1
|
Xu K, Yang M, Guan L, Yang C, Qiao L, Li Y, Lin J, Li X. Therapeutic Potential of Mesenchymal Stem Cells in Niemann-Pick Disease. Mol Biotechnol 2025:10.1007/s12033-025-01435-3. [PMID: 40281376 DOI: 10.1007/s12033-025-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease (NPD) is a rare autosomal recessive neurodegenerative disease characterized by hepatosplenomegaly, neuropathy, and a significantly shortened lifespan. Lipid metabolism disorder is the main pathological feature of NPD. Currently, the exact pathogenesis of NPD remains unclear, and drug therapy is largely palliative, focusing on symptom management, but it has side effects. Mesenchymal stem cells (MSCs) possess several advantageous properties, including their differentiation potential, wide availability, low immunogenicity, and the ability to secrete regulatory factors, which have led to their extensive application in basic research targeting neurodegenerative diseases. Studies have demonstrated that transplantation of MSCs from different sources into animal models of NPD can delay the loss of Purkinje cells in the cerebellum, reduce lipid deposition, improve motor coordination, slow the rate of weight loss, and extend lifespan. This review explores the therapeutic potential of MSCs in the treatment of NPD, highlighting their emerging role in addressing this challenging condition.
Collapse
Affiliation(s)
- Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yonghai Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
3
|
Purkartova Z, Krakorova K, Babuska V, Tuma J, Houdek Z, Roy Choudhury N, Kapl S, Kolinko Y, Sucha M, Porras-Garcia E, Kralickova M, Cendelin J. Quantification of Solid Embryonic Cerebellar Graft Volume in a Degenerative Ataxia Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1811-1823. [PMID: 38430389 DOI: 10.1007/s12311-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice. Two or six months later, the brains were examined histologically. The grafts were identified according to the EGFP fluorescence in frozen sections and their volumes were estimated using the Cavalieri principle. For gross histological evaluation, graft-containing slices were processed using Nissl and hematoxylin-eosin staining. Adjustment of the volume estimation approach suggested that it is reasonable to use all sections without sampling, but that calculation of values for up to 20% of lost section using linear interpolation does not constitute substantial error. Mean graft volume was smaller in Lurchers than in healthy mice when examined 6 months after the transplantation. We observed almost no signs of graft destruction. In some cases, compact grafts disorganized the structure of the host's cerebellar cortex. In Lurchers, the grafts had a limited contact with the host's cerebellum. Also, graft size was of greater variability in Lurchers than in healthy mice. The results are in compliance with our previous findings that Lurcher phenotype-associated factors have a negative effect on graft development. These factors can hypothetically include cerebellar morphology, local tissue milieu, or systemic factors such as immune system abnormalities.
Collapse
Affiliation(s)
- Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Houdek
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Nilpawan Roy Choudhury
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Stepan Kapl
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martina Sucha
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Elena Porras-Garcia
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, Seville, Spain
| | - Milena Kralickova
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
4
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y, Jia Z, He Y, Lin J, Guan L. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1 KO N2a cells. Metab Brain Dis 2023; 38:2301-2313. [PMID: 37261632 DOI: 10.1007/s11011-023-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is a hereditary neurodegenerative disorder caused by a mutation in the NPC1 gene. This gene encodes a transmembrane protein found in lysosomes. This disease characterized by hepatosplenomegaly, neurological impairments and premature death. Recent preclinical studies have shown promising results in using mesenchymal stem cells (MSCs) to alleviate the symptoms of NPC1. One type of MSCs, known as human menstrual blood-derived endometrial stem cells (MenSCs), has attracted attention due to its accessibility, abundant supply, and strong proliferation and regeneration capabilities. However, it remains uncertain whether the conditioned medium of MenSCs (MenSCs-CM) can effectively relieve the symptoms of NPC1. To investigate this further, we employed the CRISPR-Cas9 technique to successfully create a Npc1 gene knockout N2a cell line (Npc1KO N2a). Sanger sequencing confirmed the occurrence of Npc1 gene mutation in these cells, while western blotting revealed a lack of NPC1 protein expression. Filipin staining provided visual evidence of unesterified cholesterol accumulation in Npc1KO N2a cells. Moreover, Npc1KO N2a cells exhibited significantly decreased viability, increased inflammation, and heightened cell apoptosis. Notably, our study demonstrated that the viability of Npc1KO N2a cells was most significantly improved after being cultured by 36 h-collected MenSCs-CM for 0.5 days. Additionally, MenSCs-CM exhibited the ability to effectively reduce inflammation, counteract cell apoptosis, and ameliorate unesterified cholesterol accumulation in Npc1KO N2a cells. This groundbreaking finding establishes, for the first time, the protective effect of MenSCs-CM on N2a cells with Npc1 gene deletion. These findings suggest that the potential of MenSCs-CM as a beneficial therapeutic approach for NPC1 and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanchun Zhao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fangfang Cheng
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, Henan, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
6
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
7
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
8
|
Switching Roles: Beneficial Effects of Adipose Tissue-Derived Mesenchymal Stem Cells on Microglia and Their Implication in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12020219. [PMID: 35204722 PMCID: PMC8961583 DOI: 10.3390/biom12020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/08/2023] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are often characterized by neuroinflammation, which is largely driven by microglia, the resident immune cells of the central nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances, provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting functions. This is due to the ability of microglia to acquire different phenotypes that can play a neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells (MSC) of different origins have been shown to exert such effects, due to their immunomodulatory properties. In recent years, MSC derived from adipose tissue have been made the center of attention because of their easy availability and extraction methods. These cells induce a neuroprotective phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer’s disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in neurological disorders, their beneficial effect on microglia and the signaling pathways involved.
Collapse
|
9
|
Mazen NF, Abdel‐Fattah EA, Desoky SR, El‐Shal AS. Therapeutic role of adipose tissue-derived stem cells versus microvesicles in a rat model of cerebellar injury. J Cell Mol Med 2022; 26:326-342. [PMID: 34874117 PMCID: PMC8743657 DOI: 10.1111/jcmm.17083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Monosodium glutamate (MSG) is a controversial food additive reported to cause negative effects on public health. Adipose stem cells (ASCs) and their derived vesicles (MVs) represent a promising cure for human diseases. This work was planned to compare the therapeutic effects of adipose stem cells and microvesicles in MSG-induced cerebellar damage. Forty adult healthy male Wister rats were equally divided into four groups: Group I (control group), group II (MSG-treated), group III (MSG/ASCs-treated), and group IV (MSG/MVs-treated). Motor behaviour of rats was assessed. Characterization of ASCs and MVs was done by flow cytometry. The cerebellum was processed for light and electron microscopic studies, and immunohistochemical localization of PCNA and GFAP. Morphometry was done for the number of Purkinje cells in H&E-stained sections, area per cent of GFAP immune reactivity and number of positive PCNA cells. Our results showed MSG-induced deterioration in the motor part. Moreover, MSG increases oxidant and apoptotic with decreases of antioxidant biomarkers. Structural changes in the cerebellar cortex as degeneration of nerve cells and gliosis were detected. There were also a decrease in the number of Purkinje cells, an increase in the area per cent of GFAP immune reactivity and a decrease in the number of positive PCNA cells, as compared to the control. Rats treated with ASCs showed marked functional and structural improvement in comparison with MV-treated rats. Thus, both ASCs and MVs had therapeutic potential for MSG-induced cerebellar damage with better results in case of ASCs.
Collapse
Affiliation(s)
- Nehad F. Mazen
- Medical Histology and Cell Biology DepartmentFaculty of MedicineZagazig UniversityZagazigEgypt
| | - Eman A. Abdel‐Fattah
- Medical Histology and Cell Biology DepartmentFaculty of MedicineZagazig UniversityZagazigEgypt
| | - Shimaa R. Desoky
- Histology and Cell Biology DepartmentFaculty of MedicineSuez UniversityIsmailiaEgypt
| | - Amal S. El‐Shal
- Medical Biochemistry & Molecular Biology DepartmentFaculty of Human MedicineZagazig UniversityZagazigEgypt
| |
Collapse
|
10
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
11
|
Adipose-derived stem cells promote diabetic wound healing via the recruitment and differentiation of endothelial progenitor cells into endothelial cells mediated by the VEGF-PLCγ-ERK pathway. Arch Biochem Biophys 2020; 692:108531. [PMID: 32745464 DOI: 10.1016/j.abb.2020.108531] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Adipose-derived stem cell (ADSC) therapy is a promising treatment strategy for wound healing; however, the mechanism underlying this effect remains unclear. In the present study, we aimed to explore the influence of ADSC-derived VEGF on diabetic wounds and its role in modulating endothelial progenitor cells. The effect of ADSCs and ADSC-derived VEGF in vivo was investigated using a diabetic wound healing model, and inflammatory factors, such as IL-6, IL-10, and TNF-α, were detected. RT-qPCR and western blot analysis were used to detect the expression of downstream targets. In addition, the role of ADSC-derived VEGF in modulating endothelial progenitor cells (EPCs) was investigated using EdU assay, CD-31 immunofluorescence, and Transwell assay in vitro. The results show that ADSCs accelerated diabetic wound tissue closure and decreased the expression of inflammatory factors, such as IL-6, IL-10, and TNF-α. Further molecular mechanism studies indicated that coculturing EPCs with ADSC--conditioned medium enhanced the proliferation, mobilization and differentiation of EPCs into endothelial cells. This enhancement was inhibited when the expression of the VEGF downstream signal molecules VEGFR2, PLCγ, and ERK1/ERK2 was blocked, indicating that ADSCs might accelerate diabetic wound healing through the recruitment and differentiation of EPCs mediated by VEGF. Overall, the results of the study revealed that ADSCs could promote diabetic wound healing through the recruitment and differentiation of EPCs via angiogenesis effects regulated by the VEGF-PLCγ-ERK1/ERK2 pathway and suppression of the inflammatory response. In addition, it will be helpful to establish further understanding of ADSC therapy for clinical application.
Collapse
|
12
|
Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, Vozeh F, Manto M. Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy? THE CEREBELLUM 2019; 18:575-592. [PMID: 30607797 DOI: 10.1007/s12311-018-0999-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043, Turin, Italy
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche Diagnostiche e Pediatriche, Fondazione IRCCS Policlinico S. Matteo, Università degli Studi di Pavia, 27100, Pavia, Italy
- Istituto di Genetica Molecolare - CNR, 27100, Pavia, Italy
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Rachel Sherrard
- IBPS, UMR8256 Biological Adaptation and Ageing, Sorbonne Université and CNRS, Paris, France
| | - Frantisek Vozeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium.
| |
Collapse
|
13
|
Saghazadeh A, Ferrari CC, Rezaei N. Deciphering variability in the role of interleukin-1β in Parkinson's disease. Rev Neurosci 2018; 27:635-50. [PMID: 27166719 DOI: 10.1515/revneuro-2015-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Although the role of inflammation in neurodegeneration has been well acknowledged, less is known on the issue of each cytokine in specific neurodegenerative diseases. In this review, we will present evidence elucidating that interleukin-1β (IL-1β) has a multi-faceted character in pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. Increased levels of IL-1β were found in PD patients. Besides, PD symptoms were observed in IL-1β wild-type, but not deficient, animals. These lines of evidence suggest that IL-1β may contribute to the initiation or progression of PD. On the other hand, some studies reported decreased levels of IL-1β in PD patients. Also, genetic studies provided evidence suggesting that IL-1β may protect individuals against PD. Presumably, the broad range of IL-1β role is due to its interaction with both upstream and downstream mediators. Differences in IL-1β levels could be because of glia population (i.e. microglia and astrocytes), mitogen-activated protein kinase and nuclear factor κ light-chain-enhancer of activated B cells signaling pathways, and several mediators (including cyclooxygenase, neurotrophic factors, reactive oxygen species, caspases, heme oxygenase-1, and matrix metalloproteinases). Although far from practice at this point, unraveling theoretical therapeutic targets based on the up-down IL-1β neuroweb could facilitate the development of strategies that are likely to be used for pharmaceutical designs of anti-neurodegenerative drugs of the future.
Collapse
|
14
|
Totenhagen JW, Bernstein A, Yoshimaru ES, Erickson RP, Trouard TP. Quantitative magnetic resonance imaging of brain atrophy in a mouse model of Niemann-Pick type C disease. PLoS One 2017; 12:e0178179. [PMID: 28542381 PMCID: PMC5443551 DOI: 10.1371/journal.pone.0178179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
In vivo magnetic resonance imaging (MRI) was used to investigate regional and global brain atrophy in the neurodegenerative Niemann Pick Type C1 (NPC1) disease mouse model. Imaging experiments were conducted with the most commonly studied mouse model of NPC1 disease at early and late disease states. High-resolution in vivo images were acquired at early and late stages of the disease and analyzed with atlas-based registration to obtain measurements of twenty brain region volumes. A two-way ANOVA analysis indicated eighteen of these regions were different due to genotype and thirteen showed a significant interaction with age and genotype. The ability to measure in vivo neurodegeneration evidenced by brain atrophy adds to the ability to monitor disease progression and treatment response in the mouse model.
Collapse
Affiliation(s)
- John W. Totenhagen
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Adam Bernstein
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Eriko S. Yoshimaru
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
| | - Robert P. Erickson
- Department of Pediatrics, University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Theodore P. Trouard
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, United States of America
- McKight Brain Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
15
|
Transplantation of Embryonic Cerebellar Grafts Improves Gait Parameters in Ataxic Lurcher Mice. THE CEREBELLUM 2016; 14:632-41. [PMID: 25700681 DOI: 10.1007/s12311-015-0656-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hereditary cerebellar ataxias are severe diseases for which therapy is currently not sufficiently effective. One of the possible therapeutic approaches could be neurotransplantation. Lurcher mutant mice are a natural model of olivocerebellar degeneration representing a tool to investigate its pathogenesis as well as experimental therapies for hereditary cerebellar ataxias. The effect of intracerebellar transplantation of embryonic cerebellar solid tissue or cell suspension on motor performance in adult Lurcher mutant and healthy wild-type mice was studied. Brain-derived neurotrophic factor level was measured in the graft and adult cerebellar tissue. Gait analysis and rotarod, horizontal wire, and wooden beam tests were carried out 2 or 6 months after the transplantation. Higher level of the brain-derived neurotrophic factor was found in the Lurcher cerebellum than in the embryonic and adult wild-type tissue. A mild improvement of gait parameters was found in graft-treated Lurcher mice. The effect was more marked in cell suspension grafts than in solid transplants and after the longer period than after the short one. Lurcher mice treated with cell suspension and examined 6 months later had a longer hind paw stride (4.11 vs. 3.73 mm, P < 0.05) and higher swing speed for both forepaws (52.46 vs. 32.79 cm/s, P < 0.01) and hind paws (63.46 vs. 43.67 cm/s, P < 0.001) than controls. On the other hand, classical motor tests were not capable of detecting clearly the change in the motor performance. No strong long-lasting negative effect of the transplantation was seen in wild-type mice, suggesting that the treatment has no harmful impact on the healthy cerebellum.
Collapse
|
16
|
Cendelin J. Experimental neurotransplantation treatment for hereditary cerebellar ataxias. CEREBELLUM & ATAXIAS 2016; 3:7. [PMID: 27047666 PMCID: PMC4819278 DOI: 10.1186/s40673-016-0045-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/02/2016] [Indexed: 01/09/2023]
Abstract
Hereditary cerebellar degenerations are a heterogeneous group of diseases often having a detrimental impact on patients’ quality of life. Unfortunately, no sufficiently effective causal therapy is available for human patients at present. There are several therapies that have been shown to affect the pathogenetic process and thereby to delay the progress of the disease in mouse models of cerebellar ataxias. The second experimental therapeutic approach for hereditary cerebellar ataxias is neurotransplantation. Grafted cells might provide an effect via delivery of a scarce neurotransmitter, substitution of lost cells if functionally integrated and rescue or trophic support of degenerating cells. The results of cerebellar transplantation research over the past 30 years are reviewed here and potential benefits and limitations of neurotransplantation therapy are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
17
|
Cendelin J. From mice to men: lessons from mutant ataxic mice. CEREBELLUM & ATAXIAS 2014; 1:4. [PMID: 26331028 PMCID: PMC4549131 DOI: 10.1186/2053-8871-1-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Ataxic mutant mice can be used to represent models of cerebellar degenerative disorders. They serve for investigation of cerebellar function, pathogenesis of degenerative processes as well as of therapeutic approaches. Lurcher, Hot-foot, Purkinje cell degeneration, Nervous, Staggerer, Weaver, Reeler, and Scrambler mouse models and mouse models of SCA1, SCA2, SCA3, SCA6, SCA7, SCA23, DRPLA, Niemann-Pick disease and Friedreich ataxia are reviewed with special regard to cerebellar pathology, pathogenesis, functional changes and possible therapeutic influences, if any. Finally, benefits and limitations of mouse models are discussed.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University in Prague, Lidicka 1, 301 66 Plzen, Czech Republic ; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Plzen, Czech Republic
| |
Collapse
|
18
|
Chan TM, Chen JYR, Ho LI, Lin HP, Hsueh KW, Liu DD, Chen YH, Hsieh AC, Tsai NM, Hueng DY, Tsai ST, Chou PW, Lin SZ, Harn HJ. ADSC Therapy in Neurodegenerative Disorders. Cell Transplant 2014; 23:549-57. [PMID: 24816450 DOI: 10.3727/096368914x678445] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, chronic diseases that can severely affect the patient's daily life, include amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. However, these diseases all have the common characteristic that they are due to degenerative irreversibility, and thus no efficient drugs or therapy methods can mitigate symptoms completely. Stem cell therapy, such as adipose tissue-derived stem cells (ADSCs), is a promising treatment for incurable disorders. In this review, we summarized the previous studies using ADSCs to treat neurodegenerative disorders, as well as their therapeutic mechanisms. We also suggested possible expectations for future human clinical trials involving minimized intracerebroventricular combined with intravenous administration, using different cell lineages to finish complementary therapy as well as change the extracellular matrix to create a homing niche. Depending on successful experiments in relevant neurodegenerative disorders models, this could form the theoretical basis for future human clinical trials.
Collapse
Affiliation(s)
- Tzu-Min Chan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Everfront Biotech Inc., New Taipei City, Taiwan
| | | | - Li-Ing Ho
- Department of Respiratory Therapy, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuo-Wei Hsueh
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Demeral David Liu
- Department of Dentistry, China Medical University Beigang Hospital, Taiwan
- Department of Dentistry, School of Medicine, China Medical University and Hospital, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - An-Cheng Hsieh
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Nu-Man Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Pathology and Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | - Sheng-Tzeng Tsai
- Department of Neurosurgery, Tzu Chi General Hospital/Tzu Chi University, Hualien, Taiwan
| | - Pei-Wen Chou
- Everfront Biotech Inc., New Taipei City, Taiwan
- Guang Li Biomedicine, Inc., New Taipei City, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Everfront Biotech Inc., New Taipei City, Taiwan
- Department of Dentistry, School of Medicine, China Medical University and Hospital, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, China Medical University, Tainan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Horng-Jyh Harn
- Department of Medicine, China Medical University, Taichung, Taiwan
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
19
|
Abstract
Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.
Collapse
|
20
|
Ma T, Gong K, Ao Q, Yan Y, Song B, Huang H, Zhang X, Gong Y. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice. Cell Transplant 2013; 22 Suppl 1:S113-26. [PMID: 24070198 DOI: 10.3727/096368913x672181] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggest that transplantation of mesenchymal stem cells might have therapeutic effects in preventing pathogenesis of several neurodegenerative disorders. Adipose-derived mesenchymal stem cells (ADSCs) are a promising new cell source for regenerative therapy. However, whether transplantation of ADSCs could actually ameliorate the neuropathological deficits in Alzheimer's disease (AD) and the mechanisms involved has not yet been established. Here, we evaluated the therapeutic effects of intracerebral ADSC transplantation on AD pathology and spatial learning/memory of APP/PS1 double transgenic AD model mice. Results showed that ADSC transplantation dramatically reduced β-amyloid (Aβ) peptide deposition and significantly restored the learning/memory function in APP/PS1 transgenic mice. It was observed that in both regions of the hippocampus and the cortex there were more activated microglia, which preferentially surrounded and infiltrated into plaques after ADSC transplantation. The activated microglia exhibited an alternatively activated phenotype, as indicated by their decreased expression levels of proinflammatory factors and elevated expression levels of alternative activation markers, as well as Aβ-degrading enzymes. In conclusion, ADSC transplantation could modulate microglial activation in AD mice, mitigate AD symptoms, and alleviate cognitive decline, all of which suggest ADSC transplantation as a promising choice for AD therapy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
21
|
Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett 2013; 18:479-93. [PMID: 23949841 PMCID: PMC6275722 DOI: 10.2478/s11658-013-0101-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/09/2013] [Indexed: 01/12/2023] Open
Abstract
The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.
Collapse
|
22
|
Totenhagen JW, Yoshimaru ES, Erickson RP, Trouard TP. (1) H magnetic resonance spectroscopy of neurodegeneration in a mouse model of niemann-pick type C1 disease. J Magn Reson Imaging 2012; 37:1195-201. [PMID: 23165972 DOI: 10.1002/jmri.23902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate brain metabolite levels as in vivo indicators of disease progression in a widely studied mouse model of Niemann-Pick type C1 (NPC1) disease with quantitative (1) H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS Single voxel MRS experiments were carried out in vivo in a mouse model of NPC1 disease and in control mice in two brain regions (central and posterior) at two timepoints (presymptomatic and endstage) to examine changes in metabolite levels in NPC1 disease. Concentrations of nine metabolites were quantified by fitting a simulated basis set of metabolite signals to the acquired spectra. RESULTS The only differences found in brain metabolite levels between NPC1 disease model and control mice were increased myo-inositol and decreased taurine in the posterior region of the brain at the endstage of the disease. Metabolite changes reported in past clinical MRS studies of NPC disease were not found in the current study of the mouse model. CONCLUSIONS The (1) H spectra obtained from NPC1 mice and control mice were very similar, even at endstages of the disease. Although differences in two metabolites associated with neurodegenerative diseases were found and could inform future studies of the disease model, it appears that MRS in this mouse model of NPC1 disease does not have the sensitivity desired for a biomarker.
Collapse
Affiliation(s)
- John W Totenhagen
- Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
23
|
Hong SB, Seo MS, Park SB, Seo YJ, Kim JS, Kang KS. Therapeutic effects of human amniotic epithelial stem cells in Niemann-Pick type C1 mice. Cytotherapy 2012; 14:630-8. [PMID: 22404083 DOI: 10.3109/14653249.2012.663485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Niemann-Pick disease type C1 (NPC) is an autosomal recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly and progressive neurodegeneration. Thus far, studies of NPC mice have been performed mainly to study the brain and neurodegeneration, because degeneration in the brain was known as the primary cause of death in NPC mice. However, NPC is a systemic disease; therefore the purpose of this study was to find the possibility of a general therapeutic effect by applying and tracking transplanted human amniotic epithelial stem cells (hAESC) in NPC mice. METHODS hAESC were administered to NPC homozygous (NPC(-/-)) mice via intravenous injection from 5 weeks of age; each recipient received 5 × 10(5) cells every other week. The body weight of each of the mice was measured every week, and the survival and state of each mouse was evaluated every day. The weight of the organs was measured, and serum chemistry, histology and the intensity of Filipin staining were evaluated. RESULTS The effect of cell transplantation was to extend the life span and reduce the rapid loss of weight. Moreover, alleviation of tissue damage was observed more in hAESC-treated NPC(-/-) mice than in non-treated NPC(-/-) mice. Cholesterol deposition was reduced after transplantation, and the relative weight of the liver was also decreased. CONCLUSIONS These data show that hAESC could delay the degeneration caused by fatal genetic disorders such as NPC. This study presents the prospect of relief of precipitous disease progression and the therapeutic possibility of applying hAESC to fatal genetic disorders.
Collapse
Affiliation(s)
- Saet-Byul Hong
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Xiong H, Bao XH, Zhang YH, Xu YN, Qin J, Shi HP, Wu XR. Niemann-Pick disease type C: analysis of 7 patients. World J Pediatr 2012; 8:61-6. [PMID: 21633862 DOI: 10.1007/s12519-011-0284-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/13/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Niemann-Pick disease type C (NP-C), derived from mutation of the NPC1 or NPC2 gene, is one of the recessive lysosomal lipid storage disorders that are difficult to diagnose and treat. Since NP-C has been rarely reported in China, we reviewed 7 patients with NP-C. METHODS The 7 patients had been diagnosed with NP-C from 2007 to 2010 at our department and their laboratory and clinical data were analyzed. RESULTS The 7 patients, 5 males and 2 females, included 4 patients of late infantile subtype and 3 patients of juvenile subtype, in which patients 2 and 3 were siblings. Their clinical symptoms occurred from 4 to 10 years of age, exhibiting as progressive cognitive and language impairment as well as motor retrogression. Six patients were caught by focal or generalized seizures from 1 to 4 years after the onset of the disease. Vertical supranuclear gaze palsy, dysarthria, dysphagia, internal rotation and adduction of bilateral hands and splenomegaly occurred following the progress of clinical symptoms. Five patients had laughter-cataplexy. MRI showed mild brain atrophy in 6 patients. Reduction of total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol occurred in 6 patients. Sea-blue cells and Niemann-Pick cells were found in bone marrow smears. The activity of acid sphingomyelin enzyme was normal or only slightly lower. Supporting or symptomatic treatment improved common clinical symptoms. CONCLUSIONS NP-C is a rare autosomal recessive inherited lysosomal storage disease that affects the intellectual development of children and may lead to dementia, vegetative state or death. Clinical features of this disease include vertical supranuclear gaze palsy, seizures and cataplexy. Laboratory features include abnormal plasma cholesterol level, and sea-blue cells and Niemann-Pick cells in bone marrow smears. The treatments of the disease include supporting or symptomatic administration.
Collapse
Affiliation(s)
- Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Totenhagen JW, Lope-Piedrafita S, Borbon IA, Yoshimaru ES, Erickson RP, Trouard TP. In vivo assessment of neurodegeneration in Niemann-Pick type C mice by quantitative T2 mapping and diffusion tensor imaging. J Magn Reson Imaging 2011; 35:528-36. [PMID: 22045516 DOI: 10.1002/jmri.22837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 09/12/2011] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To quantitatively and noninvasively assess neurological disease progression in a mouse model of Niemann-Pick type C (NPC) disease by measuring white matter status with magnetic resonance imaging (MRI) techniques of T2 mapping and diffusion tensor imaging (DTI). MATERIALS AND METHODS Quantitative T2 and DTI experiments were performed in vivo in NPC disease model and control mice at three timepoints to quantify differences and changes in white matter with measurements of T2 relaxation and DTI parameters. Histological staining for myelin content was also performed at two timepoints to compare with the MRI findings. RESULTS The results of the T2 and DTI measurements show significant differences in white matter areas of the brain in the NPC disease model compared to control mice at several timepoints, and were seen to change over time in both groups. CONCLUSION The findings of this study suggest that quantitative MRI measurements may be suitable in vivo biomarkers of disease status for future studies of NPC disease models. The changes in white matter measurements between timepoints in both control and NPC disease groups suggest that white matter structures continue to change and develop over time in the NPC model and can be tracked with MRI techniques.
Collapse
Affiliation(s)
- John W Totenhagen
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | |
Collapse
|
26
|
Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, Masinova K, Sykova E. Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 2011; 31:1113-22. [PMID: 21630007 PMCID: PMC11498601 DOI: 10.1007/s10571-011-9712-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 01/15/2023]
Abstract
Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.
Collapse
Affiliation(s)
- David Arboleda
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Dana Marekova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - Takashi Amemori
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Helena Pivonkova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Katarina Masinova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
- Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|