1
|
Nam J, Min B, Baek A, Lee SY, Ha J, Cho MJ, Kim J. Mammalian Blastema: Possibility and Potentials. Int J Stem Cells 2025; 18:126-134. [PMID: 40059074 PMCID: PMC12122245 DOI: 10.15283/ijsc24121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 06/02/2025] Open
Abstract
Regeneration is a process that restores the structure and function of injured tissues or organs. Regenerative capacities vary significantly across species, with amphibians and fish demonstrating a high regenerative capacity even after severe injuries. This capacity is largely attributed to the formation of a blastema, a mass of multipotent cells reprogrammed from differentiated cells at the injury site. In contrast, mammals exhibit limited regenerative capacities, with blastema- like cells forming only in specific contexts, such as antler or digit tip regeneration. An interesting aspect of blastema formation in highly regenerative organisms is the temporary expression of pluripotency factors as known as the Yamanaka factors (YFs), which is a key requirement for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). While iPSCs hold pros and cons, direct or partial reprogramming with YF has been proposed as a safer alternative. Since blastema formation and partial reprogramming are similar in terms of YF expressions, we found blastema-like cells in mammalian reprogramming with YF. This review outlines the characteristics of blastema across various organisms, emphasizing interspecies differences. We also explore studies on partial reprogramming and the possibility of inducing blastema-like cells via the temporary expression of YF in mammals.
Collapse
Affiliation(s)
- Juhyeon Nam
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology, Daejeon, Korea
| | - Byungkuk Min
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Areum Baek
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Sang-Yun Lee
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Jeongmin Ha
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Min Ji Cho
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| | - Janghwan Kim
- Center for Gene and Cell therapy, Korea Research Institute Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology, Daejeon, Korea
- Stem Cell Convergence Research Center, KRIBB, Daejeon, Korea
| |
Collapse
|
2
|
Yazdian FA, Samak MM, Larijani A, Ashoobi MT, Kharaqani M, Ghezel MA, Barabadi Z, Vojoudi E. From Cells to Exosomes: a Review of Non-Surgical Biotherapeutic-Based Strategies for Liver Regeneration in the Face of End-Stage Diseases. Stem Cell Rev Rep 2025:10.1007/s12015-025-10872-1. [PMID: 40411652 DOI: 10.1007/s12015-025-10872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/26/2025]
Abstract
Liver diseases, such as hepatitis, cirrhosis, and liver cancer, pose significant public health challenges, ranking as the twelfth leading cause of death globally. Given the liver's critical functions in metabolism, detoxification, and biosynthesis, its impairment can lead to severe consequences, often resulting in end-stage liver failure. Although liver transplantation is regarded as the definitive intervention for advanced liver disease, factors such as a shortage of donors and potential surgical complications necessitate the investigation of non-surgical regenerative medicine alternatives. This manuscript provides a comprehensive review of innovative non-surgical therapies aimed at liver regeneration, with an emphasis on both cell-based and cell-free approaches. It examines the contributions of various stem cell populations, including mesenchymal stem cells, hematopoietic stem cells, and induced pluripotent stem cells, in facilitating liver repair through mechanisms of differentiation and paracrine signaling. Furthermore, it explores the therapeutic potential of exosomes and conditioned media derived from stem cells as biotherapeutic agents in the context of regenerative medicine. By elucidating the mechanisms that underpin liver regeneration, this study aspires to inform the development of effective therapeutic strategies to address liver diseases and slow their progression. By elucidating the underlying mechanisms of liver regeneration, this study aims to contribute to the development of effective therapeutic strategies to address liver diseases and slow their progression.
Collapse
Affiliation(s)
| | - Matin Mojaveri Samak
- Department of Internal Medicine, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amirhossein Larijani
- Student Research Committee, School of Medicine, Guilan University of Medical Science, Rasht, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Centre, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Taghi Ashoobi
- Department of General Surgery, School of Medicine Road Trauma Research Centre, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Zahra Barabadi
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Centre, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
3
|
Mohan PP, Deo S, Liu ZJ, Dikici E, Kaneku H, Chang D, Garcia-Buitrago M, Jalaeian H, Zeynaloo E, Ortiz YY, Li Y, Bhatia S, Velazquez O, Daunert S. Liver Regeneration Following Thermal Ablation Using Nanocarrier Mediated Targeted Mesenchymal Stem Cell Therapy. Cardiovasc Intervent Radiol 2025; 48:233-243. [PMID: 39505737 PMCID: PMC11790787 DOI: 10.1007/s00270-024-03862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE To test the efficacy of nanocarrier (NC) mediated mesenchymal stem cell (MSC) therapy for liver regeneration following thermal ablation of porcine livers. MATERIALS AND METHODS Liver radiofrequency ablation was performed in 18 swines divided into MSC, MSC + NC and control groups. The test groups received infusion of MSC or MSC + NC labeled with enhanced green fluorescent protein (eGFP) via hepatic artery. MSC + NC group had MSCs coated with dendrimer nanocarrier complexed with I-Domain of lymphocyte function-associated antigen-1 (LFA-1). Nanocarriers direct homing of MSCs by binding to its counterpart protein, intercellular adhesion molecule-1 (ICAM-1), which is overexpressed at the periablation margins from inflammation. Ablation cavity reduction by CT volumetry was used as surrogate marker for liver regeneration. Cell proliferation was assessed with Ki67 and HepPar-1 stains. GFP identified MSC derived cells. RESULTS Total number of ablations in control animals were 13 across 4 animals. In the MSC group, there were 23 ablations across 6 animals, and in MSC + NC group there were 21 ablations across 6 animals. Ablation cavity volume reduction from day 0 to 30 were 64.4 ± 15.0%, 61.5 ± 12.9% and 80.3 ± 9.4% for control, MSC and MSC + NC groups, respectively (MSC + NC vs MSC: p < 0.001, MSC + NC vs. control: p = 0.001). GFP+ cell count at margins was 426.8 ± 193.2 for MSC group and 498.6 ± 235.2 for MSC + NC group (p = 0.01). The mean Ki67 and HepPar-1 staining at margins were 9.81 ± 4.5% and 6.12 ± 4.2% for MSC + NC group versus 7.59 ± 3.7% and 5.09 ± 3.7% for MSC group, respectively (P < 0.001 and P = 0.09, respectively). CONCLUSION Nanocarrier-mediated MSC therapy promotes liver regeneration by engrafting MSCs at ablation margins, potentially making liver-directed therapy viable for patients with severe liver dysfunction. This technology may also benefit other solid organs.
Collapse
Affiliation(s)
- Prasoon P Mohan
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Zhao-Jun Liu
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Hugo Kaneku
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Doyoung Chang
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Monica Garcia-Buitrago
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Hamed Jalaeian
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Elnaz Zeynaloo
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Yulexi Y Ortiz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Yan Li
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Shivank Bhatia
- Department of Interventional Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Omaida Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Interventional Radiology, UMHC-SCC, 1475 NW 12th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Murase W, Kubota A, Hakota R, Yasuda A, Ikeda A, Nakagawa K, Shizu R, Yoshinari K, Kojima H. Comparative study on gene expression profiles in the liver of male neonatal mice prenatally exposed to PFOA and its alternative HFPO-DA. Toxicology 2025; 511:154048. [PMID: 39778857 DOI: 10.1016/j.tox.2025.154048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA), which belongs to the class of perfluoroalkyl ether carboxylic acid (PFECA), is a new alternative to perfluorooctanoic acid (PFOA). However, whether HFPO-DA is a safer alternative to PFOA in neonates remains unclear. In this study, we evaluated neonatal hepatic toxicity on postnatal days 9-10 by orally exposing pregnant CD-1 mice to 0.3 or 3.0 mg/kg/day (low or high doses) of HFPO-DA or PFOA from gestation days 15-17. The results showed that exposure of pregnant mice to HFPO-DA and PFOA induced similar phenotypic effects, including significant decreases in neonatal body weight (BW) and significant increases in liver weight relative to BW in the high-dose. Notably, HFPO-DA exposure significantly decreased in neonatal BW in the low-dose group, whereas PFOA did not. Comprehensive gene expression analysis revealed significant alterations in 408 and 1402 differentially expressed genes (DEGs) in the liver of neonates from the low- and high-dose HFPO-DA groups, respectively, while PFOA significantly altered 0 and 292 DEGs in the corresponding groups. Gene set enrichment analysis indicated that the DEGs induced by HFPO-DA and PFOA were enriched in pathway related to "PPAR signaling", "fatty acid metabolism", and "biological oxidations". In addition, transactivation assays revealed that mouse (m)PPARα and mPPARγ activity of HFPO-DA exceeds that of PFOA and molecular docking simulations analysis predicted that the binding conformation differ between PFOA and HFPO-DA. Overall, our findings demonstrate that HFPO-DA consistently affected neonatal phenotypes, liver gene expression and the molecular initiating events involving PPARα/γ, at lower concentrations than PFOA.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryo Hakota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan
| | - Koji Nakagawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryota Shizu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
5
|
Little A, Medford A, O'Brien A, Childs J, Pan S, Machado J, Chakraborty S, Glaser S. Recent Advances in Intrahepatic Biliary Epithelial Heterogeneity. Semin Liver Dis 2023; 43:1-12. [PMID: 36522162 DOI: 10.1055/s-0042-1758833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biliary epithelium (i.e., cholangiocytes) is a heterogeneous population of epithelial cells in the liver, which line small and large bile ducts and have individual responses and functions dependent on size and location in the biliary tract. We discuss the recent findings showing that the intrahepatic biliary tree is heterogeneous regarding (1) morphology and function, (2) hormone expression and signaling (3), response to injury, and (4) roles in liver regeneration. This review overviews the significant characteristics and differences of the small and large cholangiocytes. Briefly, it outlines the in vitro and in vivo models used in the heterogeneity evaluation. In conclusion, future studies addressing biliary heterogeneity's role in the pathogenesis of liver diseases characterized by ductular reaction may reveal novel therapeutic approaches.
Collapse
Affiliation(s)
- Ashleigh Little
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Abigail Medford
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - April O'Brien
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jonathan Childs
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sharon Pan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Jolaine Machado
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
6
|
The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2022; 13:204. [PMID: 35578365 PMCID: PMC9109309 DOI: 10.1186/s13287-022-02882-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) therapy is showing potential therapeutic effects on liver function improvement in patients with chronic liver disease; however, the consensus on efficacy and safety of MSCs has not been reached. Methods We performed this systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy and safety of MSCs therapy for patients with chronic liver disease. A detailed search of the Cochrane Library, MEDLINE, Web of Science, and EMBASE databases was conducted to find studies published prior to September 15, 2021. The outcome measures were survival rate, model of end-stage liver disease (MELD) score, albumin, total bilirubin, coagulation function, and aminotransferase. Results A literature search resulted in 892 citations. Of these, 12 studies met the inclusion criteria. It was found that compared with conventional treatment, MSCs therapy was associated with improved liver function including the MELD score, albumin levels, and coagulation function. However, it had no obvious beneficial effects on survival rate and aminotransferase levels. Subgroup analyses indicated that MSCs therapy had therapeutic effects on patients with both acute on chronic liver failure (ACLF) and cirrhosis. BM-MSCs and UC-MSCs treatment had similar efficacy to improve liver function. The effectiveness varied slightly between the peripheral intravenous injection and hepatic arterial injection. Five studies reported that the only adverse event of the MSCs therapy was fever, and no serious adverse events and side effects were reported. Analysis on clinical symptoms showed that encephalopathy and gastrointestinal hemorrhage events were reduced after MSCs therapy. Conclusions In conclusion, this study suggested that MSCs therapy could be a potential therapeutic alternative for patients with chronic liver disease in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02882-4.
Collapse
|
7
|
Deo D, Marchioni M, Rao P. Mesenchymal Stem/Stromal Cells in Organ Transplantation. Pharmaceutics 2022; 14:pharmaceutics14040791. [PMID: 35456625 PMCID: PMC9029865 DOI: 10.3390/pharmaceutics14040791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Organ transplantation is essential and crucial for saving and enhancing the lives of individuals suffering from end-stage organ failure. Major challenges in the medical field include the shortage of organ donors, high rates of organ rejection, and long wait times. To address the current limitations and shortcomings, cellular therapy approaches have been developed using mesenchymal stem/stromal cells (MSC). MSC have been isolated from various sources, have the ability to differentiate to important cell lineages, have anti-inflammatory and immunomodulatory properties, allow immunosuppressive drug minimization, and induce immune tolerance towards the transplanted organ. Additionally, rapid advances in the fields of tissue engineering and regenerative medicine have emerged that focus on either generating new organs and organ sources or maximizing the availability of existing organs. This review gives an overview of the various properties of MSC that have enabled its use as a cellular therapy for organ preservation and transplant. We also highlight emerging fields of tissue engineering and regenerative medicine along with their multiple sub-disciplines, underlining recent advances, widespread clinical applications, and potential impact on the future of tissue and organ transplantation.
Collapse
|
8
|
Zhao Z, Wang Y, Wu Y, Li D, Zhang T, Ma Y, Teng X, Zuo W. Single-cell analysis defines the lineage plasticity of stem cells in cervix epithelium. CELL REGENERATION 2021; 10:36. [PMID: 34719766 PMCID: PMC8558147 DOI: 10.1186/s13619-021-00096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Information about the dynamic change and post-injury regeneration of cervical epithelium is relatively rare, even though it is tightly related to gynecologic malignancy. Here, using a feeder cell-based culturing system, we stably cloned mouse and human P63 and KRT5 expressing cells from the adult cervix as putative cervical stem/progenitor cells (CVSCs). When subjected to differentiation, the cultured cells gave rise to mature cervical epithelium by differentiating into squamous or glandular cells. The ability of endogenous mouse CVSCs to reconstitute cervical epithelium after injury was also evident from the genetic lineage tracing experiments. Single-cell transcriptomic analysis further classified the CVSCs into three subtypes and delineated their bi-lineage differentiation roadmap by pseudo-time analysis. We also tracked the real-time differentiation routes of two representing single CVSC lines in vitro and found that they recapitulated the predicted roadmap in pseudo-time analysis. Signaling pathways including Wnt, TGF-beta, Notch and EGFR were found to regulate the cervical epithelial hierarchy and implicated the different roles of distinct types of cells in tissue homeostasis and tumorigenesis. Collectively, the above data provide a cloning system to achieve stable in vitro culture of a bi-lineage stem/progenitor cell population in the cervix, which has profound implications for our understanding of the cervix stem/progenitor cell function in homeostasis, regeneration, and disease and could be helpful for developing stem cell-based therapies in future.
Collapse
Affiliation(s)
- Zixian Zhao
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yujia Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Super Organ R&D Center, Regend Therapeutics, Shanghai, China
| | - Yingchuan Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Jincai East Secondary School, Shanghai, China
| | - Dandan Li
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ting Zhang
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
| | - Yu Ma
- Super Organ R&D Center, Regend Therapeutics, Shanghai, China
| | - Xiaoming Teng
- Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Wei Zuo
- East Hospital, School of Medicine, Tongji University, Shanghai, China. .,Super Organ R&D Center, Regend Therapeutics, Shanghai, China. .,Ningxia Medical University, Yinchuan, China. .,The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Cell-Based Regeneration and Treatment of Liver Diseases. Int J Mol Sci 2021; 22:ijms221910276. [PMID: 34638617 PMCID: PMC8508969 DOI: 10.3390/ijms221910276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The liver, in combination with a functional biliary system, is responsible for maintaining a great number of vital body functions. However, acute and chronic liver diseases may lead to irreversible liver damage and, ultimately, liver failure. At the moment, the best curative option for patients suffering from end-stage liver disease is liver transplantation. However, the number of donor livers required by far surpasses the supply, leading to a significant organ shortage. Cellular therapies play an increasing role in the restoration of organ function and can be integrated into organ transplantation protocols. Different types and sources of stem cells are considered for this purpose, but highly specific immune cells are also the focus of attention when developing individualized therapies. In-depth knowledge of the underlying mechanisms governing cell differentiation and engraftment is crucial for clinical implementation. Additionally, novel technologies such as ex vivo machine perfusion and recent developments in tissue engineering may hold promising potential for the implementation of cell-based therapies to restore proper organ function.
Collapse
|
10
|
Lim RHG, Liew JXK, Wee A, Masilamani J, Chang SKY, Phan TT. Safety Evaluation of Human Cord-Lining Epithelial Stem Cells Transplantation for Liver Regeneration in a Porcine Model. Cell Transplant 2021; 29:963689719896559. [PMID: 32166974 PMCID: PMC7444229 DOI: 10.1177/0963689719896559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated the safety of using umbilical cord-lining stem cells for liver regeneration and tested a novel method for stem cell delivery. Stem cells are known by their ability to repair damaged tissues and have the potential to be used as regenerative therapies. The umbilical cord's outer lining membrane is known to be a promising source of multipotent stem cells and can be cultivated in an epithelial cell growth medium to produce cell populations which possess the properties of both epithelial cells and embryonic stem cells-termed cord-lining epithelial cells (CLEC). Hepatocytes are epithelial cells of the liver and their proliferation upon injury is the main mechanism in restoring the liver. Earlier studies conducted showed CLEC can be differentiated into functioning hepatocyte-like cells (HLC) and can survive in immunologically competent specimens. In this study, we chose a porcine model to investigate CLEC as a treatment modality for liver failure. We selected 16 immune competent Yorkshire-Dutch Landrace pigs, with a mean weight of 40.5 kg, for this study. We performed a 50% hepatectomy to simulate the liver insufficient disease model. After the surgery, four pigs were transplanted with a saline scaffold while seven pigs were transplanted with a HLC scaffold. Five pigs died on the surgical table and were omitted from the study analysis. This study addressed the safety of transplanting human CLEC in a large animal model. The transplant interfaces were evaluated and no signs of cellular rejection were observed in both groups.
Collapse
Affiliation(s)
| | | | - Aileen Wee
- Department of Pathology, Singapore National University Hospital, Singapore
| | | | - Stephen Kin Yong Chang
- Department of Surgery, Singapore National University Hospital, Singapore.,Glad Clinic Pte. Ltd, Singapore
| | - Toan Thang Phan
- Department of Surgery, Singapore National University Hospital, Singapore.,CellResearch Corporation Pte. Ltd, Singapore
| |
Collapse
|
11
|
Messner F, Guo Y, Etra JW, Brandacher G. Emerging technologies in organ preservation, tissue engineering and regenerative medicine: a blessing or curse for transplantation? Transpl Int 2019; 32:673-685. [PMID: 30920056 DOI: 10.1111/tri.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/18/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Since the beginning of transplant medicine in the 1950s, advances in surgical technique and immunosuppressive therapy have created the success story of modern organ transplantation. However, today more than ever, we are facing a huge discrepancy between organ supply and demand, limiting the potential for transplantation to save and improve the lives of millions. To address the current limitations and shortcomings, a variety of emerging new technologies focusing on either maximizing the availability of organs or on generating new organs and organ sources hold great potential to eventully overcoming these hurdles. These advances are mainly in the field of regenerative medicine and tissue engineering. This review gives an overview of this emerging field and its multiple sub-disciplines and highlights recent advances and existing limitations for widespread clinical application and potential impact on the future of transplantation.
Collapse
Affiliation(s)
- Franka Messner
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Yinan Guo
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Joanna W Etra
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Ilic Z, Mondal TK, Guest I, Crawford DR, Sell S. Participation of liver stem cells in cholangiocarcinogenesis after aflatoxin B1 exposure of glutathione S-transferase A3 knockout mice. Tumour Biol 2018; 40:1010428318777344. [DOI: 10.1177/1010428318777344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1, arguably the most potent human carcinogen, induces liver cancer in humans, rats, trout, ducks, and so on, but adult mice are totally resistant. This resistance is because of a detoxifying enzyme, mouse glutathione S-transferase A3, which binds to and inactivates aflatoxin B1 epoxide, preventing the epoxide from binding to DNA and causing mutations. Glutathione S-transferase A3 or its analog has not been detected in any of the sensitive species, including humans. The generation of a glutathione S-transferase A3 knockout (represented as KO or -/-) mice has allowed us to study the induction of liver cancer in mice by aflatoxin B1. In contrast to the induction of hepatocellular carcinomas in other species, aflatoxin B1 induces cholangiocarcinomas in GSTA3-/- mice. In other species and in knockout mice, the induction of liver cancer is preceded by extensive proliferation of small oval cells, providing additional evidence that oval cells are bipolar stem cells and may give rise to either hepatocellular carcinoma or cholangiocarcinoma depending on the nature of the hepatocarcinogen and the species of animal. The recent development of mouse oval cell lines in our laboratory from aflatoxin B1-treated GSTA3-/- mice should provide a new venue for study of the properties and potential of putative mouse liver stem cells.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tapan K Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
13
|
Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, Kumar S. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11333-11342. [PMID: 29546515 DOI: 10.1007/s11356-018-1652-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| | - Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Narayanan Kannan
- Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Delladetsima I, Sakellariou S, Govaere O, Poulaki E, Felekouras E, Tiniakos D. Hepatic progenitor cells in metastatic liver carcinomas. Histopathology 2018; 72:1060-1065. [DOI: 10.1111/his.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 12/02/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Ioanna Delladetsima
- 1st Department of Pathology; Medical School; National & Kapodistrian University of Athens; Athens Greece
| | - Stratigoula Sakellariou
- 1st Department of Pathology; Medical School; National & Kapodistrian University of Athens; Athens Greece
| | - Olivier Govaere
- Institute of Cellular Medicine; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne UK
| | - Elpida Poulaki
- 1st Department of Pathology; Medical School; National & Kapodistrian University of Athens; Athens Greece
| | | | - Dina Tiniakos
- Institute of Cellular Medicine; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne UK
- Department of Pathology; Aretaieion Hospital; Medical School; National & Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
15
|
Macedo FI, Eid JJ, Decker M, Herschman B, Negussie E, Mittal VK. Autogenous hepatic tissue transplantation into the omentum in a novel ectopic liver regeneration murine model. J Surg Res 2017; 223:215-223. [PMID: 29433876 DOI: 10.1016/j.jss.2017.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Liver regeneration involves hyperplasia and hypertrophy of hepatic cells. The capacity of macroscopic liver tissue to regenerate in ectopic sites is unknown. We aim to develop a novel in vivo model of ectopic liver survivability and regeneration and assess its functionality. METHODS Adult male Sprague-Dawley rats (n = 23) were divided into four groups: (1) single-stage (SS) group, wedge liver resection was performed, and the parenchyma was directly implanted into the omentum; (2) double-stage (DS) group, omentum pedicle was transposed over the left hepatic lobe followed by wedge liver resection along with omental flap; (3) Biogel + DS group, rats received intraperitoneal injection of inert polymer particles prior to DS; (4) Biogel + DS + portal vein ligation (PVL) group, Biogel + DS rats underwent subsequent PVL. Hepatobiliary iminodiacetic acid scintigraphy assessed bile excretion from ectopic hepatic implants. RESULTS Histologically, the scores of necrosis (P < 0.001) and fibrosis (P = 0.004) were significantly improved in rats undergoing DS procedure (groups 2, 3, and 4) compared with the SS group. Biogel rats (Biogel + DS and Biogel + DS + PVL) demonstrated statistically increased scores of bile duct neoformation (P = 0.002) compared to those without the particles (SS and DS). Scintigraphy demonstrated similar uptake of radiotracer by ectopic hepatic implants in groups 2, 3, and 4. CONCLUSIONS Omental transposition provided adequate microcirculation for proliferation of ectopic hepatic cells after liver resection. Inert polymers enhanced the regeneration by promoting differentiation of new bile ducts. The ectopic hepatic implants showed preserved function on scintigraphy. This model provides insights into the capacity of liver parenchyma to regenerate in ectopic sites and the potential as therapeutic target for cell therapy in end-stage liver disease.
Collapse
Affiliation(s)
- Francisco Igor Macedo
- Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
| | - Joseph J Eid
- Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan
| | - Milessa Decker
- Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan
| | - Barry Herschman
- Department of Pathology, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan
| | - Edsa Negussie
- Department of Radiology, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan
| | - Vijay K Mittal
- Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan
| |
Collapse
|
16
|
Abdellatif H, Shiha G, Saleh DM, Eltahry H, Botros KG. Effect of human umbilical cord blood stem cell transplantation on oval cell response in 2-AAF/CCL4 liver injury model: experimental immunohistochemical study. Inflamm Regen 2017; 37:5. [PMID: 29259704 PMCID: PMC5725643 DOI: 10.1186/s41232-017-0035-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022] Open
Abstract
Background Oval cells, specific liver progenitors, are activated in response to injury. The human umbilical cord blood (hUCB) is a possible source of transplantable hepatic progenitors and can be used in cases of severe liver injury. We detected the effect of hUCB stem cell transplantation on natural response of oval cells to injury. Methods Twenty-four female albino rats were randomly divided into three groups: (A) control, (B) liver injury with hepatocyte block, and (C) hUCB transplanted group. Hepatocyte block was performed by administration of 2-acetylaminofluorene (2-AAF) for 12 days. CCL4 was administrated at day 5 from experiment start. Animals were sacrificed at 9 days post CCL4 administration, and samples were collected for biochemical and histopathological analysis. Oval cell response to injury was evaluated by the percentage of oval cells in the liver tissue and frequency of cells incorporated into new ducts. Results Immunohistochemical analysis of oval cell response to injury was performed. There was significant deviation in the hUCB-transplanted (4.9 ± 1.4) and liver injury groups (2.4 ± 0.9) as compared to control (0.89 ± 0.4) 9 days post injury. Detection of oval cell response was dependant on OV-6 immunoreactivity. For mere localization of cells with human origin, CD34 antihuman immunoreactivity was performed. There was no significant difference in endogenous OV-6 immunoreactivity following stem cell transplantation as compared to the liver injury group. Conclusions In vivo transplantation of cord blood stem cells (hUCB) does not interfere with natural oval cell response to liver injury.
Collapse
Affiliation(s)
- Hussein Abdellatif
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Gamal Shiha
- Internal Medicine Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt.,Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt
| | - Dalia M Saleh
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Huda Eltahry
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Kamal G Botros
- Anatomy and Embryology Department, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
17
|
Kim D, Cho GS, Han C, Park DH, Park HK, Woo DH, Kim JH. Current Understanding of Stem Cell and Secretome Therapies in Liver Diseases. Tissue Eng Regen Med 2017; 14:653-665. [PMID: 30603518 PMCID: PMC6171672 DOI: 10.1007/s13770-017-0093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022] Open
Abstract
Liver failure is one of the main risks of death worldwide, and it originates from repetitive injuries and inflammations of liver tissues, which finally leads to the liver cirrhosis or cancer. Currently, liver transplantation is the only effective treatment for the liver diseases although it has a limitation due to donor scarcity. Alternatively, cell therapy to regenerate and reconstruct the damaged liver has been suggested to overcome the current limitation of liver disease cures. Several transplantable cell types could be utilized for recovering liver functions in injured liver, including bone marrow cells, mesenchymal stem cells, hematopoietic stem cells, macrophages, and stem cell-derived hepatocytes. Furthermore, paracrine effects of transplanted cells have been suggested as a new paradigm for liver disease cures, and this application would be a new strategy to cure liver failures. Therefore, here we reviewed the current status and challenges of therapy using stem cells for liver disease treatments.
Collapse
Affiliation(s)
- Dongkyu Kim
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Gun-Sik Cho
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Choongseong Han
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, #101 Daehak-ro, Jongro-gu, Seoul, 03080 Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Anam Hospital, Korea University College of Medicine, 73 Inchonro, Sungbuk-gu, Seoul, 02841 Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, #101 Daehak-ro, Jongro-gu, Seoul, 03080 Korea
| | - Dong-Hun Woo
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbu-gu, Seoul, 02841 Korea
| |
Collapse
|
18
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
19
|
Hau HM, Tautenhahn HM, Schmelzle M, Morgul HM, Moche M, Bartels M, Uhlmann D. Current strategies for preoperative conditioning of the liver to expand criteria for resectability of hepatic metastases. Eur Surg 2016; 48:180-190. [DOI: 10.1007/s10353-015-0381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Adas G, Koc B, Adas M, Duruksu G, Subasi C, Kemik O, Kemik A, Sakiz D, Kalayci M, Purisa S, Unal S, Karaoz E. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch Surg 2016; 401:725-40. [PMID: 27094936 DOI: 10.1007/s00423-016-1380-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE The study aims to determine the effects of mesenchymal stem cell (MSC) therapy and a combination therapy of MSCs transfected with vascular endothelial growth factor (VEGF) for liver regeneration after major resection. METHODS Thirty-eight rats were divided into four groups: group 1: control (sham operation); group 2: control (70 % hepatic resection); group 3: 70 % hepatic resection + systemically transplanted MSCs; and group 4: 70 % hepatic resection + systemically transplanted MSCs transfected with the VEGF gene. MSCs were injected via the portal vein route in study groups 3 and 4. Expression levels of VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor (TGF), hepatocyte growth factor (HGF), and augmenter of liver regeneration (ALR) were analyzed in the remnant liver tissue. We investigated the levels of angiogenic factors, VEGF-receptor, angiopoietin-1 (Angpt1) and Angpt2. Biochemical parameters of liver function in blood samples were measured and a histologic assessment of the livers was performed. The postoperative liver weight and volume of each rat were measured 14 days after surgery. RESULTS The expression levels of all measured growth factors were significantly increased in groups 3 and 4 compared to the control groups. The levels of Angpt1 and Angpt2 correlated with levels of VEGF and thus were also significantly higher in the study groups. There were significant differences between the estimated liver weights and volumes of group 4 and the resected controls in group 2. With the exception of portal inflammation, levels of all histological parameters were observed to be higher in MSC-treated groups when compared with the resected controls in group 2. CONCLUSIONS Transplanted stem cells and MSCs transfected with VEGF significantly accelerated many parameters of the healing process following major hepatic resection. After the injection of MSCs and VEGF-transfected MSCs into the portal vein following liver resection, they were engrafted in the liver. They increased bile duct and liver hepatocyte proliferation, and secreted many growth factors including HGF, TGFβ, VEGF, PDGF, EGF, and FGF via paracrine effects. These effects support liver function, regeneration, and liver volume/weight.
Collapse
Affiliation(s)
- Gokhan Adas
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Bora Koc
- Faculty of Medicine, Istanbul Training Hospital, Department of Surgery, Baskent University, Oymaci Sok. No:7, 34662, Altunizade Uskudar, Istanbul, Turkey.
| | - Mine Adas
- Department of Endocrinology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Gokhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Cansu Subasi
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Ozgur Kemik
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Ahu Kemik
- Faculty of Medicine, Department of Biochemistry, Istanbul University, Istanbul, Turkey
| | - Damlanur Sakiz
- Department of Pathology, Bakirköy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kalayci
- Department of Surgery, Bakirkoy Dr.Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Sevim Purisa
- Faculty of Medicine, Department of Statistics, Istanbul University, Istanbul, Turkey
| | - Seda Unal
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Stem Cell Department, Kocaeli University, Izmit, Kocaeli, Turkey
| | - Erdal Karaoz
- Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), Liv Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Stem Cell Therapies for Treatment of Liver Disease. Biomedicines 2016; 4:biomedicines4010002. [PMID: 28536370 PMCID: PMC5344247 DOI: 10.3390/biomedicines4010002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Cell therapy is an emerging form of treatment for several liver diseases, but is limited by the availability of donor livers. Stem cells hold promise as an alternative to the use of primary hepatocytes. We performed an exhaustive review of the literature, with a focus on the latest studies involving the use of stem cells for the treatment of liver disease. Stem cells can be harvested from a number of sources, or can be generated from somatic cells to create induced pluripotent stem cells (iPSCs). Different cell lines have been used experimentally to support liver function and treat inherited metabolic disorders, acute liver failure, cirrhosis, liver cancer, and small-for-size liver transplantations. Cell-based therapeutics may involve gene therapy, cell transplantation, bioartificial liver devices, or bioengineered organs. Research in this field is still very active. Stem cell therapy may, in the future, be used as a bridge to either liver transplantation or endogenous liver regeneration, but efficient differentiation and production protocols must be developed and safety must be demonstrated before it can be applied to clinical practice.
Collapse
|
22
|
Therapeutic Potential of HGF-Expressing Human Umbilical Cord Mesenchymal Stem Cells in Mice with Acute Liver Failure. Int J Hepatol 2016; 2016:5452487. [PMID: 27057357 PMCID: PMC4789068 DOI: 10.1155/2016/5452487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are particularly attractive cells for cellular and gene therapy in acute liver failure (ALF). However, the efficacy of this cell therapy in animal studies needs to be significantly improved before it can be translated into clinics. In this study, we investigated the therapeutic potential of UCMSCs that overexpress hepatocyte growth factor (HGF) in an acetaminophen-induced acute liver failure mouse model. We found that the HGF-UCMSC cell therapy protected animals from acute liver failure by reducing liver damage and prolonging animal survival. The therapeutic effect of HGF-UCMSCs was associated with the increment in serum glutathione (GSH) and hepatic enzymes that maintain redox homeostasis, including γ-glutamylcysteine synthetase (γ-GCS), superoxide dismutase (SOD), and catalase (CAT). Immunohistochemical staining confirmed that HGF-UCMSCs were mobilized to the injured areas of the liver. Additionally, HGF-UCMSCs modulated apoptosis by upregulating the antiapoptotic Bcl2 and downregulating proapoptotic genes, including Bax and TNFα. Taken together, these data suggest that ectopic expression of HGF in UCMSCs protects animals from acetaminophen-induced acute liver failure through antiapoptosis and antioxidation mechanisms.
Collapse
|
23
|
Verhulst S, Best J, van Grunsven LA, Dollé L. Advances in hepatic stem/progenitor cell biology. EXCLI JOURNAL 2015; 14:33-47. [PMID: 26600740 PMCID: PMC4650945 DOI: 10.17179/excli2014-576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration.
Collapse
Affiliation(s)
- Stefaan Verhulst
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Best
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
24
|
EI-Ghonaimy NM. Role of ginger (zingiber officinale) against metalaxyl induced hepatotoxicity in male albino rats: a histological and immunohistochemical study. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2055-091x-2-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Shi JH, Line PD. Effect of liver regeneration on malignant hepatic tumors. World J Gastroenterol 2014; 20:16167-16177. [PMID: 25473170 PMCID: PMC4239504 DOI: 10.3748/wjg.v20.i43.16167] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 06/21/2014] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration after major surgery may activate occult micrometastases and facilitate tumor growth, leading to liver tumor recurrence. Molecular changes during liver regeneration can provide a microenvironment that stimulates intrahepatic tumor propagation through alterations in cellular signaling pathways, where activation and proliferation of mature hepatocytes, hepatic progenitor cells, non-parenchymal liver cells might favor both liver regeneration and tumor growth. This review highlights recent advances of tumor growth and development in the regenerating liver, possible mechanisms and clinical implications.
Collapse
|
26
|
Sun L, Fan X, Zhang L, Shi G, Aili M, Lu X, Jiang T, Zhang Y. Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. Int J Mol Med 2014; 34:987-96. [PMID: 25110277 PMCID: PMC4152144 DOI: 10.3892/ijmm.2014.1890] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In the present study, we assessed the efficiency of four BMSC transplantation methods as a therapy for liver failure. A rat model (80 Sprague-Dawley rats) of D-galactosamine (D-gal)/lipopolysaccharide (LPS)-induced acute liver failure (ALF) was established and the rats were divided into 5 groups: a hepatic artery injection group, a portal vein injection group, a vena caudalis injection group, an intraperitoneal injection group and a control group (16 per group). Following transplantation, the liver tissue and blood samples were collected on days 1, 3 and 7, we detected the EdU (5-ethynyl-2′-deoxyuridine)-labeled cells homing to the liver tissue and assessed the proliferating cell nuclear antigen (PCNA) and cysteine-containing aspartate-specific protease (caspase)-3 expression in the liver tissue and detected the levels of stromal cell-derived factor 1 (SDF-1) and hepatocyte growth factor (HGF) in the liver tissues. Compared with the control group, the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and damage to the liver tissue in the hepatic artery group, the portal vein group and the vena caudalis group improved in vivo. The expression of PCNA and HGF in the liver was higher and caspase-3 expression was lower in the hepatic artery injection group, the portal vein injection group and the vena caudalis injection group than that in the intraperitoneal injection and control groups. The EdU-labeled BMSCs were only observed homing to the liver tissue in these three groups. However, no significant differences were observed between these three groups. Liver function in the rats with ALF was improved following BMSC transplantation via 3 endovascular implantation methods (through the hepatic artery, portal vein and vena caudalis). These 3 methods were effective in transplanting BMSCs for the treatment of ALF. However, the selection of blood vessel in the implantation pathway does not affect the transplantation outcome. Transplantation via intraperitoneal injection showed no therapeutic effect in our animal experiments.
Collapse
Affiliation(s)
- Lihua Sun
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaotang Fan
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lijuan Zhang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Guixiu Shi
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Maimaiti Aili
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiaobo Lu
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Tao Jiang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Yuexin Zhang
- Department of Hepatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
27
|
Li M, Zhou X, Mei J, Geng X, Zhou Y, Zhang W, Xu C. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration. Cell Mol Biol Lett 2014; 19:181-200. [PMID: 24643584 PMCID: PMC6275877 DOI: 10.2478/s11658-014-0188-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
Under normal physiological conditions, the majority of hepatocytes are in the functional state (G0 phase). After injury or liver partial hepatectomy (PH), hepatocytes are rapidly activated to divide. To understand the mechanism underlying hepatocyte G0/G1 transition during rat liver regeneration, we used the Rat Genome 230 2.0 Array to determine the expression changes of genes, then searched the GO and NCBI databases for genes associated with the G0/G1 transition, and QIAGEN and KEGG databases for the G0/G1 transition signaling pathways. We used expression profile function (E t ) to calculate the activity level of the known G0/G1 transition signal pathways, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the interactions among these signaling pathways. The results of our study show that the activity of the signaling pathways of HGF, IL-10 mediated by p38MAPK, IL-6 mediated by STAT3, and JAK/STAT mediated by Ras/ERK and STAT3 are significantly increased during the priming phase (2-6 h after PH) of rat liver regeneration. This leads us to conclude that during rat liver regeneration, the HGF, IL-10, IL-6 and JAK/STAT signaling pathways play a major role in promoting hepatocyte G0/G1 transition in the regenerating liver.
Collapse
Affiliation(s)
- Menghua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Xiaochun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Jinxin Mei
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Xiaofang Geng
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Weimin Zhang
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| |
Collapse
|
28
|
Ryu KH. Liver stem cells derived from the bone marrow and umbilical cord blood. Int J Stem Cells 2014; 2:97-101. [PMID: 24855527 DOI: 10.15283/ijsc.2009.2.2.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2009] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kyung Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha womans University, Seoul, Korea
| |
Collapse
|
29
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
30
|
Noguchi H, Yamada S, Nabeshima A, Guo X, Tanimoto A, Wang KY, Kitada S, Tasaki T, Takama T, Shimajiri S, Horlad H, Komohara Y, Izumi H, Kohno K, Ichijo H, Sasaguri Y. Depletion of apoptosis signal-regulating kinase 1 prevents bile duct ligation-induced necroinflammation and subsequent peribiliary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:644-661. [PMID: 24412091 DOI: 10.1016/j.ajpath.2013.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/01/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase (MAP3K), is ubiquitously expressed and situated in an important upstream position of many signal transduction pathways. ASK1 plays a pivotal role in stressor-induced cell survival and inflammatory reactions. To ascertain the regulatory functions of ASK1 in bile duct ligation (BDL)-induced liver injury, we examined the net effects of ASK1 depletion on hepatic necroinflammation and/or fibrosis. We subjected C57BL/6 wild-type (WT) or ASK1-deficient (ASK1(-/-)) mice to sham or BDL surgery for 14 days. In day 3 BDL animals, ASK1(-/-) mice had significantly fewer bile infarcts along with more reduced interlobular or portal inflammatory infiltrate of various immune cells, including neutrophils, compared with WT mice in which ASK1 expression was markedly activated. Morphologically apoptotic hepatocytes or cholangiocytes were negligible in both the sham and BDL animals. In contrast, ASK1(-/-) mice had significantly less proliferating activity of not only hepatocytes but also large cholangiocytes than WT mice. Day 14 BDL ASK1(-/-) mice manifested potential antifibrogenic aspects of ASK1 deficiency, characterized by significantly fewer activated peribiliary fibrogenic cells and peribiliary fibrosis. These observations indicate that ASK1-mediated hepatic necroinflammation and proliferation, but not apoptosis, are closely linked to liver fibrosis and fibrogenesis. A specific ASK1 pathway blocker or inhibitor might offer a therapeutic strategy against human cholestatic diseases.
Collapse
Affiliation(s)
- Hirotsugu Noguchi
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Atsunori Nabeshima
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Xin Guo
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kitakyushu, Japan
| | - Ke-Yong Wang
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Bio-information Research Center, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Kitada
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Tasaki
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Takama
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hasita Horlad
- Department of Cell Pathology, Faculty of Medical and Pharmaceutical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kitakyushu, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Medical and Pharmaceutical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kitakyushu, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kimitoshi Kohno
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Yasuyuki Sasaguri
- Departments of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
31
|
Gerold G, Pietschmann T. A circuit of paracrine signals between liver sinusoid endothelial cells and hepatocytes regulates hepatitis C virus replication. Hepatology 2014; 59:363-5. [PMID: 23857467 DOI: 10.1002/hep.26621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 12/07/2022]
Affiliation(s)
- Gisa Gerold
- Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | | |
Collapse
|
32
|
Nikoozad Z, Ghorbanian MT, Rezaei A. Comparison of the liver function and hepatic specific genes expression in cultured mesenchymal stem cells and hepatocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:27-33. [PMID: 24592304 PMCID: PMC3938883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE(S) Stem cell therapy is believed to be as a promising treatment strategy for tissue repair and regeneration. The plasticity specification of the adult stem cells, such as MSCs, has enabled that these cells to be used in the treatment of a broad spectrum of diseases like liver disorders. In this study, the production of urea and Albumin (Alb), glycogen storage, and expression of some liver genes including α-fetoprotein (AFP), Alb, cytokeratin18 (CK18) and cytokeratin19 (CK19) was compared between mesenchymal stem cells (MSCs) and isolated rat hepatocytes. MATERIALS AND METHODS The MSCs were isolated from rat femurs and tibias and cultured in α-MEM, DMEM and RPMI mediums supplemented with serum. Hepatocytes were isolated from Rat livers and cultured in DMEM with serum. The expression of AFP, Alb, CK18, and CK19 genes was evaluated using the reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the synthesis of albumin and urea of the cells was measured. RESULTS In vitro conditions, MSCs and hepatocytes exhibited the characteristic functions of the liver such as capacity to synthesize Alb, urea, the storage of glycogen. In this study, the expression of some liver genes such as AFP, Alb, CK18 and CK19 at mRNA levels was also shown. CONCLUSION The results showed that MSCs exhibited some liver functions, and may be considered as an alternative source for adult stem cell transplantation in liver repair due to the excellent proliferation and differentiation capacities.
Collapse
Affiliation(s)
| | - Mohammad Taghi Ghorbanian
- School of Biology, Damghan University, Damghan, Iran ,Institute of Biological Sciences, Damghan University, Damghan, Iran ,Corresponding author: Mohammad Taghi Ghorbanian. School of Biology, Damghan University, Damghan, Iran. Fax: +98-232-524-7146;
| | - Arezou Rezaei
- School of Biology, Damghan University, Damghan, Iran ,Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
33
|
Zhang WJ, Guo Y. Mechanisms of liver repair following injury. Shijie Huaren Xiaohua Zazhi 2013; 21:3369-3375. [DOI: 10.11569/wcjd.v21.i31.3369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver injury caused by a variety of physical or chemical factors is a common disease, and severe or persistent liver injury can ultimately lead to acute liver failure. Its treatment is still a formidable challenge to clinicians. Elucidation of mechanisms underlying liver repair following injury is the cornerstone of treatment of hepatic diseases. Despite many research efforts over the past decades, the mechanisms behind liver repair following injury are still not clear. Recent studies have demonstrated that oval cells and bone marrow stem cells are involved in this complex process. A variety of cells and factors may play a role in different stages of this process. In this paper, we will review mechanisms of liver repair following injury.
Collapse
|
34
|
Kamiya A, Nakauchi H. Enrichment and clonal culture of hepatic stem/progenitor cells during mouse liver development. Methods Mol Biol 2013; 945:273-286. [PMID: 23097112 DOI: 10.1007/978-1-62703-125-7_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Liver regenerates after hepatectomy or chemical-induced injury. In contrast to cells in other tissues that can regenerate, mature cells (hepatocytes), but not undifferentiated stem cells, are mainly responsible for acute liver regeneration. Liver stem cells take part in liver regeneration in some forms of chronic liver injury, when the proliferative ability of differentiated hepatocytes is impaired. During liver development, both hepatocytes and cholangiocytes are differentiated from common precursor cells, called hepatoblasts. By combining fluorescence-activated cell sorting (FACS) and an in vitro clonal culture system for stem/progenitor cells, we established a method to isolate stem/progenitor cells prospectively from mouse fetal and adult livers. FACS clone-sorted single CD45(-)Ter119(-)c-kit(-)CD13(+)CD133(+) cells (from fetal mid-gestational livers) or CD45(-)Ter119(-)c-kit(-)Sca1(-)CD13(+)CD49f(+)CD133(+) cells (from adult livers) can form a colony containing both albumin-positive hepatocytes and cytokeratin 19-positive bile ductal cells, indicating that these cells have the characters of liver stem/progenitor cells (proliferative capability and bipotency for hepatic and for biliary epithelial differentiation). These cells can maintain these capabilities for several months in culture.
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Stem Cell Therapy, Tokai University Institute of Innovative Science and Technology, Tokyo, Japan.
| | | |
Collapse
|
35
|
Lee HJ, Jung J, Cho KJ, Lee CK, Hwang SG, Kim GJ. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 2012; 84:223-31. [PMID: 22885322 DOI: 10.1016/j.diff.2012.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 03/24/2012] [Accepted: 05/25/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are powerful sources for cell therapy in regenerative medicine. The capability to obtain effective stem cell-derived hepatocytes would improve cell therapy for liver diseases. Recently, various placenta-derived stem cells (PDSCs) depending on the localization of placenta have been suggested as alternative sources of stem cells are similar to bone marrow-derived MSC (BM-MSCs) and adipose-derived MSC (AD-MSCs). However, comparative studies for the potentials of the hepatogenic differentiation among various MSCs largely lacking. Therefore, we investigated to compare the potentials for hepatogenic differentiation of PDSCs with BM-MSCs, AD-MSCs, and UCB-MSCs. Several MSCs were isolated from human term placenta, adipose tissue, and umbilical cord blood and characterized isolated MSCs and BM-MSCs was performed by quantitative reverse transcription-PCR (RT-PCR) and special stains after mesodermal differentiation. The hepatogenic potential of PDSCs was compared with AD-MSCs, UCB-MSCs, and BM-MSCs using RT-PCR, PAS stain, ICG up-take assays, albumin expression, urea production, and cytokine assays. MSCs isolated from different tissues all presented similar characteristics of MSCs. However, the proliferative potential of PDSCs and the expression of hepatogenic markers in differentiated PDSCs were higher than other MSCs. Interestingly, the expression of hepatocyte growth factor (HGF) increased in PDSCs after hepatogenic differentiation. Interestingly, stem cell factor (SCF) expression in chorionic plate-derived MSCs, one of the PDSCs, was significantly higher than in the other PDSCs. Taken together, the results of the present study suggest that MSCs isolated from various adult tissues can be induced to undergo hepatogenic differentiation in vitro, and that PDSCs may have the greatest potential for hepatogenic differentiation and proliferation. Therefore, PDSCs could be used as a stem cell source for cell therapy in liver diseases.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- CHA Placenta Institute, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Little MH. Renal organogenesis: what can it tell us about renal repair and regeneration? Organogenesis 2012; 7:229-41. [PMID: 22198432 DOI: 10.4161/org.7.4.18057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
| |
Collapse
|
37
|
Ultrastructure of liver progenitor/oval cells in children with nonalcoholic steatohepatitis. Adv Med Sci 2012; 56:172-9. [PMID: 21940261 DOI: 10.2478/v10039-011-0037-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Very interesting reports have appeared lately on the role of liver progenitor/oval cells in the morphogenesis and development of nonalcoholic steatohepatits (NASH) in adult patients and experimental animals. However, no literature data concerning pediatric patients have been available. Therefore, the purpose of the study was to evaluate the ultrastructure of the population of liver progenitor/oval cells in the biopsy material from children with previously clinocopathologically diagnosed NASH. MATERIAL/METHODS Electron-microscopic examinations were conducted on fresh tissue samples collected from 10 children with NASH (aged 2-14 years), which were fixed with a solution of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer. RESULTS Ultrastructural examinations of the liver progenitor/oval cells in children with NASH show a quite prominent number of these cells, especially their two types, hepatic progenitor cells (HPCs) and intermediate hepatocyte-like cells (IHCs), with intermediate bile-like cells being the least frequent. They were found to occur single or in clusters of two, seldom of three, and frequently in the areas of advanced liver fibrosis or close to them. Many times, these cells were accompanied by hepatocytes showing a varying degree of death, to total cell disintegration. Interesting was the presence of activated nonparenchymal liver cells, i.e. Kupffer cells/macrophages and hepatic stellate cells, frequently found to adhere to the hepatic oval cells. CONCLUSIONS The current study suggests a marked involvement of the population of liver progenitor/oval cells, mainly HPCs and IHCs, in the development of nonalcoholic steatohepatitis in pediatric patients, especially in fibrosis progression.
Collapse
|
38
|
Treska V, Safranek J, Lysak D, Mirka H, Skalicky T, Slauf F, Hes O. A complex oncosurgical approach to increasing the resectability of colorectal cancer metastases - a case report. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 158:154-7. [PMID: 22660223 DOI: 10.5507/bp.2012.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022] Open
Abstract
AIM In this case report, the authors aim to demonstrate the success of recent methods in the radical treatment of a patient with primary inoperable liver and subsequent colorectal cancer pulmonary metastases. METHODS A 75 year old patient with inoperable bulky metastasis in the right hepatic lobe and insufficient future remnant liver volume was indicated for a stage procedure in the liver parenchyma. Embolization of the right branch of the portal vein was first performed with subsequent administration of stem cells into the contralateral liver lobe. Following compensatory growth of the left liver lobe, right-sided hepatectomy was performed with subsequent adjuvant oncological treatment. Six months after the surgery, a metastasis developed in the right pulmonary lobe which was solved by metastasectomy. RESULTS The patient, one year after the diagnosis of inoperable liver metastasis, is completely healthy and free of signs of disease recurrence. CONCLUSION A comprehensive oncosurgical approach using up-to-date diagnostic and treatment options may offer patients with metastatic colorectal cancer, radical treatment with the hope of long-term quality survival.
Collapse
Affiliation(s)
- Vladislav Treska
- Department of Surgery, University Hospital and Medical Faculty in Pilsen, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Human unrestricted somatic stem cells: how far from clinics? ASAIO J 2012; 58:181-2. [PMID: 22543753 DOI: 10.1097/mat.0b013e3182545d1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Zhu C, Coombe DR, Zheng MH, Yeoh GCT, Li L. Liver progenitor cell interactions with the extracellular matrix. J Tissue Eng Regen Med 2012; 7:757-66. [PMID: 22467423 DOI: 10.1002/term.1470] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/26/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
Liver progenitor cells (LPCs) are a promising source of cells to treat liver disease by cell therapy, due to their capability for self-replication and bipotentiality. In order to establish useful culture systems of LPCs and apply them to future clinical therapies, it is necessary to understand their interactions with their microenvironment and especially with the extracellular matrix (ECM). There is considerable evidence from in vivo studies that matrix proteins affect the activation, expansion, migration and differentiation of LPCs, but the information on the role that specific ECMs play in regulating LPCs in vitro is more limited. Nevertheless, current studies suggest that laminin, collagen type III, collagen type IV and hyaluronic acid help to maintain the undifferentiated phenotype of LPCs and promote their proliferation when cultured in media supplemented with growth factors chosen for LPC expansion, whereas collagen type I and fibronectin are generally associated with a differentiated phenotype under the same conditions. Experimental evidence suggests that α6β1 and α5β1 integrins as well as CD44 on the surface of LPCs, and their related downstream signals, are important mediators of interactions between LPCs and the ECM. The interactions of LPCs with the ECM form the focus of this review and the contribution of ECM molecules to strategies for optimizing in vitro LPC cultures for therapeutic applications is discussed.
Collapse
Affiliation(s)
- Chunxia Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Infusion of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances functional hepatic reserves after extended right hepatectomy: a retrospective single-center study. Ann Surg 2012; 255:79-85. [PMID: 22156926 DOI: 10.1097/sla.0b013e31823d7d08] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study was designed to evaluate the clinical outcome of patients undergoing portal vein embolization (PVE) and autologous CD133 bone marrow-derived stem cell (CD133+ BMSC) application before extended right hepatectomy. BACKGROUND We have previously shown that portal venous infusion of CD133+ BMSCs substantially increases hepatic proliferation, when compared with PVE alone. METHODS : Among 40 consecutive patients with a median follow-up of 28 months (7.4-57.2) scheduled for extended right hepatectomy, we compared a preconditioned group with PVE and CD133+ BMSC cotreatment (PVE+SC group, n = 11) and a group pretreated only with PVE (PVE group, n = 11). Functional and overall outcomes after extended right hepatectomy were evaluated. Patients without presurgical treatment served as controls (n = 18). RESULTS In preconditioned patients, mean hepatic growth of segments II/III 14 days after PVE in the PVE+SC group was significantly higher (138.66 mL ± 66.29) when compared with that of PVE group patients (62.95 mL ± 40.03; P = 0.004). There were no significant differences among all 3 groups regarding general and oncological characteristics and functional parameters on postoperative day (POD) 7. Lack of hepatic preconditioning, extrahepatic extension of resection, and postoperative complications were of negative prognostic value, using univariate analysis (P < 0.05). In multivariate analysis, freedom from postoperative major complications (P = 0.012), coagulation status on POD 7 (international normalized ratio < 1.4; P = 0.027), and presurgical expansion of the future liver remnant volume (P = 0.048) were positively associated with overall survival. Post hoc analysis revealed a better survival for the PVE+SC group (P = 0.028) compared with the PVE group (P = 0.094) and compared with controls. CONCLUSION Promising data from this survival analysis suggest that PVE, together with CD133+ BMSC pretreatment, could positively impact overall outcomes after extended right hepatectomy.
Collapse
|
42
|
Russo FP, Parola M. Stem cells in liver failure. Best Pract Res Clin Gastroenterol 2012; 26:35-45. [PMID: 22482524 DOI: 10.1016/j.bpg.2012.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/08/2012] [Indexed: 01/31/2023]
Abstract
Orthotopic liver transplantation (OLT) represents the only reliable therapeutic approach for acute liver failure (ALF), liver failure associated to end-stage chronic liver diseases (CLD) and non-metastatic liver cancer. The clinical impact of liver failure is relevant because of the still high ALF mortality and the increasing worldwide prevalence of cirrhosis that, in turn, is the main predisposing cause for hepatocellular carcinoma (HCC). Moreover, in the next decade because an increased number of patients reaching end-stage disease and requiring OLT may face a shortage of donor livers. This clinical scenario led several laboratories to explore the feasibility and efficiency of alternative approaches, involving cellular therapy, to counteract liver failure. The present chapter overviews results and concepts emerged from recent experimental and clinical studies in which adult or embryonic hepatocytes, hepatic stem/progenitor cells, induced pluripotent stem (iPS) cells as well as extrahepatic stem cells have been used as putative transplantable cell sources.
Collapse
Affiliation(s)
- Francesco P Russo
- Department of Surgical and Gastroenterological Sciences, Gastroenterology Unit, University of Padova, Padova, Italy.
| | | |
Collapse
|
43
|
Meng YC, Jiang HX, Zhang JH. Clinical applications of bone marrow stem cells to treat liver diseases: recent progress. Shijie Huaren Xiaohua Zazhi 2011; 19:2846-2851. [DOI: 10.11569/wcjd.v19.i27.2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, great advances have been made in the treatment of liver diseases, such as fulminant and chronic hepatic failure, end-stage liver disease and inherited metabolic disorders, by bone marrow stem cell transplantation. Stem cell transplantation possesses advantages of low cost, easy obtainment of stem cells, and little or no immune rejection and therefore has good efficacy, safety and tolerability. Although liver transplantation is an effective way for the treatment of end-stage liver disease, it has limited clinical applications due to the shortage of organ donors, complicated operation procedure, severe complications, immunological rejection and high cost. Therefore, bone marrow stem cell transplantation has shed light on the treatment of end-stage liver diseases. In this article we review the clinical applications of bone marrow stem cell transplantation in the treatment of liver diseases.
Collapse
|
44
|
Tolosa L, Bonora-Centelles A, Teresa Donato M, Pareja E, Negro A, López S, Castell JV, José Gómez-Lechón M. Steatotic liver: a suitable source for the isolation of hepatic progenitor cells. Liver Int 2011; 31:1231-8. [PMID: 22093411 DOI: 10.1111/j.1478-3231.2011.02609.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alternative and/or complementary sources of cells such as hepatic progenitor cells (HPC) are under investigation for hepatic cell therapy purposes. Steatotic livers are those most commonly rejected for clinical transplantation and are also unsuitable for good quality hepatocyte isolation. AIM Taken together these two facts, our aim was to investigate whether they could represent a suitable source for the isolation of progenitor cells. METHODS Rats fed for 7 weeks with methionine-choline deficient diets showing proved steatotic signs (i.e. increase in hepatic lipids; macrovesicular steatosis) and steatotic and normal human liver samples were used to study the expression of HPC markers and to isolate these cells. RESULTS In the liver of the steatotic rats there was a significant increase in HPC (known as oval cells in rodents) markers such as Thy-1, epithelial cell adhesion molecule (EpCAM) and OV-6 (2-, 3- and 5-fold increase respectively). Additionally, there was an increase in the yield of isolated oval cells compared to control rats. Similarly, studies using human livers clearly confirmed an increase in the expression of HPC markers in the steatotic tissue and a significant rise in the number of isolated progenitor cells (EpCAM+, Thy-1+, OV-6+) (10, 12 and 11.6 × 10(4) cells/g of tissue respectively). CONCLUSIONS These data suggest that steatotic livers, discarded for orthotopic liver transplantation and hepatocyte isolation, could be a suitable source for large scale isolation of HPC which might be potential candidates in liver cell therapy.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Herencia C, Rodríguez-Ariza A, Canalejo A, Naranjo A, Briceño FJ, López-Cillero P, De la Mata M, Muñoz-Castañeda JR. Differential bone marrow hematopoietic stem cells mobilization in hepatectomized patients. J Gastrointest Surg 2011; 15:1459-67. [PMID: 21512847 DOI: 10.1007/s11605-011-1541-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/05/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND The involvement of bone marrow hematopoietic stem cells (BMHSC) mobilization during liver regeneration from hepatectomized patients is under debate. The main aim of this study was to investigate the role of BMHSC mobilization after hepatic resection in 33 patients with liver disease. METHODS AND RESULTS Mobilization of CD34(+) BMHSC after 72 h of surgery was found in peripheral blood of some, but not all, of the hepatectomized patients. These CD34(+) cells co-expressed other stem cells markers. The patients without BMHSC mobilization showed high levels of circulating and liver tissue BMHSC (CD34(+) cells) previous to surgery. Therefore, two types of patients: "mobilizers" and "non-mobilizers" were distinguished based on the values of CD34(+) cells before and after surgery. Changes in cytokines involved in the hepatic regeneration (HGF and TGF-β), and in BMHSC mobilization process (SCF, SDF-1, IL-12, or MMP-2), were detected in both groups. In addition, a higher activation previous to surgery of the SDF-1/CXCR4 axis in liver tissue was observed in non mobilizers patients compared to mobilizer patients. CONCLUSION BMHSC mobilization seems to be associated with variations in the levels of cytokines and proteolytic enzymes involved in hepatic regeneration and bone marrow matrix degradation. Hepatectomy may be an insufficient stimulus for BMSHC mobilization. The pre-hepatectomy higher levels CD34(+) cells in peripheral blood and liver, associated to the activation of hepatic SDF-1/CXCR4 axis, suggest a BMHSC mobilization process previous to surgery in non mobilizer patients.
Collapse
Affiliation(s)
- Carmen Herencia
- Instituto Maimónides de Investigación Biomédica de Córdoba, (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Xu C, Chen X, Chang C, Wang G, Wang W, Zhang L, Zhu Q, Wang L, Zhang F. Genome-wide expression profiling of hepatic oval cells after partial hepatectomy in rats. Tissue Cell 2011; 43:291-303. [PMID: 21764095 DOI: 10.1016/j.tice.2011.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
To examine the changes of biological activities in hepatic oval cells (HOCs) elicited by 70% partial hepatectomy (PH) and understand the relationship between this cell and liver regeneration (LR), this study isolated and obtained the high purity HOCs (≥ 95%) from rat regenerating livers, and then monitored gene expression profiling of rat hepatic oval cells following surgical operation. Results showed that there were LR-related 1059 genes. These genes were grossly classified into three groups using a fold change cut-off threshold of three-fold: up-regulation, down-regulation and up/down regulation. Analyses of gene expression patterns combined with gene functional categorization suggested that genes in the categories "nucleic acid metabolism" and "cell cycle" were dominated by up-regulated expression. Genes in the functional groups "cell metabolism" and "oxidation reduction" were significantly enriched in expression pattern characterized by down-regulation. According to above mentioned results, the synchronized induction of DNA replication and cell proliferation-involved genes suggested that the peak of oval cell proliferation might occur between 30 and 36 h post-PH. The amino acid transformation-involved genes were down-regulated at the early phase of LR, which perhaps trigger the storage of those amino acids essential for protein synthesis. Reduced oxidative-reduction activity at early phase might be related to negative influence of surgical operation on its detoxification capacity. Conclusively, the genome-wide transcriptional analysis of oval cells would contribute to our understanding of the nature of LR at cell level.
Collapse
Affiliation(s)
- Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krishna KA, Krishna KS, Berrocal R, Tummala A, Rao K, Rao KS. A review on the therapeutic potential of embryonic and induced pluripotent stem cells in hepatic repair. J Nat Sci Biol Med 2011; 2:141-4. [PMID: 22346225 PMCID: PMC3276003 DOI: 10.4103/0976-9668.92314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the liver being proliferatively quiescent, it maintains balance between cell gain and cell loss, invokes a rapid regenerative response following hepatocyte loss, and restores liver mass. Human liver has immense regenerative capacity. Liver comprises many cell types with specialized functions. Of these cell types, hepatocytes play several key roles, but are most vulnerable to damage. Recent studies suggest that the extrahepatic stem cell pool contributes to liver regeneration. Stem cell therapies have the potential to enhance hepatic regeneration. Both embryonic and induced pluripotent stem cells could be a suitable source to regenerate hepatocytes. In the present review, we discuss the therapeutic potential of stem cells in hepatic repair and focus on the clinical applications of stem cells.
Collapse
Affiliation(s)
- K. Ananda Krishna
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - K. Sai Krishna
- Department of Biotechnology, Meenakshi Medical College and Research Institute, Enathur, Kancheepuram, Tamilnadu, India
| | - Ruben Berrocal
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| | - Alekya Tummala
- Department of Clinical Biochemistry, Columbus College of Medicine, Republic of Panama
| | - K.S. Rao
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| | - K.R.S. Sambasiva Rao
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
- Institute for Scientific Research and Technology Services, National Secretariat for Science, Technology and Innovation, Clayton City of Knowledge, Republic of Panama
| |
Collapse
|
48
|
Ichinohe N, Kon J, Sasaki K, Nakamura Y, Ooe H, Tanimizu N, Mitaka T. Growth ability and repopulation efficiency of transplanted hepatic stem cells, progenitor cells, and mature hepatocytes in retrorsine-treated rat livers. Cell Transplant 2011; 21:11-22. [PMID: 21669046 DOI: 10.3727/096368911x580626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based therapies as an alternative to liver transplantation have been anticipated for the treatment of potentially fatal liver diseases. Not only mature hepatocytes (MHs) but also hepatic stem/progenitor cells are considered as candidate cell sources. However, whether the stem/progenitor cells have an advantage to engraft and repopulate the recipient liver compared with MHs has not been comprehensively assessed. Therefore, we used Thy1(+) (oval) and CD44(+) (small hepatocytes) cells isolated from GalN-treated rat livers as hepatic stem and progenitor cells, respectively. Cells from dipeptidylpeptidase IV (DPPIV)(+) rat livers were transplanted into DPPIV(-) livers treated with retrorsine following partial hepatectomy. Both stem and progenitor cells could differentiate into hepatocytes in host livers. In addition, the growth of the progenitor cells was faster than that of MHs until days 14. However, their repopulation efficiency in the long term was very low, since the survival period of the progenitor cells was much shorter than that of MHs. Most foci derived from Thy1(+) cells disappeared within 2 months. Many cells expressed senescence-associated β-galactosidase in 33% of CD44-derived foci at day 60, whereas the expression was observed in 13% of MH-derived ones. The short life of the cells may be due to their cellular senescence. On the other hand, the incorporation of sinusoidal endothelial cells into foci and sinusoid formation, which might be correlated to hepatic maturation, was completed faster in MH-derived foci than in CD44-derived ones. The survival of donor cells may have a close relation to not only early integration into hepatic plates but also the differentiated state of the cells at the time of transplantation.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pancholi N, Patel J, Gudehithlu KP, Kraus MA, Dunea G, Arruda JAL, Singh AK. Culture of omentum-induced regenerating liver yielded hepatocyte-committed stem cells. Transl Res 2010; 156:358-68. [PMID: 21078497 DOI: 10.1016/j.trsl.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/26/2010] [Accepted: 09/01/2010] [Indexed: 12/11/2022]
Abstract
Earlier we showed that when omentum, activated by inert particles, is allowed to fuse to a wedge cut in the liver, it induces stem cell proliferation in the liver resulting in massive liver regeneration. Here, we attempt to culture stem cells from the omentum-induced regenerating liver tissue. Cells from regenerating liver tissue were harvested and cultured. Cultured cells were characterized by immune staining, fluorescence activated cell sorting analysis, growth factor assay, in vitro differentiation, and their ability to engraft to injured sites in vivo. Culture yielded cells with a mesenchymal stem cell phenotype that could be maintained in culture indefinitely. These cells, called regenerating liver stem cells, expressed both adult and embryonic stem cell markers, secreted high levels of vascular endothelial growth factor, and expressed albumin. When grown on matrigel in the presence of hepatocyte growth factor, these cells differentiated into hepatocyte-like cells in culture, but they did not differentiate to adipogenic and osteogenic lineages when grown in specific differentiation medium. The differentiated cells expressed α-fetoprotein and secreted high levels of albumin and urea. After systemic injection, the undifferentiated cells engrafted only to the injured sites in the liver and not to the normal areas of the liver. In conclusion, omentum-induced regenerating liver yields hepatocyte-committed stem cells in culture. Such cells could prove to be useful in cell transplantation therapies.
Collapse
Affiliation(s)
- Nishit Pancholi
- Department of Medicine, John H. Stroger, Jr. Hospital of Cook County, and Hektoen Institute of Medicine, 627 S. Wood Street, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|