayed impaired recruitment of endothelial cells, reduced levels of extracellular matrix proteins, diminished collagen deposition, and decreased fiber size, which collectively contributed to delayed muscle regeneration after injury. Also, MMP-10 knockout in mdx mice led to a deteriorated dystrophic phenotype. Moreover, MMP-10 mRNA silencing in injured muscles (wild-type and mdx) reduced muscle regeneration, while addition of recombinant human MMP-10 accelerated muscle repair, suggesting that MMP-10 is required for efficient muscle regeneration. Furthermore, our data suggest that MMP-10-mediated muscle repair is associated with VEGF/Akt signaling. Thus, our findings indicate that MMP-10 is critical for skeletal muscle maintenance and regeneration during injury and disease.
Collapse
Affiliation(s)
- Míriam Bobadilla
- Cell Therapy Area, Division of Cancer, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mathews JA, Williams AS, Brand JD, Wurmbrand AP, Chen L, Ninin FMC, Si H, Kasahara DI, Shore SA. γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα. PLoS One 2014; 9:e97707. [PMID: 24823369 PMCID: PMC4019643 DOI: 10.1371/journal.pone.0097707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/22/2014] [Indexed: 11/21/2022] Open
Abstract
Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Bronchoalveolar Lavage
- DNA Primers/genetics
- Etanercept
- Flow Cytometry
- Immunoglobulin G
- Interleukin-17/metabolism
- Lung/drug effects
- Lung/immunology
- Macrophages/immunology
- Mice
- Mice, Knockout
- Neutrophils/immunology
- Ozone/toxicity
- Pneumonia/chemically induced
- Pneumonia/immunology
- Real-Time Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Type II
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Joel A. Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Alison S. Williams
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jeffrey D. Brand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Allison P. Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Lucas Chen
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Fernanda MC. Ninin
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Huiqing Si
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David I. Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephanie A. Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Klyen BR, Scolaro L, Shavlakadze T, Grounds MD, Sampson DD. Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient. BIOMEDICAL OPTICS EXPRESS 2014; 5:1217-32. [PMID: 24761302 PMCID: PMC3985991 DOI: 10.1364/boe.5.001217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 05/18/2023]
Abstract
We present the assessment of ex vivo mouse muscle tissue by quantitative parametric imaging of the near-infrared attenuation coefficient µt using optical coherence tomography. The resulting values of the local total attenuation coefficient µt (mean ± standard error) from necrotic lesions in the dystrophic skeletal muscle tissue of mdx mice are higher (9.6 ± 0.3 mm(-1)) than regions from the same tissue containing only necrotic myofibers (7.0 ± 0.6 mm(-1)), and significantly higher than values from intact myofibers, whether from an adjacent region of the same sample (4.8 ± 0.3 mm(-1)) or from healthy tissue of the wild-type C57 mouse (3.9 ± 0.2 mm(-1)) used as a control. Our results suggest that the attenuation coefficient could be used as a quantitative means to identify necrotic lesions and assess skeletal muscle tissue in mouse models of human Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Blake R. Klyen
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Loretta Scolaro
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Tea Shavlakadze
- Skeletal Muscle Research Group, School of Anatomy, Physiology and Human Biology, The University of Western Australia, M309, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Miranda D. Grounds
- Skeletal Muscle Research Group, School of Anatomy, Physiology and Human Biology, The University of Western Australia, M309, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, M010, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
16
|
Liu B, Zupan B, Laird E, Klein S, Gleason G, Bozinoski M, Gal Toth J, Toth M. Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory. Nat Neurosci 2013; 17:97-105. [PMID: 24292233 PMCID: PMC6169993 DOI: 10.1038/nn.3596] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/05/2013] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor α (TNF) is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. We studied TNF function and found a previously unidentified physiological function that extends its effect beyond the host into the developing offspring. A partial or complete maternal TNF deficit, specifically in hematopoietic cells, resulted in reduced milk levels of the chemokines IP-10, MCP-1, MCP-3, MCP-5 and MIP-1β, which in turn augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory in mice. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and spatial memory to normal levels. Our results identify a TNF-dependent 'lactrocrine' pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity, exercise and adaptive stress. We propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges and competition.
Collapse
Affiliation(s)
- Bingfang Liu
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Bojana Zupan
- 1] Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA. [2]
| | - Emma Laird
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Shifra Klein
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Georgia Gleason
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | - Marjan Bozinoski
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| | | | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
17
|
Bouchlaka MN, Sckisel GD, Chen M, Mirsoian A, Zamora AE, Maverakis E, Wilkins DEC, Alderson KL, Hsiao HH, Weiss JM, Monjazeb AM, Hesdorffer C, Ferrucci L, Longo DL, Blazar BR, Wiltrout RH, Redelman D, Taub DD, Murphy WJ. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. ACTA ACUST UNITED AC 2013; 210:2223-37. [PMID: 24081947 PMCID: PMC3804937 DOI: 10.1084/jem.20131219] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aging strongly promotes inflammation responses, which may predispose individuals after cancer therapies to lethal system toxicities and pathology that can be partially prevented by TNF blockade. Cancer commonly occurs in the elderly and immunotherapy (IT) is being increasingly applied to this population. However, the majority of preclinical mouse tumor models assessing potential efficacy and toxicities of therapeutics use young mice. We assessed the impact of age on responses to systemic immune stimulation. In contrast to young mice, systemic cancer IT regimens or LPS given to aged mice resulted in rapid and lethal toxicities affecting multiple organs correlating with heightened proinflammatory cytokines systemically and within the parenchymal tissues. This inflammatory response and increased morbidity with age was independent of T cells or NK cells. However, prior in vivo depletion of macrophages in aged mice resulted in lesser cytokine levels, increased survival, and decreased liver histopathology. Furthermore, macrophages from aged mice and normal human elderly volunteers displayed heightened TNF and IL-6 production upon in vitro stimulation. Treatment of both TNF knockout mice and in vivo TNF blockade in aged mice resulted in significant increases in survival and lessened pathology. Importantly, TNF blockade in tumor-bearing, aged mice receiving IT displayed significant anti-tumor effects. These data demonstrate the critical role of macrophages in the age-associated hyper-inflammatory cytokine responses to systemic immunostimulation and underscore the importance of performing preclinical assessments in aged mice.
Collapse
Affiliation(s)
- Myriam N Bouchlaka
- Department of Microbiology & Immunology and 2 Department of Physiology and Cell Biology, University of Nevada-Reno School of Medicine, Reno, NV 89557
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Sci Rep 2013; 3:1420. [PMID: 23478253 PMCID: PMC3594753 DOI: 10.1038/srep01420] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/25/2013] [Indexed: 11/08/2022] Open
Abstract
The object of this study was to develop an in vitro bioengineered three-dimensional vascularized skeletal muscle tissue, named eX-vivo Muscle Engineered Tissue (X-MET). This new tissue contains cells that exhibit the characteristics of differentiated myotubes, with organized contractile machinery, undifferentiated cells, and vascular cells capable of forming "vessel-like" networks. X-MET showed biomechanical properties comparable with that of adult skeletal muscles; thus it more closely mimics the cellular complexity typical of in vivo muscle tissue than myogenic cells cultured in standard monolayer conditions. Transplanted X-MET was able to mimic the activity of the excided EDL muscle, restoring the functionality of the damaged muscle. Our results suggest that X-MET is an ideal in vitro 3D muscle model that can be employed to repair muscle defects in vivo and to perform in vitro studies, limiting the use of live animals.
Collapse
|
19
|
Uaesoontrachoon K, Wasgewatte Wijesinghe DK, Mackie EJ, Pagel CN. Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a mouse model of muscle injury. Dis Model Mech 2012; 6:197-205. [PMID: 22917925 PMCID: PMC3529351 DOI: 10.1242/dmm.009993] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteopontin is secreted by skeletal muscle myoblasts and stimulates their proliferation. Expression of osteopontin in skeletal muscle is upregulated in pathological conditions including Duchenne muscular dystrophy, and recent evidence suggests that osteopontin might influence the course of this disease. The current study was undertaken to determine whether osteopontin regulates skeletal muscle regeneration. A whole muscle autografting model of regeneration in osteopontin-null and wild-type mice was used. Osteopontin expression was found to be strongly upregulated in wild-type grafts during the initial degeneration and subsequent early regeneration phases that are observed in this model. Grafted muscle from osteopontin-null mice degenerated more slowly than that of wild-type mice, as determined by histological assessment, fibre diameter and fibre number. The delayed degeneration in osteopontin-null grafts was associated with a delay in neutrophil and macrophage infiltration. Centrally nucleated (regenerating) muscle fibres also appeared more slowly in osteopontin-null grafts than in wild-type grafts. These results demonstrate that osteopontin plays a non-redundant role in muscle remodelling following injury.
Collapse
|
20
|
White LE, Santora RJ, Cui Y, Moore FA, Hassoun HT. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L449-59. [PMID: 22728466 DOI: 10.1152/ajplung.00301.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1-/- mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets.
Collapse
Affiliation(s)
- Laura E White
- Department of Surgery and Research Institute, The Methodist Hospital, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
21
|
Gehrig SM, Lynch GS. Emerging drugs for treating skeletal muscle injury and promoting muscle repair. Expert Opin Emerg Drugs 2011; 16:163-82. [DOI: 10.1517/14728214.2010.524743] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Davis JS, Nastiuk KL, Krolewski JJ. TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable. Mol Endocrinol 2011; 25:611-20. [PMID: 21292828 DOI: 10.1210/me.2010-0312] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TNF, a proinflammatory and immune-regulatory cytokine, is a potent apoptotic stimulus in vitro. However, there have been few examples of a physiologic role for TNF-induced apoptosis in vivo. Here, we describe a novel role for TNF in prostate epithelial cell apoptosis after androgen withdrawal. Employing high-resolution serial magnetic resonance imaging to measure mouse prostate volume changes over time, we demonstrate that the extent of castration-induced prostate regression is significantly reduced in mice null for either the Tnf or Tnfr1 genes but not mice deficient for TNF-related apoptosis-inducing ligand or Fas signaling. Wild-type mice receiving soluble TNF (sTNF) receptor 2 (to bind TNF and block signaling) before castration exhibit an identical reduction of prostate regression. Together, these data indicate that uniquely among known extrinsic death signals, TNF is required for castration-induced prostate regression. Additionally, membrane-bound TNF protein and stromal cell specific TNF mRNA levels increase in rat prostate after castration. This is consistent with a paracrine role for TNF in prostate regression. When injected into the peritoneum of Tnf(-/-) mice at the time of castration, sTNF restores normal levels of prostate regression. However, wild-type mice receiving sTNF in the absence of castration do not exhibit prostate regression, indicating that TNF alone is not sufficient but acts in the context of additional castration-induced signals. These findings support a physiologic role for TNF in prostate regression after androgen withdrawal. Understanding this role may lead to novel therapies for prostate cancer.
Collapse
Affiliation(s)
- Jennifer S Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | |
Collapse
|
23
|
Gilliam LAA, Moylan JS, Ferreira LF, Reid MB. TNF/TNFR1 signaling mediates doxorubicin-induced diaphragm weakness. Am J Physiol Lung Cell Mol Physiol 2010; 300:L225-31. [PMID: 21097524 DOI: 10.1152/ajplung.00264.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin, a common chemotherapeutic agent, causes respiratory muscle weakness in both patients and rodents. Tumor necrosis factor-α (TNF), a proinflammatory cytokine that depresses diaphragm force, is elevated following doxorubicin chemotherapy. TNF-induced diaphragm weakness is mediated through TNF type 1 receptor (TNFR1). These findings lead us to hypothesize that TNF/TNFR1 signaling mediates doxorubicin-induced diaphragm muscle weakness. We tested this hypothesis by treating C57BL/6 mice with a clinical dose of doxorubicin (20 mg/kg) via intravenous injection. Three days later, we measured contractile properties of muscle fiber bundles isolated from the diaphragm. We tested the involvement of TNF/TNFR1 signaling using pharmaceutical and genetic interventions. Etanercept, a soluble TNF receptor, and TNFR1 deficiency protected against the depression in diaphragm-specific force caused by doxorubicin. Doxorubicin stimulated an increase in TNFR1 mRNA and protein (P < 0.05) in the diaphragm, along with colocalization of TNFR1 to the plasma membrane. These results suggest that doxorubicin increases diaphragm sensitivity to TNF by upregulating TNFR1, thereby causing respiratory muscle weakness.
Collapse
Affiliation(s)
- Laura A A Gilliam
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, 40536-0298, USA
| | | | | | | |
Collapse
|
24
|
Dumont N, Frenette J. Macrophages protect against muscle atrophy and promote muscle recovery in vivo and in vitro: a mechanism partly dependent on the insulin-like growth factor-1 signaling molecule. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2228-35. [PMID: 20304951 DOI: 10.2353/ajpath.2010.090884] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hindlimb unloading and reloading are characterized by a major loss of muscle force and are associated with classic leukocyte infiltration during recovery from muscle atrophy. Macrophages act as a cellular cornerstone by playing both pro- and anti-inflammatory roles during muscle recovery from atrophy. In the present study, we investigated the role of macrophages in muscle atrophy and regrowth using in vivo and in vitro models. Mice depleted in monocytes/macrophages and submitted to a hindlimb unloading and reloading protocol experienced a significant delay in muscle force recovery compared with matched placebo mice at 7 and 14 days after reloading. Furthermore, an in vitro myotube/macrophage coculture showed that anti-inflammatory macrophages, which contain apoptotic neutrophils and express low levels of cyclooxygenase-2, completely prevented the loss of protein content and the myotube atrophy observed after 2 days in low serum medium. The presence of macrophages also protected against the decrease in myosin heavy chain content in myotubes exposed to low serum medium for 1 day. Interestingly, the addition of an anti-IGF-1 antibody to the coculture significantly decreased the ability of macrophages to protect against myotube atrophy and myosin heavy chain loss after 2 days in low serum medium. These results clearly indicate that macrophages and, more precisely, the release of IGF-1 by macrophages, play an important role in recovery from muscle atrophy.
Collapse
Affiliation(s)
- Nicolas Dumont
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|
25
|
Meng Y, Beckett MA, Liang H, Mauceri HJ, van Rooijen N, Cohen KS, Weichselbaum RR. Blockade of Tumor Necrosis Factor Signaling in Tumor-Associated Macrophages as a Radiosensitizing Strategy. Cancer Res 2010; 70:1534-43. [DOI: 10.1158/0008-5472.can-09-2995] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Vachharajani V, Vital S, Russell J. Modulation of circulating cell–endothelial cell interaction by erythropoietin in lean and obese mice with cecal ligation and puncture. PATHOPHYSIOLOGY 2010; 17:9-18. [DOI: 10.1016/j.pathophys.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 12/22/2022] Open
|
27
|
Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 2009; 11:363-76. [PMID: 20033288 DOI: 10.1007/s10522-009-9260-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/09/2009] [Indexed: 12/26/2022]
Abstract
The ability of very old animals to make new muscle after injury remains controversial. This issue has major implications for the regenerative potential of damaged geriatric human muscle, to age-related loss of muscle mass (sarcopenia) and to the proposed need for muscle stem cell therapy for the aged. To further address issues of inherent myogenic capacity and the role of host systemic factors in new muscle formation, whole muscle grafts were transplanted between geriatric (aged 27-29 months) and young (3 months) C57Bl/6J mice and compared with autografts in geriatric and young mice. Grafts were sampled at 5 and 10 days for histological analysis. Inflammation and formation of new myotubes was strikingly impaired at 5 days in the geriatric muscle autografts. However, there was a strong inflammatory response by the geriatric hosts to young muscle grafts and geriatric muscles provoked an inflammatory response by young hosts at 5 days. At 10 days, extensive myotube formation in geriatric muscle autografts (equivalent to that seen in young autografts and both other groups) confirmed excellent intrinsic capacity of myogenic (stem) cells to proliferate and fuse. The key conclusion is that a weaker chemotactic stimulus by damaged geriatric muscle, combined with a reduced inflammatory response of old hosts, results in delayed inflammation in geriatric muscle autografts. This delay is transient. Once inflammation occurs, myogenesis can proceed. The presence of well developed myotubes in old muscle autografts at 10 days confirms a very good inherent myogenic response of geriatric skeletal muscle.
Collapse
|
28
|
RECOMBINANT HUMAN SOLUBLE TUMOR NECROSIS FACTOR-ALPHA RECEPTOR FUSION PROTEIN PARTLY ATTENUATES VENTILATOR-INDUCED LUNG INJURY. Shock 2009; 31:262-6. [DOI: 10.1097/shk.0b013e31817d42dd] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Wollin M, Abele S, Bruns H, Weyand M, Kalden JR, Ensminger SM, Spriewald BM. Inhibition of TNF-alpha reduces transplant arteriosclerosis in a murine aortic transplant model. Transpl Int 2008; 22:342-9. [PMID: 19055619 DOI: 10.1111/j.1432-2277.2008.00802.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Experimental and clinical data provide evidence that TNF-alpha contributes to acute and chronic allograft rejection. In this study, we explored the effect of TNF-alpha blockade using the chimeric monoclonal antibody infliximab on the development of transplant arterisoclerosis in a fully mismatched aortic allograft model. Post-transplant treatment of CBA (H2(k)) recipients with 250 mug infliximab (cumulative dose 1.25 mg) reduced luminal occlusion of C57Bl/6 (H2(b)) aortic grafts on day 30 from 77 +/- 5% in untreated controls to 52 +/- 6%. Increasing the dose of anti-TNF-alpha antibody had no further beneficial effect. Treatment with human control immunoglobulin had no effect on intima proliferation. Under TNF-alpha blockade, ICAM-1 and PDGF mRNA expression within the grafts was strongly reduced, whereas iNOS expression was enhanced. The data show that TNF-alpha blockade using infliximab can reduce the development of transplant arteriosclerosis in fully mismatched murine aortic grafts.
Collapse
Affiliation(s)
- Martina Wollin
- Department for Internal Medicine 3 and Institute for Clinical Immunology, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Shornick LP, Wells AG, Zhang Y, Patel AC, Huang G, Takami K, Sosa M, Shukla NA, Agapov E, Holtzman MJ. Airway epithelial versus immune cell Stat1 function for innate defense against respiratory viral infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:3319-28. [PMID: 18292557 DOI: 10.4049/jimmunol.180.5.3319] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The epithelial surface is often proposed to actively participate in host defense, but evidence that this is the case remains circumstantial. Similarly, respiratory paramyxoviral infections are a leading cause of serious respiratory disease, but the basis for host defense against severe illness is uncertain. Here we use a common mouse paramyxovirus (Sendai virus) to show that a prominent early event in respiratory paramyxoviral infection is activation of the IFN-signaling protein Stat1 in airway epithelial cells. Furthermore, Stat1-/- mice developed illness that resembled severe paramyxoviral respiratory infection in humans and was characterized by increased viral replication and neutrophilic inflammation in concert with overproduction of TNF-alpha and neutrophil chemokine CXCL2. Poor control of viral replication as well as TNF-alpha and CXCL2 overproduction were both mimicked by infection of Stat1-/- airway epithelial cells in culture. TNF-alpha drives the CXCL2 response, because it can be reversed by TNF-alpha blockade in vitro and in vivo. These findings pointed to an epithelial defect in Stat1-/- mice. Indeed, we next demonstrated that Stat1-/- mice that were reconstituted with wild-type bone marrow were still susceptible to infection with Sendai virus, whereas wild-type mice that received Stat1-/- bone marrow retained resistance to infection. The susceptible epithelial Stat1-/- chimeric mice also exhibited increased viral replication as well as excessive neutrophils, CXCL2, and TNF-alpha in the airspace. These findings provide some of the most definitive evidence to date for the critical role of barrier epithelial cells in innate immunity to common pathogens, particularly in controlling viral replication.
Collapse
Affiliation(s)
- Laurie P Shornick
- Department of Biology and Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nastiuk KL, Yoo K, Lo K, Su K, Yeung P, Kutaka J, Danielpour D, Krolewski JJ. FLICE-Like Inhibitory Protein Blocks Transforming Growth Factor β1–Induced Caspase Activation and Apoptosis in Prostate Epithelial Cells. Mol Cancer Res 2008; 6:231-42. [DOI: 10.1158/1541-7786.mcr-07-0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13-21 months) mice. Exp Gerontol 2008; 43:550-62. [PMID: 18364250 DOI: 10.1016/j.exger.2008.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/11/2022]
Abstract
Injured skeletal muscle generally regenerates less efficiently with age, but little is understood about the effects of ageing on the very early inflammatory and neovascular events in the muscle repair process. This study used a total of 174 whole muscle grafts transplanted within and between young and old mice to analyse the effects of ageing on the early inflammatory response in two strains of mice (BALB/c and SJL/J). There was a very slight delay in the early inflammatory response, and in the appearance of myotubes at day 4 in BALB/c muscle grafted into an old host environment (implicating systemic events). In SJL/J mice, the initial speed of the inflammatory response was slightly delayed with old muscle grafts regardless of host age (implicating muscle-derived factors), while an old host environment transiently affected myogenesis (myotube formation). The slight delays in inflammatory and neovascular responses in old mice did not dramatically impact on the overall formation of new muscle. The neovascular response to injured young and old muscle tissue was further analysed using the corneal micropocket assay. This showed a very clear 1-2 day delay in angiogenesis induced by old versus young BALB/c muscle tissue implanted into the young rat cornea, indicating that new blood vessel formation is at least partly determined by muscle-derived factors. Taken together these results indicate that, while there are slight age-associated delays in inflammation and neovascularisation in response to injured muscle, there is no detrimental effect on myogenesis in the mouse model used in this study.
Collapse
|
33
|
NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl) 2008; 86:747-59. [PMID: 18246321 PMCID: PMC2480606 DOI: 10.1007/s00109-008-0308-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/23/2007] [Accepted: 12/10/2007] [Indexed: 01/01/2023]
Abstract
Muscle remodeling is an important physiological process that promotes adaptive changes in cytoarchitecture and protein composition after exercise, aging, or disease conditions. Numerous transcription factors have been reported to regulate skeletal muscle homeostasis. NF-κB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferating responses; however, its role in muscle development, physiology, and disease has just started to be elucidated. The current review article aims to summarize the literature on the role of NF-κB signaling in skeletal muscle pathophysiology, investigated over the last years using in vitro and more recently in vivo systems. Understanding the exact role of NF-κB in muscle cells will allow better therapeutic manipulations in the setting of human muscle diseases.
Collapse
|
34
|
Radley HG, Davies MJ, Grounds MD. Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 2008; 18:227-38. [PMID: 18207402 DOI: 10.1016/j.nmd.2007.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/10/2007] [Accepted: 11/01/2007] [Indexed: 11/26/2022]
Abstract
Tumour necrosis factor (TNF) is a potent inflammatory cytokine that appears to exacerbate damage of dystrophic muscle in vivo. The monoclonal murine specific antibody cV1q that specifically neutralises murine TNF demonstrated significant anti-inflammatory effects in dystrophic mdx mice. cV1q administration protected dystrophic skeletal myofibres against necrosis in both young and adult mdx mice and in adult mdx mice subjected to 48 h voluntary wheel exercise. Long-term studies (up to 90 days) in voluntarily exercised mdx mice showed beneficial effects of cV1q treatment with reduced histological evidence of myofibre damage and a striking decrease in serum creatine kinase levels. However, in the absence of exercise long-term cV1q treatment did not reduce necrosis or background pathology in mdx mice. An additional measure of well-being in the cV1q treated mice was that they ran significantly more than control mdx mice.
Collapse
Affiliation(s)
- Hannah G Radley
- School of Anatomy and Human Biology, The University of Western Australia, Anatomy and Human Biology, Perth, WA 6009, Australia
| | | | | |
Collapse
|
35
|
Klyen BR, Armstrong JJ, Adie SG, Radley HG, Grounds MD, Sampson DD. Three-dimensional optical coherence tomography of whole-muscle autografts as a precursor to morphological assessment of muscular dystrophy in mice. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:011003. [PMID: 18315352 DOI: 10.1117/1.2870170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional optical coherence tomography (3D-OCT) is used to evaluate the structure and pathology of regenerating mouse skeletal muscle autografts for the first time. The death of myofibers with associated inflammation and subsequent new muscle formation in this graft model represents key features of necrosis and inflammation in the human disease Duchenne muscular dystrophy. We perform 3D-OCT imaging of excised autografts and compare OCT images with coregistered histology. The OCT images readily distinguish the necrotic and inflammatory tissue of the graft from the intact healthy muscle fibers in the underlying host tissue. These preliminary findings suggest that, with further development, 3D-OCT could be used as a tool for the evaluation of small-animal muscle morphology and pathology, in particular, for analysis of mouse models of muscular dystrophy.
Collapse
Affiliation(s)
- Blake R Klyen
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, Cheng SL, Towler DA. Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr-/- mice. Arterioscler Thromb Vasc Biol 2007; 27:2589-96. [PMID: 17932314 DOI: 10.1161/atvbaha.107.153668] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Aortic calcification is prevalent in type II diabetes (T2DM), enhancing morbidity and tracking metabolic syndrome parameters. Ldlr(-/-) mice fed high-fat "Westernized" diets (HFD) accumulate aortic calcium primarily in the tunica media, mediated via osteogenic morphogens and transcriptional programs that induce aortic alkaline phosphatase (ALP). Because elevated TNF-alpha is characteristic of obesity with T2DM, we examined contributions of this inflammatory cytokine. METHODS AND RESULTS HFD promoted obesity, hyperglycemia, and hyperlipidemia, and upregulated serum TNF-alpha in Ldlr(-/-) mice. Serum haptoglobin (inflammatory marker) was increased along with aortic expression of BMP2, Msx2, Wnt3a, and Wnt7a. Dosing with the TNF-alpha neutralizing antibody infliximab did not reduce obesity, hypercholesterolemia, or hyperglycemia; however, haptoglobin, aortic BMP2, Msx2, Wnt3a, and Wnt7a and aortic calcium accumulation were downregulated by infliximab. Mice with vascular TNF-alpha augmented by a transgene (SM22-TNFalphaTg) driven from the SM22 promoter upregulated aortic Msx2, Wnt3a, and Wnt7a. Furthermore, SM22-TNFalphaTg;TOPGAL mice exhibited greater aortic beta-galactosidase reporter staining versus TOPGAL sibs, indicating enhanced mural Wnt signaling. In aortic myofibroblast cultures, TNF-alpha upregulated Msx2, Wnt3a, Wnt7a, and ALP. ALP induction was inhibited by Dkk1, an antagonist of paracrine Wnt actions. CONCLUSIONS TNF-alpha promote aortic Msx2-Wnt programs that contribute to aortic calcium accumulation in T2DM.
Collapse
MESH Headings
- Alkaline Phosphatase
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Aorta/enzymology
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/etiology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Proteins/metabolism
- Calcinosis/etiology
- Calcinosis/metabolism
- Calcinosis/pathology
- Calcinosis/prevention & control
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Dietary Fats/administration & dosage
- Disease Models, Animal
- Fibroblasts/enzymology
- Fibroblasts/metabolism
- Haptoglobins/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Infliximab
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microfilament Proteins/genetics
- Muscle Proteins/genetics
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/blood
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt3 Protein
- Wnt3A Protein
Collapse
Affiliation(s)
- Ziyad Al-Aly
- Division of Bone and Mineral Diseases, Washington University School of Medicine, Campus Box 8301, 660 South Euclid Avenue, St. Louis, MO 63110.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Díaz-Ley B, Guhl G, Fernández-Herrera J. Uso de fármacos biológicos en dermatosis fuera de la indicación aprobada. Primera parte: infliximab y adalimumab. ACTAS DERMO-SIFILIOGRAFICAS 2007. [DOI: 10.1016/s0001-7310(07)70159-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Malleo G, Mazzon E, Genovese T, Di Paola R, Muià C, Centorrino T, Siriwardena AK, Cuzzocrea S. Etanercept attenuates the development of cerulein-induced acute pancreatitis in mice: a comparison with TNF-alpha genetic deletion. Shock 2007; 27:542-51. [PMID: 17438460 DOI: 10.1097/01.shk.0000246900.50445.1d] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TNF-alpha plays a pivotal role in the pathogenesis of acute pancreatitis. Recent studies have shown that TNF-alpha inhibition significantly ameliorates the course of experimental acute pancreatitis, but in this context, the effects of Etanercept, a novel anti-TNF-alpha agent, have not been investigated so far. The aims of the present study are (i) to assess the effects of pharmacological inhibition of TNF-alpha by means of Etanercept on the inflammatory response and apoptosis in a murine model of necrotizing acute pancreatitis and (ii) to compare the results to those observed in TNF-alpha receptor 1 knockout (TNFR1-KO) mice. Necrotizing acute pancreatitis was induced in TNF-alpha wild type for TNFR1 (WT) and TNFR1-KO mice by intraperitoneal injection of cerulein (hourly x5, 50 microg/kg). In another group of WT mice, Etanercept was administered (5 or 10 mg/kg, s.c.) at 1 h after first cerulein injection. Control groups received saline treatment. After 24 h, biochemical, histological, and immunohistochemical evidences of acute pancreatitis developed in all cerulein-treated mice; apoptosis was also present in the pancreas. Contrarily, pancreatitis histological features, amylase and lipase levels, pancreas water content, and myeloperoxidase activity were reduced in a similar degree in Etanercept-treated and TNFR1-KO mice. Likewise, in these two groups, immunohistochemical stainings and terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling assay were found negative. TNF-alpha receptor 1 gene deletion and Etanercept administration ameliorate the course of experimental acute pancreatitis in a similar degree. Future studies on clinical applications of Etanercept in pancreatitis seem promising.
Collapse
Affiliation(s)
- Giuseppe Malleo
- Department of Clinical, Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N, Serhan CN, Smith LEH. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007; 13:868-873. [PMID: 17589522 PMCID: PMC4491412 DOI: 10.1038/nm1591] [Citation(s) in RCA: 521] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/16/2007] [Indexed: 12/12/2022]
Abstract
Many sight-threatening diseases have two critical phases, vessel loss followed by hypoxia-driven destructive neovascularization. These diseases include retinopathy of prematurity and diabetic retinopathy, leading causes of blindness in childhood and middle age affecting over 4 million people in the United States. We studied the influence of omega-3- and omega-6-polyunsaturated fatty acids (PUFAs) on vascular loss, vascular regrowth after injury, and hypoxia-induced pathological neovascularization in a mouse model of oxygen-induced retinopathy. We show that increasing omega-3-PUFA tissue levels by dietary or genetic means decreased the avascular area of the retina by increasing vessel regrowth after injury, thereby reducing the hypoxic stimulus for neovascularization. The bioactive omega-3-PUFA-derived mediators neuroprotectinD1, resolvinD1 and resolvinE1 also potently protected against neovascularization. The protective effect of omega-3-PUFAs and their bioactive metabolites was mediated, in part, through suppression of tumor necrosis factor-alpha. This inflammatory cytokine was found in a subset of microglia that was closely associated with retinal vessels. These findings indicate that increasing the sources of omega-3-PUFA or their bioactive products reduces pathological angiogenesis. Western diets are often deficient in omega-3-PUFA, and premature infants lack the important transfer from the mother to the infant of omega-3-PUFA that normally occurs in the third trimester of pregnancy. Supplementing omega-3-PUFA intake may be of benefit in preventing retinopathy.
Collapse
Affiliation(s)
- Kip M Connor
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - John Paul SanGiovanni
- Division of Epidemiology and Clinical Research, National Eye Institute, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Chatarina Lofqvist
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
- Department of Pediatrics, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Christopher M Aderman
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Akiko Higuchi
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Song Hong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Elke A Pravda
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Sharon Majchrzak
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 12420 Parklawn Drive, Rockville, Maryland 20892, USA
| | - Deborah Carper
- Office of the Director, National Eye Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Ann Hellstrom
- Dept of Clinical Neurosciences, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Jing X Kang
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Research, National Eye Institute, 10 Center Drive, Bethesda, Maryland 20892, USA
| | - Norman Salem
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 12420 Parklawn Drive, Rockville, Maryland 20892, USA
| | - Charles N Serhan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V, Fraysse B, Rolland JF, Mangieri D, Andreetta F, Ferro P, Camerino C, Zallone A, Confalonieri P, De Luca A. Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 2007; 33:344-59. [PMID: 17493014 DOI: 10.1111/j.1365-2990.2007.00798.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of tumour necrosis factor (TNF)-alpha or cyclo-oxygenase-2 (COX-2) eicosanoids in dystrophinopathies has been evaluated by chronically treating (4-8 weeks) adult dystrophic mdx mice with the anti-TNF-alpha etanercept (0.5 mg/kg) or the COX-2 inhibitor meloxicam (0.2 mg/kg). Throughout the treatment period the mdx mice underwent a protocol of exercise on treadmill in order to worsen the pathology progression; gastrocnemious muscles from exercised mdx mice showed an intense staining for TNF-alpha by immunohistochemistry. In vivo, etanercept, but not meloxicam, contrasted the exercise-induced forelimb force drop. Electrophysiological recordings ex vivo, showed that etanercept counteracted the decrease in chloride channel function (gCl), a functional index of myofibre damage, in both diaphragm and extensor digitorum longus (EDL) muscle, meloxicam being effective only in EDL muscle. None of the drugs ameliorated calcium homeostasis detected by electrophysiology and/or spectrofluorimetry. Etanercept, more than meloxicam, effectively reduced plasma creatine kinase (CK). Etanercept-treated muscles showed a reduction of connective tissue area and of pro-fibrotic cytokine TGF-beta1 vs. untreated ones; however, the histological profile was weakly ameliorated. In order to better evaluate the impact of etanercept treatment on histology, a 4-week treatment was performed on 2-week-old mdx mice, so to match the first spontaneous degeneration cycle. The histology profile of gastrocnemious was significantly improved with a reduction of degenerating area; however, CK levels were only slightly lower. The present results support a key role of TNF-alpha, but not of COX-2 products, in different phases of dystrophic progression. Anti-TNF-alpha drugs may be useful in combined therapies for Duchenne patients.
Collapse
Affiliation(s)
- S Pierno
- Unit of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van Diepen A, Martina CAE, Flierman R, Janssen R, van Dissel JT. Treatment with anti-TNF? does not induce reactivation of latent Salmonella enterica serovar Typhimurium infection in C3H/HeN mice. Scand J Immunol 2007; 65:407-11. [PMID: 17444950 DOI: 10.1111/j.1365-3083.2007.01920.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapy with tumour necrosis factor-alpha (TNFalpha)-blocking agents is successful in treating inflammatory disorders, but carries an increased risk of manifest and reactivating infection with intracellular bacteria. In a mouse model of latent Salmonella typhimurium infection, neutralization of TNFalpha did not result in reactivation of infection, suggesting only a minor role for TNFalpha during latency of persistent Salmonella infection.
Collapse
Affiliation(s)
- A van Diepen
- Department of Infectious Diseases, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Esposito E, Mazzon E, Muià C, Meli R, Sessa E, Cuzzocrea S. Splanchnic ischemia and reperfusion injury is reduced by genetic or pharmacological inhibition of TNF-alpha. J Leukoc Biol 2007; 81:1032-43. [PMID: 17210619 DOI: 10.1189/jlb.0706480] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the present study, we used TNF-alpha receptor 1 knockout (TNF-alphaR1KO) mice to evaluate a possible role of TNF-alpha on the pathogenesis of ischemia and reperfusion injury of the multivisceral organs. Ischemia and reperfusion injury was induced in mice by clamping the superior mesenteric artery and the celiac artery for 30 min, followed thereafter by reperfusion. Sixty minutes after reperfusion, animals were killed for histological examination and biochemical studies. Injured wild-type (WT) mice developed a significant increase of ileum TNF-alpha levels, myeloperoxidase activity, and marked histological injury and apoptosis. Ischemia and reperfusion injury of the multivisceral organs was also associated with a significant mortality. Reperfused ileum sections from injured WT mice showed positive staining for P-selectin, VCAM, ICAM-1, and E-selectin. The intensity and degree of P-selectin, E-selectin, VCAM, and ICAM-1 were reduced markedly in tissue sections from injured TNF-alphaR1KO mice. Ischemia and reperfusion-injured TNF-alphaR1KO mice also showed a significant reduction of neutrophil infiltration into the intestine, a reduction of apoptosis, an improved histological status of the intestine, and survival. In addition, we investigated the effect of Etanercept, a TNF-alpha soluble receptor construct, on ischemia and reperfusion injury of the multivisceral organs. Etanercept (5 mg/kg administered i.p. 5 min prior to reperfusion) significantly reduced the inflammatory response and the ileum injury. Taken together, our results clearly demonstrate that TNF-alpha plays an important role in the ischemia and reperfusion injury and put forward the hypothesis that modulation of TNF-alpha expression may represent a novel and possible strategy.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Experimental Pharmacy, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Díaz-Ley B, Guhl G, Fernández-Herrera J. Off-Label Use of Biologic Agents in the Treatment of Dermatosis, Part 1: Infliximab and Adalimumab. ACTAS DERMO-SIFILIOGRAFICAS 2007. [DOI: 10.1016/s1578-2190(07)70539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Mane VP, Toietta G, McCormack WM, Conde I, Clarke C, Palmer D, Finegold MJ, Pastore L, Ng P, Lopez J, Lee B. Modulation of TNFalpha, a determinant of acute toxicity associated with systemic delivery of first-generation and helper-dependent adenoviral vectors. Gene Ther 2006; 13:1272-80. [PMID: 16708078 DOI: 10.1038/sj.gt.3302792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 02/27/2006] [Accepted: 03/16/2006] [Indexed: 01/08/2023]
Abstract
Understanding the determinants of the host innate immune response to systemic administration of adenoviral (Ad) vectors is critical for clinical gene therapy. Acute toxicity occurs within minutes to hours after vector administration and is characterized by activation of innate immune responses. Our data indicate that in mice, indicators of vector toxicity include elevations of cytokine levels, liver transaminase levels and thrombocytopenia. To discern potential targets for blunting this host response, we evaluated genetic factors in the host response to systemically administered first-generation Ad vectors (FGV) and helper-dependent Ad vectors (HDV) containing beta-galactosidase expression cassettes. A preliminary screen for modulation of vector-induced thrombocytopenia revealed no role for interferon-gamma, mast cells or perforin. However, vector-induced thrombocytopenia and interleukin 6 (IL-6) expression are less evident in tumor necrosis factor alpha (TNFalpha)-deficient mice. Moreover, we also demonstrated that TNFalpha blockade via antibody or huTNFR:Fc pretreatment attenuates both thrombocytopenia (>40% increase in platelet count) and IL-6 expression (>80% reduction) without affecting interleukin 12 , liver enzymes, hematological indices or vector transduction in a murine model. Our data indicate that the use of HDV, in combination with clinically approved TNFalpha immunomodulation, may represent an approach for improving the therapeutic index of Ad gene therapy for human clinical trials.
Collapse
Affiliation(s)
- V P Mane
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hodgetts S, Radley H, Davies M, Grounds MD. Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006; 16:591-602. [PMID: 16935507 DOI: 10.1016/j.nmd.2006.06.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/22/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Necrosis of skeletal muscle fibres in the lethal childhood myopathy Duchenne Muscular Dystrophy results from deficiency of the cell membrane associated protein, dystrophin. We test the hypothesis in dystrophin-deficient mice, that the initial sarcolemmal breakdown resulting from dystrophin deficiency is exacerbated by inflammatory cells, specifically neutrophils, and that cytokines, specifically Tumour Necrosis Factor alpha (TNFalpha), contribute to myofibre necrosis. Antibody depletion of host neutrophils resulted in a delayed and significantly reduced amount of skeletal muscle breakdown in young dystrophic mdx mice. A more striking and prolonged protective effect was seen after pharmacological blockade of TNFalpha bioactivity using Etanercept. The extent of exercise induced myofibre necrosis in adult mdx mice after voluntarily wheel exercise was also reduced after Etanercept administration. These data show a clear role for neutrophils and TNFalpha in necrosis of dystrophic mdx muscle in vivo. Etanercept is a highly specific anti-inflammatory drug, widely used clinically, and potential application to muscular dystrophies is suggested by this reduced breakdown of mdx skeletal muscle.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Dystrophin/deficiency
- Etanercept
- Female
- Immunoglobulin G/pharmacology
- Immunoglobulin G/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Inflammation/drug therapy
- Inflammation/physiopathology
- Inflammation/prevention & control
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/immunology
- Muscular Dystrophy, Duchenne/physiopathology
- Necrosis/drug therapy
- Necrosis/physiopathology
- Necrosis/prevention & control
- Neutrophils/drug effects
- Neutrophils/immunology
- Physical Conditioning, Animal/adverse effects
- Receptors, Tumor Necrosis Factor/therapeutic use
- Treatment Outcome
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Stuart Hodgetts
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | | | | | |
Collapse
|