1
|
Tran EL, Stuedemann SA, Ridlon M, Link OD, Keil Stietz KP, Crawford LK. Genetic tools that target mechanoreceptors produce reliable labeling of bladder afferents and altered mechanosensation. Am J Physiol Renal Physiol 2025; 328:F360-F374. [PMID: 39611874 DOI: 10.1152/ajprenal.00151.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanosensitive neurons are important sensors of bladder distention, but their role in urologic disease remains unclear. Our current knowledge about how disease alters bladder sensation comes from studies that focus primarily on peptidergic nociceptors, leaving our understanding of neuropeptide-negative mechanoreceptors incomplete. In this study, we found that a substantial proportion of neurofilament heavy (NFH)-positive A-fibers innervating the bladder was calcitonin gene-related peptide (CGRP)-negative, potentially representing uncharacterized mechanoreceptors. We then identified two genetic strategies that label mechanoreceptors in mouse skin and confirmed that they likewise label bladder afferents. Cre-mediated tdTomato reporter expression driven by tropomyosin receptor kinase B (TrkB), which labels Aδ mechanoreceptors in the skin, successfully labeled bladder nerve terminals. The majority of TrkB bladder afferents were CGRP-negative and NFH-positive, with more characteristic staining patterns seen at the level of the cell body. The Ret proto-oncogene (Ret) also produced robust labeling of bladder afferents, where colocalization with CGRP and NFH was consistent with multiple afferent subtypes. Because TrkB labeling was more specific for putative mechanoreceptors, we directly tested the role of TrkB neurons in bladder mechanosensation in vivo. Using an intersectional genetic strategy, we selectively ablated TrkB afferents and measured bladder responses to mechanical distention using anesthetized cystometry. Compared with controls, mice with ablated TrkB afferents required higher distention pressure to elicit voids. Interestingly, after ablation, distention also increased the frequency of nonvoiding contractions, a poorly understood phenotype of several urologic diseases. These genetic strategies comprise critical new tools to advance the study of mechanoreceptors in bladder function and urologic disease pathophysiology.NEW & NOTEWORTHY Most mechanosensitive afferents do not express markers of peptidergic nociceptors and therefore remain largely overlooked in studies of bladder dysfunction and disease. TrkB-mediated labeling of putative Aδ mechanoreceptors emerged as a valuable tool for the study of neuropeptide-negative bladder afferents with a confirmed role in bladder mechanosensation. Targeted neuronal ablation likewise validated an intersectional genetic strategy that can now directly test the role of TrkB mechanoreceptors in bladder physiology and disease.
Collapse
Affiliation(s)
- Emily L Tran
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Sara A Stuedemann
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Monica Ridlon
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Olivia D Link
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| | - LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Montalbetti N, Dalghi MG, Parakala-Jain T, Clayton D, Apodaca G, Carattino MD. Antinociceptive effect of the calcitonin gene-related peptide receptor antagonist BIBN4096BS in mice with bacterial cystitis. Am J Physiol Renal Physiol 2023; 325:F779-F791. [PMID: 37823199 PMCID: PMC10878727 DOI: 10.1152/ajprenal.00217.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
Patients with urinary tract infections (UTIs) suffer from urinary frequency, urgency, dysuria, and suprapubic pain, but the mechanisms by which bladder afferents sense the presence of uropathogens and encode this information is not well understood. Calcitonin gene-related peptide (CGRP) is a 37-mer neuropeptide found in a subset of bladder afferents that terminate primarily in the lamina propria. Here, we report that the CGRP receptor antagonist BIBN4096BS lessens lower urinary tract symptoms and prevents the development of pelvic allodynia in mice inoculated with uropathogenic Escherichia coli (UPEC) without altering urine bacterial loads or the host immune response to the infection. These findings indicate that CGRP facilitates the processing of noxious/inflammatory stimuli during UPEC infection. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria, a region where afferent fibers containing CGRP terminate, that expresses the canonical CGRP receptor components Calcrl and Ramp1. We propose that these fibroblasts, in conjunction with CGRP+ afferents, form a circuit that senses substances released during the infection and transmit this noxious information to the central nervous system.NEW & NOTEWORTHY Afferent C fibers release neuropeptides including calcitonin gene-related peptide (CGRP). Here, we show that the specific CGRP receptor antagonist, BIBN409BS, ameliorates lower urinary tract symptoms and pelvic allodynia in mice inoculated with uropathogenic E. coli. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria that expresses the canonical CGRP receptor. Our findings indicate that CGRP contributes to the transmission of nociceptive information arising from the bladder.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marianela G Dalghi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Tanmay Parakala-Jain
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dennis Clayton
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Gerard Apodaca
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Liao Y, Du X, Fu Y, Liu L, Wei J, An Q, Luo X, Gao F, Jia S, Chang Y, Guo M, Liu H. Mechanism of traditional Chinese medicine in treating overactive bladder. Int Urol Nephrol 2023; 55:489-501. [PMID: 36479677 PMCID: PMC9957912 DOI: 10.1007/s11255-022-03434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Overactive bladder syndrome (OAB) has made increasing progress in mechanism and treatment research. Traditional Chinese medicine (TCM) is a common complementary therapy for OAB, and it has been found to be effective. However, the intervention mechanism of TCM in the treatment of OAB is still unclear. The aim of this review is to consolidate the current knowledge about the mechanism of TCM: acupuncture, moxibustion, herbs in treating OAB, and the animal models of OAB commonly used in TCM. Finally, we put forward the dilemma of TCM treatment of OAB and discussed the insufficiency and future direction of TCM treatment of OAB.
Collapse
Affiliation(s)
- Yuxiang Liao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Xin Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Yuanbo Fu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Jiangyan Wei
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Qi An
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuanzhi Luo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Gao
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuhan Jia
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Chang
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mengxi Guo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huilin Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Kaleczyc J, Sienkiewicz W, Lepiarczyk E, Kasica‐Jarosz N, Pidsudko Z. The influence of castration on intramural neurons of the urinary bladder trigone in male pigs. J Anat 2021; 239:720-731. [PMID: 33971693 PMCID: PMC8349450 DOI: 10.1111/joa.13450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
The present study investigated the influence of castration performed at neonatal age on neuronal elements in the intramural ganglia of the urinary bladder trigone (UBT) in male pigs using double-labeling immunohistochemistry. The ganglia were examined in intact (IP) 7-day-old (castration day) pigs, and at 3 and 6 months after surgery. In IP and control (3- and 6-month-old noncastrated pigs) groups, virtually, all neurons were adrenergic (68%) or cholinergic (32%) in nature. Many of them (32%, 51%, and 81%, respectively; 56%, 75%, and 85% adrenergic; and 32%, 52%, and 65% cholinergic, respectively) stained for the androgen receptor (AR), and only a small number of nerve cells were caspase-3 (CASP-3)-positive. In 3- and 6-month-old castrated pigs, an excessive loss (87.6% and 87.5%, respectively) of neurons and intraganglionic nerve fibers was observed. The majority of the surviving adrenergic (61% and 72%, respectively) and many cholinergic (41% and 31%, respectively) neurons expressed CASP-3 and were also AR-positive (61% and 66%, and 40% and 36%, respectively). This study revealed for the first time the excessive loss of intramural UBT neurons following castration, which could have resulted from apoptosis induced by androgen deprivation.
Collapse
Affiliation(s)
- Jerzy Kaleczyc
- Department of Animal AnatomyFaculty of Veterinary MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Waldemar Sienkiewicz
- Department of Animal AnatomyFaculty of Veterinary MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Ewa Lepiarczyk
- Department of Human Physiology and PathophysiologySchool of MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Natalia Kasica‐Jarosz
- Department of Animal AnatomyFaculty of Veterinary MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| | - Zenon Pidsudko
- Department of Animal AnatomyFaculty of Veterinary MedicineUniversity of Warmia and Mazury in OlsztynOlsztynPoland
| |
Collapse
|
5
|
Daugherty SL, Beckel JM, Kim KA, Freeman BA, Liu J, Wang S, de Groat WC, Zhang X. TRP Channel Agonists Activate Different Afferent Neuromodulatory Mechanisms in Guinea Pig Urinary Bladder. Front Physiol 2021; 12:692719. [PMID: 34248678 PMCID: PMC8264756 DOI: 10.3389/fphys.2021.692719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Activation of TRP channels expressed in urinary bladder afferent nerves and urothelium releases neurotransmitters that influence bladder function. Experiments were undertaken to examine the mechanisms underlying effects of TRPA1 (allyl isothiocyanate, AITC), TRPV1 (capsaicin, CAPS), and TRPC (oleoyl-2-acetyl-sn-glycerol, OAG) agonists on guinea pig bladder activity. Effects of these agonists were compared with effects of nitro-oleic acid (OA-NO2), an electrophilic nitro-fatty acid, known to activate TRPV1, TRPA1 or TRPC channels in sensory neurons. AITC (100 μM) increased (231%) area of spontaneous bladder contractions (SBCs) an effect reduced by a TRPA1 antagonist (HC3-03001, HC3, 10 μM) and reversed to inhibition by indomethacin (INDO, 500 nM) a cyclooxygenase inhibitor. The post-INDO inhibitory effect of AITC was mimicked (39% depression) by calcitonin gene-related peptide (CGRP, 100 nM) and blocked by a CGRP antagonist (BIBN, 25 μM). CAPS (1 μM) suppressed SBCs by 30% in 81% of strips, an effect blocked by a TRPV1 antagonist (diarylpiperazine, 1 μM) or BIBN. SBCs were suppressed by OA-NO2 (30 μM, 21% in 77% of strips) or by OAG (50 μM, 30%) an effect blocked by BIBN. OA-NO2 effects were not altered by HC3 or diarylpiperazine. OA-NO2 also induced excitation in 23% of bladder strips. These observations raise the possibility that guinea pig bladder is innervated by at least two types of afferent nerves: [1] Type A express TRPA1 receptors that induce the release of prostaglandins and excite the detrusor, [2] Type B express TRPV1, TRPA1 and TRPC receptors and release CGRP that inhibits the detrusor.
Collapse
Affiliation(s)
- Stephanie L. Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jonathan M. Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kyoungeun A. Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
6
|
Frara N, Giaddui D, Braverman AS, Porreca DS, Brown JM, Mazzei M, Wagner IJ, Pontari MA, Tiwari E, Testa CL, Yu D, Hobson LJ, Barbe MF, Ruggieri MR. Nerve transfer for restoration of lower motor neuron-lesioned bladder function. Part 1: attenuation of purinergic bladder smooth muscle contractions. Am J Physiol Regul Integr Comp Physiol 2021; 320:R885-R896. [PMID: 33759578 PMCID: PMC8285613 DOI: 10.1152/ajpregu.00299.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study determined the effect of pelvic organ decentralization and reinnervation 1 yr later on the contribution of muscarinic and purinergic receptors to ex vivo, nerve-evoked, bladder smooth muscle contractions. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, 8 were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Controls included six sham-operated and three unoperated animals. Detrusor muscle was assessed for contractile responses to potassium chloride (KCl) and electric field stimulation (EFS) before and after purinergic receptor desensitization with α, β-methylene adenosine triphosphate (α,β-mATP), muscarinic receptor antagonism with atropine, or sodium channel blockade with tetrodotoxin. Atropine inhibition of EFS-induced contractions increased in decentralized and reinnervated animals compared with controls. Maximal contractile responses to α,β-mATP did not differ between groups. In strips from decentralized and reinnervated animals, the contractile response to EFS was enhanced at lower frequencies compared with normal controls. The observation of increased blockade of nerve-evoked contractions by muscarinic antagonist with no change in responsiveness to purinergic agonist suggests either decreased ATP release or increased ecto-ATPase activity in detrusor muscle as a consequence of the long-term decentralization. The reduction in the frequency required to produce maximum contraction following decentralization may be due to enhanced nerve sensitivity to EFS or a change in the effectiveness of the neurotransmission.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Dania Giaddui
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alan S Braverman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Danielle S Porreca
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Mazzei
- Department of Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania
| | - Ida J Wagner
- Department of Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania
| | - Michel A Pontari
- Department of Urology, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania
| | - Ekta Tiwari
- Department of Electrical and Computer Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Courtney L Testa
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Lucas J Hobson
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael R Ruggieri
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Electrical and Computer Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Smith-Anttila CJA, Morrison V, Keast JR. Spatiotemporal mapping of sensory and motor innervation of the embryonic and postnatal mouse urinary bladder. Dev Biol 2021; 476:18-32. [PMID: 33744254 DOI: 10.1016/j.ydbio.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
The primary function of the urinary bladder is to store urine (continence) until a suitable time for voiding (micturition). These distinct processes are determined by the coordinated activation of sensory and motor components of the nervous system, which matures to enable voluntary control at the time of weaning. Our aim was to define the development and maturation of the nerve-organ interface of the mouse urinary bladder by mapping the organ and tissue distribution of major classes of autonomic (motor) and sensory axons. Innervation of the bladder was evident from E13 and progressed dorsoventrally. Increasing defasciculation of axon bundles to single axons within the muscle occurred through the prenatal period, and in several classes of axons underwent further maturation until P7. Urothelial innervation occurred more slowly than muscle innervation and showed a clear regional difference, from E18 the bladder neck having the highest density of urothelial nerves. These features of innervation were similar in males and females but varied in timing and tissue density between different axon classes. We also analysed the pelvic ganglion, the major source of motor axons that innervate the lower urinary tract and other pelvic organs. Cholinergic, nitrergic (subset of cholinergic) and noradrenergic neuronal cell bodies were present prior to visualization of these axon classes within the bladder. Examination of cholinergic structures within the pelvic ganglion indicated that connections from spinal preganglionic neurons to pelvic ganglion neurons were already present by E12, a time at which these autonomic ganglion neurons had not yet innervated the bladder. These putative preganglionic inputs increased in density prior to birth as axon terminal fields continued to expand within the bladder tissues. Our studies also revealed in numerous pelvic ganglion neurons an unexpected transient expression of calcitonin gene-related peptide, a peptide commonly used to visualise the peptidergic class of visceral sensory axons. Together, our outcomes enhance our understanding of neural regulatory elements in the lower urinary tract during development and provide a foundation for studies of plasticity and regenerative capacity in the adult system.
Collapse
Affiliation(s)
| | - Victoria Morrison
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Vic, 3010, Australia.
| |
Collapse
|
8
|
Evaluation of Choline and Acetylcholine Levels in Responders and Nonresponders to Anticholinergic Therapy for Overactive Bladder Syndrome. Female Pelvic Med Reconstr Surg 2020; 26:e91-e96. [PMID: 31651539 DOI: 10.1097/spv.0000000000000787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE This study aimed to determine whether levels of choline (Ch) and acetylcholine (Ach) differ between responders and nonresponders to anticholinergic therapy. METHODS Patients prescribed an anticholinergic were evaluated using the Overactive Bladder Symptom Score; Medical, Epidemiologic and Social Aspects of Aging and Incontinence Questionnaire; and Incontinence Impact Questionnaire-7. A 1-day voiding diary and a urine sample were collected. After treatment for 12 weeks, the questionnaires were administered and 1-day voiding diary was completed. Levels of Ach and Ch were measured by liquid chromatography with tandem mass spectrometry. Subjects were divided into responders and nonresponders. Wilcoxon rank sum test and Fisher exact test were used to express differences between groups. Spearman ρ correlation coefficient was used to determine the relationship between Ach and Ch and symptom severity, patient demographics, and questionnaire scores. RESULTS Thirty-one women were included in the analysis. The treatment response rate was 48.8%. The median age was 67 years (interquartile range, 50-76 years), and median body mass index was 32.3 kg/m2 (27.5-40.6 kg/m2), with 41.2% having an additional complaint of stress incontinence. There were no significant differences in symptom severity or questionnaire scores between groups.The median Ch and Ach levels were higher in responders (28.6 vs 9.2 μL, P = 0.04) and (83.1 vs 18.7 nL, P = 0.02), respectively. Levels of both Ch and Ach had moderate positive correlations with the Medical, Epidemiologic and Social Aspects of Aging and Incontinence Questionnaire urgency urinary incontinence score (ρ = 0.533 [P = 0.002] and ρ = 0.453 [P = 0.01], respectively). CONCLUSION In women with overactive bladder, urinary Ach and Ch levels are higher in responders to anticholinergic therapy compared with nonresponders.
Collapse
|
9
|
Gabella G. Afferent nerve fibres in the wall of the rat urinary bladder. Cell Tissue Res 2018; 376:25-35. [DOI: 10.1007/s00441-018-2965-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 01/28/2023]
|
10
|
Lepiarczyk E, Bossowska A, Skowrońska A, Majewski M. A study on preganglionic connections and possible viscerofugal projections from urinary bladder intramural ganglia to the caudal mesenteric ganglion in the pig. J Anat 2018; 234:263-273. [PMID: 30468248 DOI: 10.1111/joa.12916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was designed to (1) ascertain the distribution and immunohistochemical characteristics of sympathetic preganglionic neurons supplying the caudal mesenteric ganglion (CaMG) and (2) verify the existence of viscerofugal projections from the urinary bladder trigone intramural ganglia (UBT-IG) to the CaMG in female pigs (n = 6). Combined retrograde tracing and immunofluorescence methods were used. Injections of the neuronal tracer Fast Blue (FB) into the right CaMG revealed no retrogradely labelled (FB-positive; FB+ ) nerve cells in the intramural ganglia; however, many FB+ neurons were found in the spinal cord sympathetic nuclei. Double-labelling immunohistochemistry revealed that nearly all (99.4 ± 0.6%) retrogradely labelled neurons were cholinergic (choline acetyltransferase-positive; ChAT+ ) in nature. Many FB+ /ChAT+ perikarya stained positive for vesicular acetylcholine transporter (63.11 ± 5.34%), neuronal nitric oxide synthase (53.48 ± 9.62%) or cocaine- and amphetamine-regulated transcript peptide (41.13 ± 4.77%). A small number of the retrogradely labelled cells revealed immunoreactivity for calcitonin gene-related peptide (7.60 ± 1.34%) or pituitary adenylate cyclase-activating polypeptide (4.57 ± 1.43%). The present study provides the first detailed information on the arrangement and chemical features of preganglionic neurons projecting to the porcine CaMG and, importantly, strong evidence suggesting the absence of viscerofugal projections from the UBT-IG.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Skowrońska
- Department of Human Physiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mariusz Majewski
- Department of Human Physiology, School Of Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
11
|
Eggermont M, De Wachter S, Eastham J, Gillespie J. Innervation of the Epithelium and Lamina Propria of the Urethra of the Female Rat. Anat Rec (Hoboken) 2018; 302:201-214. [DOI: 10.1002/ar.23937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Monica Eggermont
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| | - Stefan De Wachter
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| | - Jane Eastham
- Uro‐physiology Research Group, The Dental and Medical SchoolNewcastle University Newcastle upon Tyne UK
| | - James Gillespie
- Department of Urology, Faculty of Medicine and Health SciencesUniversity of Antwerp Antwerp Belgium
| |
Collapse
|
12
|
Regional Structural and Functional Specializations in the Urethra of the Female Rat: Evidence for Complex Physiological Control Systems. Anat Rec (Hoboken) 2018; 301:1276-1289. [DOI: 10.1002/ar.23795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/22/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
|
13
|
Rahnama’i M, Biallosterski B, Van Kerrebroeck P, van Koeveringe G, Gillespie J, de Wachter S. Distribution and sub-types of afferent fibre in the mouse urinary bladder. J Chem Neuroanat 2017; 79:1-11. [DOI: 10.1016/j.jchemneu.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
14
|
Persyn S, Eastham J, De Wachter S, Gillespie J. Adrenergic signaling elements in the bladder wall of the adult rat. Auton Neurosci 2016; 201:40-48. [PMID: 27659399 DOI: 10.1016/j.autneu.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/25/2023]
Abstract
A growing body of work is describing the absence of a significant sympathetic innervation of the detrusor implying little sympathetic regulation of bladder contractility. However, low doses of adrenergic agonists are capable of relaxing the bladder smooth muscle. If these effects underpin a physiological response then the cellular nature and operation of this system are currently unknown. The present immunohistochemistry study was done to explore the existence of alternative adrenergic signaling elements in the rat bladder wall. Using antibodies to tyrosine hydroxylase (TH) and vesicular mono-amine transporter (vmat), few adrenergic nerves were found in the detrusor although TH immunoreactive (IR) nerves were apparent in the bladder neck. TH-IR and vmat-IR nerves were however abundant surrounding blood vessels. A population of vmat-IR cells was found within the network of interstitial cells that surround the detrusor muscle bundles. These vmat-IR cells were not or only weakly TH-IR. This suggests that these interstitial cells have the capacity to store and release catecholamines that may involve noradrenaline. Cells expressing the β1-adrenoceptor (β1AR-IR) were also detected within the interstitial cell network. Double staining with antibodies to β1AR and vmat suggests that the majority of vmat-IR interstitial cells show β1AR-IR indicative of an autocrine signaling system. In conclusion, a population of interstitial cells has the machinery to store, release and respond to catecholamines. Thus, there might exist a non-neuronal β-adrenergic system operating in the bladder wall possibly linked to one component of motor activity, micro-contractions, a system that may be involved in mechanisms underpinning bladder sensation.
Collapse
Affiliation(s)
- Sara Persyn
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| | - Jane Eastham
- Uro-physiology Research Group, The Dental and Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, England.
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| | - James Gillespie
- Department of Urology, Antwerp University Hospital and University of Antwerp, Faculty of Medicine, Antwerp, Belgium.
| |
Collapse
|
15
|
Persyn S, De Wachter S, Wyndaele JJ, Eastham J, Gillespie J. The actions of isoprenaline and mirabegron in the isolated whole rat and guinea pig bladder. Auton Neurosci 2016; 198:19-27. [DOI: 10.1016/j.autneu.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/06/2016] [Accepted: 05/20/2016] [Indexed: 12/29/2022]
|
16
|
Akino H. Spontaneous Contractile Activity of the Detrusor Muscle and Its Role in the Pathogenesis of Overactive Bladder Syndrome. Low Urin Tract Symptoms 2015; 4 Suppl 1:42-7. [PMID: 26676699 DOI: 10.1111/j.1757-5672.2011.00117.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is accumulated evidence that spontaneous contractions (SCs) in the bladder wall are associated with afferent nerve firing in the bladder. The role of the urothelium in bladder sensation might be restricted to pathological conditions, such as interstitial cystitis or chemical cystitis in which the release of urothelium-derived mediators such as adenosine triphosphate is increased. Recent publications imply that SCs in bladders with detrusor overactivity due to spinal cord injury or bladder outlet obstruction are modulated by intracellular signal transduction mechanisms such as the RhoA/Rho-kinase pathway, denervation-supersensitivity to acetylcholine, changes in ion channel activity, enhanced gap-junctional intercellular communication, alterations in interstitial cells of Cajal, the actions of local mediators in the detrusor and the influence of the urothelium. Spontaneous contractions and possible consequent afferent nerve firing might participate in the generation of overactive bladder syndrome.
Collapse
Affiliation(s)
- Hironobu Akino
- Department of Urology, Medical Science, University of Fukui, Yoshida, Japan
| |
Collapse
|
17
|
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Auton Neurosci 2015; 200:49-56. [PMID: 26422993 DOI: 10.1016/j.autneu.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
Abstract
The bladder mucosa is comprised of the multilayered urothelium, lamina propria (LP), microvasculature, and smooth muscle fibers (muscularis mucosae). The muscularis mucosae is not always present in the mucosa, and its presence is related to the thickness of the LP. Since there are no mucus secreting cells, "mucosa" is an imprecise term. Nerve fibers are present in the LP of the mucosa. Efferent nerves mediate mucosal contractions which can be elicited by electrical field stimulation (EFS) and various agonists. The source of mucosal contractility is unknown, but may arise from the muscularis mucosae or myofibroblasts. EFS also increases frequency of mucosal venule contractions. Thus, efferent neural activity has multiple effects on the mucosa. Afferent activity has been measured when the mucosa is stimulated by mechanical and stretch stimuli from the luminal side. Nerve fibers have been shown to penetrate into the urothelium, allowing urothelial cells to interact with nerves. Myofibroblasts are specialized cells within the LP that generate spontaneous electrical activity which then can modulate both afferent and efferent neural activities. Thus mucosal signaling is defined as interactions between bladder autonomic nerves with non-neuronal cells within the mucosa. Mucosal signaling is likely to be involved in clinical functional hypersensory bladder disorders (e.g. overactive bladder, urgency, urgency incontinence, bladder pain syndrome) in which mechanisms are poorly understood despite high prevalence of these conditions. Targeting aberrant mucosal signaling could represent a new approach in treating these disorders.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, United States; Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States.
| | - Andrea Russo
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States
| | - Shan Yu
- Department of Urology, United States
| | - Ming Lu
- Department of Urology, United States
| |
Collapse
|
18
|
Keast JR, Smith-Anttila CJA, Osborne PB. Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 2015; 3:53. [PMID: 26389118 PMCID: PMC4555086 DOI: 10.3389/fcell.2015.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.
Collapse
Affiliation(s)
- Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
19
|
Eggermont M, Wyndaele JJ, Gillespie J, De Wachter S. Response Properties of Urethral Distension Evoked Unifiber Afferent Potentials in the Lower Urinary Tract. J Urol 2015; 194:1473-80. [PMID: 26055821 DOI: 10.1016/j.juro.2015.05.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE It is well known that afferent input from the urethra can modulate bladder function. Nevertheless, little is known about the functional properties of urethral afferents. In the current study we investigated the effect of urethral distension on single fiber afferent activities of the lower urinary tract in the female rat. MATERIALS AND METHODS Female Sprague Dawley® rats were anesthetized. Single fiber afferent activities were recorded from the left L6 dorsal root and classified by conduction velocity. The response of pelvic and pudendal units on urethral distension (60 seconds) was measured. Two distension diameters were measured in the proximal and the distal urethra. RESULTS A total of 93 pelvic and 72 pudendal units were isolated in 15 rats. Of the units 20 (8 pelvic and 12 pudendal) were responsive to urethral distension. Three patterns of response could be distinguished, including a fast adapting and 2 groups of slow adapting afferents. The largest grade of distension resulted in the greatest response in both nerves. Five pelvic and 3 pudendal units responded exclusively to proximal distension, 2 pelvic and 5 pudendal units responded to distal distension, and 1 pelvic and 4 pudendal units responded to both types of distension. The responses were reproducible. No association was found between the type of nerve and the location of the response to distension. CONCLUSIONS This electrophysiological study demonstrates the presence of urethral distension evoked afferents in the pelvic and pudendal nerves, and describes their response to distension. Differences in sensory signaling in type and in location were demonstrated. The current technique can be used for further investigation of urethral afferents.
Collapse
Affiliation(s)
- Monica Eggermont
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Uro-Physiology Research Group, Dental and Medical School, Newcastle University (JG), Newcastle upon Tyne, United Kingdom
| | - Jean-Jacques Wyndaele
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Uro-Physiology Research Group, Dental and Medical School, Newcastle University (JG), Newcastle upon Tyne, United Kingdom
| | - James Gillespie
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Uro-Physiology Research Group, Dental and Medical School, Newcastle University (JG), Newcastle upon Tyne, United Kingdom
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital and Faculty of Medicine, University of Antwerp, Antwerp, Belgium; Uro-Physiology Research Group, Dental and Medical School, Newcastle University (JG), Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
20
|
The expression of β3-adrenoceptor and muscarinic type 3 receptor immuno-reactivity in the major pelvic ganglion of the rat. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:695-708. [DOI: 10.1007/s00210-015-1122-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
|
21
|
Evidence for prostaglandin E2 receptor expression in the intramural ganglia of the guinea pig urinary bladder. J Chem Neuroanat 2015; 64-65:43-7. [DOI: 10.1016/j.jchemneu.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 01/25/2023]
|
22
|
Cocaine- and amphetamine-regulated transcript peptide (CARTp): distribution and function in rat urinary bladder. J Mol Neurosci 2014; 54:351-9. [PMID: 24740629 DOI: 10.1007/s12031-014-0302-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/02/2014] [Indexed: 01/23/2023]
Abstract
We investigated the distribution of CARTp(55-102) in rat lower urinary tract and evaluated its effect on urinary bladder function in vitro. Immunohistochemistry and a vertical isolated tissue bath system were used. Neurons, clusters of nonneuronal endocrine cells, and nerve fibers stained positive for CARTp(55-102) in young adult rat urinary bladder. The CARTp-expressing neuronal elements were nitric oxide synthase (NOS)- and tyrosine hydroxylase (TH)-IR, whereas all nonneuronal CARTp-IR elements stained positively only for TH (100 %). In isolated bladder strips, CARTp significantly increased the amplitude of electric field stimulation (EFS)-induced detrusor contractions at stimulation frequencies ≤12.5 Hz (p ≤ 0.001) as well as amplitude and frequency of spontaneous phasic urinary bladder smooth muscle (UBSM) contractions (p ≤ 0.05). The responses to CARTp stimulation were dose-dependent and increased in the presence of the urothelium. To determine if the CARTp increase in nerve-mediated contractions may involve an action of CARTp on specific neural pathways, we blocked cholinergic, purinergic, and adrenergic pathways and determined CARTp actions on EFS-medicated contractions. CARTp enhancement of EFS-mediated contractions does not involve alteration in purinergic, adrenergic, or cholinergic pathways. The study demonstrates that CARTp(55-102) is highly expressed in rat urinary bladder. CARTp increased the amplitude of EFS-induced detrusor contractions as well as the amplitude and frequency of spontaneous phasic urinary bladder smooth muscle contractions. We conclude that CARTp may alter the release of compounds from the urothelium that leads to an enhancement of UBSM contractility/excitability.
Collapse
|
23
|
Rahnama'i MS, Van Koeveringe GA, Van Kerrebroeck PE. Overactive bladder syndrome and the potential role of prostaglandins and phosphodiesterases: an introduction. Nephrourol Mon 2013; 5:934-45. [PMID: 24350100 PMCID: PMC3842572 DOI: 10.5812/numonthly.14087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/15/2013] [Indexed: 12/14/2022] Open
Abstract
In this paper, a general introduction is given, presenting the overactive bladder syndrome (OAB) and its impact on the quality of life and economical burden in patients affected. Moreover, the anatomy, physiology and histology of the lower urinary tract are discussed, followed by a brief overview on the possible role of prostaglandin (PG) and phosphodiesterase type 5 (PDE5) in the urinary bladder. The current literature on the role and distribution of PGE2 and its receptors in the urinary bladder is discussed. In both animal models and in human studies, high levels of signaling molecules such as PG and cGMP have been implicated, in decreased functional bladder capacity and micturition volume, as well as in increased voiding contraction amplitude. As a consequence, inhibition of prostanoid production, the use of prostanoid receptor antagonists, or PDE inhibitors might be a rational way to treat patients with detrusor overactivity. Similarly, prostanoid receptor agonists, or agents that stimulate their production, might have a function in treating bladder underactivity.
Collapse
Affiliation(s)
- Mohammad Sajjad Rahnama'i
- Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
- Corresponding author: Mohammad Sajjad Rahnama'i, Department of Urology, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ Maastricht, The Netherlands. Tel: +31-433875255, Fax: +31-433875259, E-mail:
| | | | | |
Collapse
|
24
|
Lamina propria: The functional center of the bladder? Neurourol Urodyn 2013; 33:9-16. [DOI: 10.1002/nau.22465] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/17/2013] [Indexed: 11/07/2022]
|
25
|
Eastham JE, Gillespie JI. The concept of peripheral modulation of bladder sensation. Organogenesis 2013; 9:224-33. [PMID: 23917648 PMCID: PMC3896594 DOI: 10.4161/org.25895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/23/2023] Open
Abstract
It is recognized that, as the bladder fills, there is a corresponding increase in sensation. This awareness of the volume in the bladder is then used in a complex decision making process to determine if there is a need to void. It is also part of everyday experience that, when the bladder is full and sensations strong, these sensations can be suppressed and the desire to void postponed. The obvious explanation for such altered perceptions is that they occur centrally. However, this may not be the only mechanism. There are data to suggest that descending neural influences and local factors might regulate the sensitivity of the systems within the bladder wall generating afferent activity. Specifically, evidence is accumulating to suggest that the motor-sensory system within the bladder wall is influenced in this way. The motor-sensory system, first described over 100 years ago, appears to be a key component in the afferent outflow, the afferent "noise," generated within the bladder wall. However, the presence and possible importance of this complex system in the generation of bladder sensation has been overlooked in recent years. As the bladder fills the motor activity increases, driven by cholinergic inputs and modulated, possibly, by sympathetic inputs. In this way information on bladder volume can be transmitted to the CNS. It can be argued that the ability to alter the sensitivity of the mechanisms generating the motor component of this motor-sensory system represents a possible indirect way to influence afferent activity and so the perception of bladder volume centrally. Furthermore, it is emerging that the apparent modulation of sensation by drugs to alleviate the symptoms of overactive bladder (OAB), the anti-cholinergics and the new generation of drugs the β 3 sympathomimetics, may be the result of their ability to modulate the motor component of the motor sensory system. The possibility of controlling sensation, physiologically and pharmacologically, by influencing afferent firing at its point of origin is a "new" concept in bladder physiology. It is one that deserves careful consideration as it might have wider implications for our understanding of bladder pathology and in the development of new therapeutic drugs. In this overview, evidence for the concept peripheral modulation of bladder afferent outflow is explored.
Collapse
Affiliation(s)
- Jane E Eastham
- Uro-physiology Research Group; The Dental and Medical School; Newcastle University; Newcastle upon Tyne, England
| | - James I Gillespie
- Uro-physiology Research Group; The Dental and Medical School; Newcastle University; Newcastle upon Tyne, England
| |
Collapse
|
26
|
Abstract
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria ("mucosa") produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lori Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
27
|
Mitsui R, Hashitani H. Immunohistochemical characteristics of suburothelial microvasculature in the mouse bladder. Histochem Cell Biol 2013; 140:189-200. [PMID: 23314591 DOI: 10.1007/s00418-012-1074-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 11/26/2022]
Abstract
The morphological characteristics of smooth muscle cells (SMCs) and their innervation of the suburothelial microvasculature of the mouse bladder were investigated by immunohistochemistry. Whole mount bladder mucosal preparations were immune-stained for α-smooth muscle actin (α-SMA) and/or neuronal markers and examined using confocal laser scanning microscopy. Suburothelial arterioles consisted of α-SMA-immunopositive circular smooth muscle cells, while the venular wall composed of α-SMA-positive SMCs that displayed several processes which extended from their cell bodies to form an extensive meshwork. In larger venules, a complex meshwork of stellate-shaped SMCs were observed. NG2 chondroitin sulphate proteoglycan-immunoreactive cell bodies of capillary pericytes were not immunoreactive for α-SMA. In the rat bladder suburothelial venules, circular SMCs were the dominant cell type expressing α-SMA-immunoreactivity. Since α-SMA-positive SMCs in suburothelial arterioles and venules in the mouse bladder had quite distinct morphologies, the innervation of both vessels could be examined by double labelling for α-SMA and various neuronal markers. Varicose nerve bundles immunoreactive for tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (cholinergic nerves) or substance P (primary afferent nerves) were all detected along side suburothelial arterioles. Single varicose nerve fibres positive for these three neuronal markers were also detected around the venules. Thus, whole mount preparations are useful when examining the morphology of α-SMA-positive SMCs of the microvasculature in the suburothelium of mouse bladder as well as their relationship with their innervations. In conclusion, arterioles and venules of the bladder suburothelium are the target of sympathetic, cholinergic and primary afferent nerve fibres.
Collapse
Affiliation(s)
- Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan.
| | | |
Collapse
|
28
|
Russo D, Clavenzani P, Sorteni C, Bo Minelli L, Botti M, Gazza F, Panu R, Ragionieri L, Chiocchetti R. Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone. J Comp Neurol 2012; 521:342-66. [DOI: 10.1002/cne.23177] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 12/20/2022]
|
29
|
Neuhaus J, Schwalenberg T. Intravesical treatments of bladder pain syndrome/interstitial cystitis. Nat Rev Urol 2012. [DOI: 10.1038/nrurol.2012.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Brumovsky PR, La JH, McCarthy CJ, Hökfelt T, Gebhart GF. Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience 2012; 223:77-91. [PMID: 22858598 DOI: 10.1016/j.neuroscience.2012.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/02/2012] [Accepted: 07/18/2012] [Indexed: 12/30/2022]
Abstract
Previous studies in rat and mouse documented that a subpopulation of dorsal root ganglion (DRG) neurons innervating non-visceral tissues express tyrosine hydroxylase (TH). Here we studied whether or not mouse DRG neurons retrogradely traced with Fast Blue (FB) from colorectum or urinary bladder also express immunohistochemically detectable TH. The lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) were included in the analysis. Previously characterized antibodies against TH, norepinephrine transporter type 1 (NET-1) and calcitonin gene-related peptide (CGRP) were used. On average, ∼14% of colorectal and ∼17% of urinary bladder DRG neurons expressed TH and spanned virtually all neuronal sizes, although more often in the medium-sized to small ranges. Also, they were more abundant in lumbosacral than thoracolumbar DRGs, and often coexpressed CGRP. We also detected several TH-immunoreactive (IR) colorectal and urinary bladder neurons in the LSC and the MPG, more frequently in the former. No NET-1-IR neurons were detected in DRGs, whereas the majority of FB-labeled, TH-IR neurons in the LSC and MPG coexpressed this marker (as did most other TH-IR neurons not labeled from the target organs). TH-IR nerve fibers were detected in all layers of the colorectum and the urinary bladder, with some also reaching the basal mucosal cells. Most TH-IR fibers in these organs lacked CGRP. Taken together, we show: (1) that a previously undescribed population of colorectal and urinary bladder DRG neurons expresses TH, often CGRP but not NET-1, suggesting the absence of a noradrenergic phenotype; and (2) that TH-IR axons/terminals in the colon or urinary bladder, naturally expected to derive from autonomic sources, could also originate from sensory neurons.
Collapse
Affiliation(s)
- P R Brumovsky
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
31
|
Effect of OnabotulinumtoxinA on Intramural Parasympathetic Ganglia: An Experimental Study in the Guinea Pig Bladder. J Urol 2012; 187:1121-6. [DOI: 10.1016/j.juro.2011.10.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Indexed: 11/17/2022]
|
32
|
Heppner TJ, Layne JJ, Pearson JM, Sarkissian H, Nelson MT. Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder. Am J Physiol Regul Integr Comp Physiol 2011; 301:R351-62. [PMID: 21632849 PMCID: PMC3154705 DOI: 10.1152/ajpregu.00656.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca(2+) waves and flashes, but localized Ca(2+) events (Ca(2+) sparks, purinergic receptor-mediated transients) were not detected. Ca(2+) flashes, often in bursts, occurred with a frequency (∼5.7/min) similar to that of SPCs (∼4/min), suggesting that SPCs are triggered by bursts of Ca(2+) flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ∼3% of maximal force of the detrusor strip. Electrical field stimulation (0.5-50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca(2+)-activated K(+) (SK) channels with apamin and were unchanged by blocking large-conductance Ca(2+)-activated K(+) (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ∼20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.
Collapse
Affiliation(s)
- Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | |
Collapse
|
33
|
Martínez-Sáenz A, Recio P, Orensanz LM, Fernandes VS, Martínez MP, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Role of calcitonin gene-related peptide in inhibitory neurotransmission to the pig bladder neck. J Urol 2011; 186:728-35. [PMID: 21683385 DOI: 10.1016/j.juro.2011.03.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE We studied the role of calcitonin gene-related peptide in nonadrenergic, noncholinergic neurotransmission to the pig bladder neck. MATERIALS AND METHODS We used immunohistochemical techniques to determine the distribution of calcitonin gene-related peptide immunoreactive fibers as well as organ baths for isometric force recording. We investigated relaxation due to endogenously released or exogenously applied calcitonin gene-related peptide in urothelium denuded phenylephrine precontracted strips treated with guanethidine, atropine and NG-nitro-L-arginine to block noradrenergic neurotransmission, muscarinic receptors and nitric oxide synthase, respectively. RESULTS Rich calcitonin gene-related peptide immunoreactive innervation was found penetrating through the adventitia and distributed in the suburothelial and muscle layers. Numerous, variable size, varicose calcitonin gene-related peptide immunopositive terminals were seen close below the urothelium. In the muscle layer calcitonin gene-related peptide immunopositive nerves usually appeared as varicose terminals running along muscle fibers. Electrical field stimulation (2 to 16 Hz) and exogenous calcitonin gene-related peptide (0.1 nM to 0.3 μM) evoked frequency and concentration dependent relaxation, respectively. Nerve responses were potentiated by capsaicin, decreased by calcitonin gene-related peptide (8-37) and abolished by tetrodotoxin, capsaicin sensitive primary afferent blockers, calcitonin gene-related peptide receptors and neuronal voltage gated Na+ channels. Calcitonin gene-related peptide-induced relaxation was potentiated by the neuronal voltage gated Ca2+ channels blocker ω-conotoxin-GVIA and decreased by calcitonin gene-related peptide (8-37). Calcitonin gene-related peptide relaxation was not modified by blockade of endopeptidases, nitric oxide synthase, guanylyl cyclase and cyclooxygenase. CONCLUSIONS Results suggest that calcitonin gene-related peptide is involved in the nonadrenergic, noncholinergic inhibitory neurotransmission of the pig bladder neck, producing relaxation through neuronal and muscle calcitonin gene-related peptide receptors. Nitric oxide/cyclic guanosine monophosphate and cyclooxygenase pathways do not seem to be involved in such responses.
Collapse
Affiliation(s)
- Ana Martínez-Sáenz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, and Departamento de Investigación, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
M3 muscarinic receptor-like immunoreactivity in sham operated and obstructed guinea pig bladders. J Urol 2011; 185:1959-66. [PMID: 21421238 DOI: 10.1016/j.juro.2010.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Indexed: 11/22/2022]
Abstract
PURPOSE Type 3 muscarinic receptors, which are present in the bladder wall, are important for bladder function. However, their role in the context of the urothelium is not well defined. Understanding the role of type 3 muscarinic receptors has been limited by the lack of specific type 3 muscarinic receptor antibodies. Thus, we identified a specific type 3 muscarinic receptor antibody and investigated the site of type 3 muscarinic receptors in sham operated and obstructed guinea pig bladders. MATERIALS AND METHODS The specificity of 4 commercially available type 3 muscarinic receptor antibodies was determined. Immunohistochemistry was then done in bladder tissue from sham operated and obstructed guinea pig bladders. RESULTS One of the 4 antibodies examined had the needed specificity in terms of blocking peptide and Western blot characterization. Using this antibody type 3 muscarinic receptor immunoreactivity was associated with muscle cells, nerves and interstitial cells. Four types of interstitial cells were identified, including suburothelial, lamina propria, surface muscle and intramuscular interstitial cells. In the obstructed model the bladder wall was hypertrophied and there was nerve fiber loss. The number of lamina propria, surface muscle and intramuscular interstitial cells was increased but not the number of suburothelial interstitial cells. Also, surface muscle interstitial cells appeared to form clusters or nodes with type 3 muscarinic receptor immunoreactivity. CONCLUSIONS Nerve loss and the up-regulation of interstitial cells with type 3 muscarinic receptor immunoreactivity may underlie major functional changes in the pathological bladder. This indicates that type 3 muscarinic receptor specific anticholinergic drugs may affect not only the detrusor muscle, as previously thought, but also interstitial cells and nerve fibers.
Collapse
|
35
|
Abstract
The urinary bladder "mucosa" or innermost portion of the bladder is composed of transitional epithelium, basement membrane, and the lamina propria. This chapter reviews the specialized anatomy of the bladder epithelium (urothelium) and speculates on possible communication mechanisms from urothelial cells to various cell types within the bladder wall. For example, beyond serving as a simple barrier, there is growing evidence that the urinary bladder urothelium exhibits specialized sensory properties and plays a key role in the detection and transmission of both physiological and nociceptive stimuli. Findings from a number of studies suggest that the urothelium exhibits both "sensor" (expressing receptors/ion channels capable of responding to thermal, mechanical, and chemical stimuli) and "transducer" (ability to release chemicals) properties. Thus, urothelial cells exhibit the ability to sense changes in their extracellular environment including the ability to respond to chemical, mechanical, and thermal stimuli that may communicate the state of the urothelial environment to the underlying nervous and muscular systems.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
36
|
Llewellyn-Smith IJ, Gnanamanickam GJE. Immunoperoxidase detection of neuronal antigens in full-thickness whole mount preparations of hollow organs and thick sections of central nervous tissue. J Neurosci Methods 2010; 196:1-11. [PMID: 21167203 DOI: 10.1016/j.jneumeth.2010.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Immunofluorescently stained whole mounts have proved useful for defining the innervation of the gut and large blood vessels. Nerves supplying other hollow organs are usually studied in sections, which provide much less information. Aiming to describe the entire innervation of rat uterus, we developed a method for immunoperoxidase staining of full-thickness whole mounts that allowed us to visualize all immunoreactive axons. Uterine horns were dissected out, slit open, stretched, pinned flat and fixed. Entire horns were treated with methanol/peroxide, buffered Triton X-100 and normal serum and then incubated in primary antibodies, biotinylated secondary antibodies and avidin-horseradish peroxidase (HRP), each for at least 3 days. Peroxidase reactions revealed immunoreactivity. Immunostained horns were dehydrated, infiltrated with epoxy resin, mounted on slides under Aclar coverslips and polymerized. We treated bladders, gut, major pelvic ganglia and thick sections of perfused medulla oblongata similarly to assess the applicability of the method. Using this method, we could map the entire uterine innervation provided by axons immunoreactive for a variety of antigens. We could also assess the entire tyrosine hydroxylase-immunoreactive innervation in all layers of bladder, gut and ganglia whole mounts and throughout 300 μm sections of medulla. These observations show that this method for immunoperoxidase staining reliably reveals the complete innervation of full-thickness whole mounts of hollow organs and thick sections of central nervous tissue. The method has several advantages. The resin-embedded tissue does not degrade; the immunostaining is non-fading and permanent and neurochemically defined features can be mapped at large scale without confocal microscopy.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|
37
|
Abstract
AIMS To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. METHODS Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. RESULTS Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Adelta) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. CONCLUSIONS Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
38
|
Biallosterski BT, de Wachter SG, van Koeveringe GA, van Kerrebroeck PE, de Vente J, Mulder MT, Gillespie JI. Changes in bladder innervation in a mouse model of Alzheimer's disease. J Chem Neuroanat 2009; 39:204-10. [PMID: 20025962 DOI: 10.1016/j.jchemneu.2009.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 01/23/2023]
Abstract
AIM The aims of this study were to compare the structure of bladders from a transgenic mouse model of Alzheimer's disease with age matched control animals and to explore the idea that any structural differences might be related to functional bladder changes associated with the condition. MATERIALS AND METHODS Two groups of mice were used. Transgenic animals in which the murine Amyloid Precursor Protein (APP) gene has been partly replaced by the human APP including both the Swedish and London mutations and that overexpress a mutant of the human Presenilin 1 gene (PS1M146L) driven by the PDGF promoter. The transgenic mice (App(SL)/PS1(M146L)) aged 24+/-3 months were used. The second group was an age matched control group of C57 black mice. The bladders from each group were isolated, fixed in 4% paraformaldehyde and prepared for immunohistochemistry. Antibodies to the vesicular acetylcholine transporter (VAChT) and neuronal nitric oxide synthase (nNOS) were used to identify neural structures. RESULTS Cholinergic nerves (VAChT(+)) were observed in the inner and outer muscle bundles of App(SL)/PS1(M146L) and control mice. No major differences were noted in the distribution of these fibres. In contrast, there was a distinct difference in the innervation of the sub-urothelial layer. In App1(SL)/PS1(M146L) mice there were numerous VAChT and nNOS positive fibres in sharp contrast to the paucity of similar nerves in control animals. VAChT and nNOS did not appear to co-localise in the same nerve fibres within the lamina propria. Pairs of nerve fibres, nNOS(+) and VAChT(+), were observed to be intertwined and run in close proximity. A particularly unusual feature of the App(SL)/PS1(M146L) mouse bladder was the presence of neurones within the bladder wall. These nerve cell bodies were seen in all App(SL)/PS1(M146L) mouse bladders. The neurones could be found singly or in small ganglion like groups of cells and were located in all layers of the bladder wall (sub-urothelium, in the lamina propria adjacent to the inner muscle and within the inner muscle and outer muscle layers). No nerve cells or small ganglia were noted in any of the control bladders studied. CONCLUSIONS There are structural differences in the bladders of App(SL)/PS1(M146L) mice compared to control animals. These differences are associated with sub-urothelial nerves which, because of their location, are likely to be sensory fibres. This may lead to a changed sensory processing from the App(SL)/PS1(M146L) bladders. The physiological role of the intra-mural neurones and ganglia is not known. It is speculated that they may be associated with peripheral motor/sensory mechanisms linked to the generation and modulation of sensation.
Collapse
Affiliation(s)
- B T Biallosterski
- Department of Urology, Maastricht University Medical Centre, P. Debeyelaan 25, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nile CJ, de Vente J, Gillespie JI. Stretch independent regulation of prostaglandin E(2) production within the isolated guinea-pig lamina propria. BJU Int 2009; 105:540-8. [PMID: 19673869 DOI: 10.1111/j.1464-410x.2009.08705.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To use an isolated preparation of the guinea-pig bladder lamina propria (LP) to investigate the effects of adenosine tri-phosphate (ATP) and nitric oxide (NO) on the release of prostaglandin E(2) (PGE(2)). MATERIALS AND METHODS The bladders of female guinea-pigs (200-400 g) were isolated and opened to expose the urothelial surface. The LP was dissected free of the underlying detrusor muscle and cut into strips from the dome to base. Strips were then incubated in Krebs buffer at 37 degrees C. Each tissue piece was then exposed to the stable ATP analogue, BzATP, and a NO donor, diethylamine-NONOate (DEANO), and the effect on PGE(2) output into the supernatant determined using the Parameter(TM) PGE(2) enzyme immunoassay kit (R & D Systems, Abingdon, UK). Experiments were repeated in the presence of purinergic receptor and cyclooxygenase (COX) enzymes, COX I and COX II, antagonists. The cellular location of COX I, COX II and neuronal NO synthase (nNOS) within the bladder LP was also determined by immunohistochemistry. RESULTS PGE(2) production was significantly increased by BzATP. Antagonist studies showed the purinergic stimulation involved both P(2)X and P(2)Y receptors. The BzATP response was inhibited by the COX inhibitor indomethacin (COX I >COX II) but not by DUP 697 (COX II >COX I). Thus, BzATP stimulation occurs because of COX I stimulation. NO had no effect on PGE(2) production over the initial 10 min of an exposure. However, PGE(2) output was increased 100 min after exposure to the NO donor. In the presence of NO, the BzATP stimulation was abolished. Immunohistochemistry was used to confirm the location of COX I to the basal and inner intermediate urothelial layers and to cells within the diffuse layer of LP interstitial cells. In addition, nNOS was also located in the basal urothelial layers whilst COX II was found in the interstitial cell layers. CONCLUSIONS There is complex interaction between ATP and NO to modulate PGE(2) release from the bladder LP in the un-stretched preparation. Such interactions suggest a complex interrelationship of signals derived from this region of the bladder wall. The importance of these interactions in relation to the physiology of the LP remains to be determined.
Collapse
Affiliation(s)
- Christopher J Nile
- The Uro-physiology Research Group, The Medical and Dental School, The University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
40
|
Abstract
Beyond serving as a simple barrier, there is growing evidence that the urinary bladder urothelium exhibits specialized sensory properties and play a key role in the detection and transmission of both physiological and nociceptive stimuli. These urothelial cells exhibit the ability to sense changes in their extracellular environment including the ability to respond to chemical, mechanical and thermal stimuli that may communicate the state of the urothelial environment to the underlying nervous and muscular systems. Here, we review the specialized anatomy of the urothelium and speculate on possible communication mechanisms from urothelial cells to various cell types within the bladder wall.
Collapse
Affiliation(s)
- Lori A Birder
- University of Pittsburgh School of Medicine, A 1207 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
41
|
A refocus on the bladder as the originator of storage lower urinary tract symptoms: a systematic review of the latest literature. Eur Urol 2009; 56:810-9. [PMID: 19683859 DOI: 10.1016/j.eururo.2009.07.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/28/2009] [Indexed: 02/08/2023]
Abstract
CONTEXT The focus of clinical understanding and management of male storage lower urinary tract symptoms (LUTS) has shifted from the prostate to the bladder. This is mirrored by an increasing body of experimental evidence suggesting that the bladder is the central organ in the pathogenesis of LUTS. OBJECTIVE A systematic review of the literature available on pathophysiologic aspects of storage LUTS. EVIDENCE ACQUISITION Medline was searched for the period ending December 2008 for studies on human and animal tissue exploring possible functional and structural alterations underlying bladder dysfunction. Further studies were chosen on the basis of manual searches of reference lists and review papers. EVIDENCE SYNTHESIS Numerous recent publications on LUTS pathophysiology were identified. They were grouped into studies exploring abnormalities on urothelial/suburothelial, muscular, or central levels. CONCLUSIONS Studies revealed both structural and functional alterations in bladders from patients with LUTS symptoms or animals with experimentally induced bladder dysfunction. In particular, the urothelium and the suburothelial space, containing afferent nerve fibres and interstitial cells, have been found to form a functional unit that is essential in the process of bladder function. Various imbalances within this suburothelial complex have been identified as significant contributors to the generation of storage LUTS, along with potential abnormalities of central function.
Collapse
|
42
|
Ion channel and receptor mechanisms of bladder afferent nerve sensitivity. Auton Neurosci 2009; 153:26-32. [PMID: 19632906 DOI: 10.1016/j.autneu.2009.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 01/25/2023]
Abstract
Sensory nerves of the urinary bladder consist of small diameter A(delta) and C fibers running in the hypogastic and pelvic nerves. Neuroanatomical studies have revealed a complex neuronal network within the bladder wall. Electrophysiological recordings in vitro and in vivo have revealed several distinct classes of afferent fibers that may signal a wide range of bladder stimulations including physiological bladder filling, noxious distension, cold, chemical irritation and inflammation. The exact mechanisms that underline mechanosensory transduction in bladder afferent terminals remain ambiguous; however, a wide range of ion channels (e.g., TTX-resistant Na(+) channels, Kv channels and hyperpolarization-activated cyclic nucleotide-gated cation channels) and receptors (e.g., TRPV1, TRPM8, TRPA1, P2X(2/3), etc) have been identified at bladder afferent terminals and implicated in the generation and modulation of afferent signals. Experimental investigations have revealed that expression and/or function of these ion channels and receptors may be altered in animal models and patients with overactive and painful bladder disorders. Some of these ion channels and receptors may be potential therapeutic targets for bladder diseases.
Collapse
|
43
|
Gillespie JI, van Koeveringe GA, de Wachter SG, de Vente J. On the origins of the sensory output from the bladder: the concept of afferent noise. BJU Int 2009; 103:1324-33. [DOI: 10.1111/j.1464-410x.2009.08377.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Zagorodnyuk VP, Gregory S, Costa M, Brookes SJH, Tramontana M, Giuliani S, Maggi CA. Spontaneous release of acetylcholine from autonomic nerves in the bladder. Br J Pharmacol 2009; 157:607-19. [PMID: 19371347 DOI: 10.1111/j.1476-5381.2009.00166.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Bladder contractility is regulated by intrinsic myogenic mechanisms interacting with autonomic nerves. In this study, we have investigated the physiological role of spontaneous release of acetylcholine in guinea pig and rat bladders. EXPERIMENTAL APPROACH Conventional isotonic or pressure transducers were used to record contractile activity of guinea pig and rat bladders. KEY RESULTS Hyoscine (3 micromol x L(-1)), but not tetrodotoxin (TTX, 1 micromol x L(-1)), reduced basal tension, distension-evoked contractile activity and physostigmine (1 micromol x L(-1))-evoked contractions of the whole guinea pig bladder and muscle strips in vitro. omega-Conotoxin GVIA (0.3 micromol x L(-1)) did not affect physostigmine-induced contractions when given either alone or in combination with omega-agatoxin IVA (0.1 micromol x L(-1)) and SNX 482 (0.3 micromol x L(-1)). After 5 days in organotypic culture, when extrinsic nerves had significantly degenerated, the ability of physostigmine to induce contractions was reduced in the dorso-medial strips, but not in lateral strips (which have around 15 times more intramural neurones). Most muscle strips from adult rats lacked intramural neurones. After 5 days in culture, physostigmine-induced or electrical field stimulation-induced contractions of the rat bladder strips were greatly reduced. In anaesthetized rats, topical application of physostigmine (5-500 nmol) on the bladder produced a TTX-resistant tonic contraction that was abolished by atropine (4.4 micromol x kg(-1) i.v.). CONCLUSIONS AND IMPLICATIONS The data indicate that there is spontaneous TTX-resistant release of acetylcholine from autonomic cholinergic extrinsic and intrinsic nerves, which significantly affects bladder contractility. This release is resistant to blockade of N, P/Q and R type Ca(2+) channels.
Collapse
Affiliation(s)
- V P Zagorodnyuk
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rasmussen H, Rumessen JJ, Hansen A, Smedts F, Horn T. Ultrastructure of Cajal-like interstitial cells in the human detrusor. Cell Tissue Res 2009; 335:517-27. [PMID: 19142665 DOI: 10.1007/s00441-008-0736-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
The aim of this ultrastructural study was to examine the human detrusor for interstitial cells of Cajal (ICC)-like cells (ICC-L) by conventional transmission electron microscopy (TEM) and immuno-transmission electron microscopy (I-TEM) with antibodies directed towards CD117 and CD34. Two main types of interstitial cells were identified by TEM: ICC-L and fibroblast-like cells (FLC). ICC-L were bipolar with slender (0.04 microm) flattened dendritic-like processes, frequently forming a branching labyrinth network. Caveolae and short membrane-associated dense bands were present. Mitochondria, rough endoplasmic reticulum and Golgi apparatus were observed in the cell somata and cytoplasmic processes. Intermediate filaments were abundant but no thick filaments were found. ICC-L were interconnected by close appositions, gap junctions and peg-and-socket junctions (PSJ) but no specialised contacts to smooth muscle or nerves were apparent. FLC were characterised by abundant rough endoplasmic reticulum but no caveolae or membrane-associated dense bands were observed; gap junctions and PSJ were absent and intermediate filaments were rare. By I-TEM, CD34 gold immunolabelling was present in long cytoplasmic processes corresponding to ICC-L between muscle fascicles but CD117 gold immunolabelling was negative. Thus, ICC-like cells are present in the human detrusor. They are CD34-immunoreactive and have a myoid ultrastructure clearly distinguishable from fibroblast-like cells. ICC-L may be analogous to interstitial cells of Cajal in the gut.
Collapse
Affiliation(s)
- Helle Rasmussen
- Department of Pathology, University Hospital Herlev, DK-2730 Herlev, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The afferent innervation of the urinary bladder consists primarily of small myelinated (Adelta) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology, University of Pittsburgh School of Medicine, West 1352 Starzl Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
47
|
Bolton JF, Whittlestone TH, Sibley GNA. Comparisons of the responses of anterior and posterior human adult male bladder neck smooth muscle to in vitro stimulation. BJU Int 2008; 102:1737-42. [PMID: 18715248 DOI: 10.1111/j.1464-410x.2008.07930.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate differing methods of stimulation on strips of human bladder neck smooth muscle and compare muscle taken from the anterior and posterior aspects. MATERIALS AND METHODS Samples of adult human male bladder neck muscle were obtained from patients undergoing open radical prostatectomy. Muscle was taken from either the anterior or posterior (nine and six patients, respectively) aspects of the bladder neck. Muscle strips dissected from these samples were suspended in the Brading-Sibley organ bath. The strips were superfused with 100 mm KCl-enriched Krebs' solution for 4 min to determine viability. This allowed experimentation on 17 strips from the anterior aspect of the bladder neck and 13 from the posterior bladder neck. These remaining strips were then superfused either with various concentrations (x10(-7) to x10(-3)m) of carbachol or noradrenaline in Krebs' solution, for 15 s. A further set of strips (eight from anterior, six from posterior) was suspended and responses to electrical field stimulation (EFS) with varying parameters were measured. Each EFS experiment was repeated after a 15 min exposure to 10(-3)m atropine, and again after a 15 min exposure 10(-7)m tetrodotoxin (TTX). Tension responses produced in these series of experiments were measured using strain gauges and analysed using data acquisition software. Student's t-test was used for the statistical analysis. RESULTS All muscle strips included in the study responded to EFS. The magnitude of this contraction is frequency dependent. The contractions were abolished by superfusion of the muscle strips with atropine. There was no further suppression of the contractile response on addition of TTX. Posterior bladder neck samples had a greater mean contractile response per unit mass than anterior strips at all frequencies of >1 Hz, and significantly more at 20 and 30 Hz. There was a concentration-dependent response in bladder neck contraction to carbachol but only in the strips from the anterior bladder neck at concentrations of <10(-3)m. Posterior bladder neck strips did not significantly contract upon application of carbachol. Similarly, there was a concentration-dependent response to noradrenaline. Responses to noradrenaline were not uniform around the bladder neck, but not significantly different. Carbachol was the more 'potent' stimulator in anterior smooth muscle strips, but again the differences between agonists were not statistically significant. CONCLUSION These experiments show physiological variability around the circumference of the human male bladder neck. The posterior bladder neck shows significantly stronger contraction to alpha-adrenergic agonists compared with cholinergic agonists; the anterior bladder neck does not have a similarly significant differential response. The uniform response to noradrenaline may underlie the bladder neck's role in the prevention of retrograde ejaculation. The differential responses to carbachol may reflect differences in the embryological derivation of the anterior and posterior bladder neck fibres or in their innervation. Some of these differences may have clinical importance through the action of therapeutic agents.
Collapse
Affiliation(s)
- John F Bolton
- Department of Urology, University of Bristol, Bristol Royal Infirmary, Bristol, UK.
| | | | | |
Collapse
|
48
|
Grol S, van Koeveringe GA, de Vente J, van Kerrebroeck PEV, Gillespie JI. Regional differences in sensory innervation and suburothelial interstitial cells in the bladder neck and urethra. BJU Int 2008; 102:870-7. [PMID: 18537955 DOI: 10.1111/j.1464-410x.2008.07752.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To identify and characterize possible structural specialisations in the wall of the lower urinary tract (LUT) in the region of the bladder urethral junction (BUJ), with the specific objective of identifying regional variations in sensory nerve fibres and interstitial cells (ICs). MATERIALS AND METHODS The bladder base and urethra was removed from five male guinea pigs killed by cervical dislocation. Tissue pieces were incubated in Krebs' solution at 36 degrees C, gassed with 95% O(2) and 5% CO(2), fixed in 4% paraformaldehyde and processed for immunohistochemistry. The nonspecific marker vimentin and the general neuronal marker protein gene product (PGP) 9.5 were used to identify ICs and nerve fibres, respectively. Specific antibody binding was visualized using the appropriate secondary antibodies. RESULTS The wall of the LUT in the region immediately between the bladder base and the urethra, the BUJ, differed in its cellular composition relative to the adjacent areas. PGP-positive (PGP(+)) nerve fibres, presumptive afferent fibres, lay within the urothelium running between the epithelial cells. There were two general nerve patterns: branching fibres with no varicosities, and complex fibres with varicosities. Fibre collaterals with varicosities exited the urothelium and occupied the space under the urothelium adjacent to the layer of suburothelial ICs. The latter, lamina propria and around the muscle bundles were identified using vimentin (vim(+)). In the base a few vim(+) cells were also PGP(+). In the region of the BUJ there was a decrease in the amount of smooth muscle. In this region, below the lamina propria, there was an area densely populated with vim(+)/PGP(+) ICs. Nerve fibres ran between the cells in this region. CONCLUSION These structural specialisations within the urothelium and deeper layers of the BUJ suggest that they might be associated with specific functions. The localized highly branched network of the putative afferent nerves suggests the presence of a local axonal reflexes involving possible cross-talk between the urothelium and suburothelial layer. The function of the specialized region of ICs is not known and must await further information on the functional properties of this novel cell type. These observations show further the cellular heterogeneity of the cells in the LUT and the complexity of the structures. One of the major current challenges in functional urology is to understand the relationships between these novel structures and overall bladder and urethral function.
Collapse
Affiliation(s)
- Simone Grol
- Department of Urology, Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
49
|
Kullmann FA, Artim D, Beckel J, Barrick S, de Groat WC, Birder LA. Heterogeneity of muscarinic receptor-mediated Ca2+ responses in cultured urothelial cells from rat. Am J Physiol Renal Physiol 2008; 294:F971-81. [PMID: 18272602 DOI: 10.1152/ajprenal.00313.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic receptors (mAChRs) have been identified in the urothelium, a tissue that may be involved in bladder sensory mechanisms. This study investigates the expression and function of mAChRs using cultured urothelial cells from the rat. RT-PCR established the expression of all five mAChR subtypes. Muscarinic agonists acetylcholine (ACh; 10 microM), muscarine (Musc; 20 microM), and oxotremorine methiodide (OxoM; 0.001-20 microM) elicited transient repeatable increases in the intracellular calcium concentration ([Ca(2+)](i)) in approximately 50% of cells. These effects were blocked by the mAChR antagonist atropine methyl nitrate (10 microM). The sources of [Ca(2+)](i) changes included influx from external milieu in 63% of cells and influx from external milieu plus release from internal stores in 27% of cells. The use of specific agonists and antagonists (10 microM M(1) agonist McN-A-343; 10 microM M(2), M(3) antagonists AF-DX 116, 4-DAMP) revealed that M(1), M(2), M(3) subtypes were involved in [Ca(2+)](i) changes. The PLC inhibitor U-73122 (10 microM) abolished OxoM-elicited Ca(2+) responses in the presence of the M(2) antagonist AF-DX 116, suggesting that M(1), M(3), or M(5) mediates [Ca(2+)](i) increases via PLC pathway. ACh (0.1 microM), Musc (10 microM), oxotremorine sesquifumarate (20 microM), and McN-A-343 (1 muM) acting on M(1), M(2), and M(3) mAChR subtypes stimulated ATP release from cultured urothelial cells. In summary, cultured urothelial cells express functional M(1), M(2), and M(3) mAChR subtypes whose activation results in ATP release, possibly through mechanisms involving [Ca(2+)](i) changes.
Collapse
Affiliation(s)
- F Aura Kullmann
- Dept. of Pharmacology, Univ. of Pittsburgh School of Medicine, E 1340 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|
50
|
de Jongh R, van Koeveringe GA, van Kerrebroeck PEV, Markerink-van Ittersum M, de Vente J, Gillespie JI. Damage to the bladder neck alters autonomous activity and its sensitivity to cholinergic agonists. BJU Int 2007; 100:919-29. [PMID: 17822470 DOI: 10.1111/j.1464-410x.2007.07129.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify and describe changes to the motor component of the motor/sensory system, which contributes to sensation during the filling phase of the micturition cycle, as a result of surgically induced bladder pathology, i.e. damage to the bladder neck and outlet obstruction. MATERIALS AND METHODS Adult male guinea pigs (294-454 g) were assigned initially into three groups: (i) normal guinea pigs with no surgical intervention (control, seven); (ii) guinea pigs which, with full surgical anaesthesia, had a silver ring implanted around the bladder neck (obstructed, 13); and (iii) guinea pigs operated to expose the bladder neck but with no implantation of a ring (sham, six). At 2-4 weeks after surgery the bladders were isolated, weighed and the pressure recordings used to identify autonomous activity. RESULTS The bladder weights in all operated groups, including the sham, were greater than controls. Bladder weights in the obstructed guinea pigs varied considerably, reflecting the degree of pathological change. Consequently, bladders from this group were divided into those with high (OBH) and those with low bladder weight (OBL). The mean (sd) amplitudes of the autonomous contractions were 1.1 (0.1), 10.8 (1.8), 11.4 (2.5) and 17.1 (4.0) cmH(2)O in control, sham, OBL and OBH bladders, respectively, indicating a progressive alteration in function with the pathology. The changes in the sham group suggested that the pathological changes were not the result of obstruction but damage to the bladder neck, the implantation of the silver rings exacerbating the damage. There were episodes of rapid phasic activity (bursts) in 10 of 13 of the ring-implanted bladders, and in two of six in the sham group, but never in controls. Neither the autonomous activity nor the bursts were affected by tetrodotoxin (1 microm) or atropine (3 microm) but they were abolished by noradrenaline (3 microm). In control bladders, adding the muscarinic agonist arecaidine produced a transient acceleration of phasic activity and increased the amplitude of the contractions. There was a similar acceleration of activity in all the operated groups but the concentrations needed to achieve an increase in frequency were significantly lower, the relative sensitivity to arecaidine being OBH >/= OBL > sham > control. CONCLUSION The mechanism involved in controlling the frequency of the motor component of the motor/sensory system, the 'pacemaker', appears to become progressively 'supersensitive' to cholinergic stimulation with the development of pathology. These observations are discussed in relation to the motor/sensory system and the origins of sensation in the bladder. The argument is proposed that damage to the bladder neck, not obstruction per se, results in altered nonmicturition activity which contributes to increased afferent output. In turn this contributes to the increased sensations of urge associated with bladder dysfunction. The cholinergic regulation of this altered 'pacemaker' might be the target for one of the therapeutic actions of anticholinergic drugs.
Collapse
Affiliation(s)
- Rik de Jongh
- Department of Urology, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|