1
|
Salatino S, Cuber P, Tynior W, Gustave C, Hudy D, Chan YT, Raczkowska-Siostrzonek A, Misra R, Aleksandrowicz D, Nałęcz D, Strzelczyk JK. Harnessing Nanopore Sequencing to Investigate the Epigenomic Landscape in Molar Incisor Hypomineralization-A Pilot Study. Int J Mol Sci 2025; 26:3401. [PMID: 40244243 PMCID: PMC11990023 DOI: 10.3390/ijms26073401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Molar incisor hypomineralization (MIH) is a dental condition that affects the enamel of permanent molars and/or incisors, often leading to tooth decay. Although several etiological hypotheses have come forward, including prenatal medical problems and postnatal illness, the pathogenesis of MIH is yet unclear. Aimed at exploring the epigenomic landscape of this dental condition, we collected dental tissue from a MIH-affected child and an age-matched control patient and investigated their DNA methylation status through an in-depth analysis of nanopore long-read sequencing data. We identified 780,141 CpGs with significantly different methylation levels between the samples; intriguingly, the density of these dinucleotides was higher in the regions containing genes involved in dental morphogenesis and inflammatory processes leading to periodontitis. Further examination of 54 genes associated with MIH or hypomineralized second primary molar disorders revealed very distinct methylation of intragenic transposable elements (SINEs, LINEs, and LTRs), while functional profiling analysis of 571 differentially methylated regions genome-wide uncovered significant enrichment processes including ameloblasts differentiation and calcium ion binding, as well as SP1 and other zinc finger transcription factors. Taken together, our findings suggest that DNA methylation could play a role in the pathogenesis of MIH and represent a stepping stone towards a comprehensive understanding of this multifactorial disorder.
Collapse
Affiliation(s)
- Silvia Salatino
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Piotr Cuber
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Carla Gustave
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Yuen-Ting Chan
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Agnieszka Raczkowska-Siostrzonek
- Department of Dental Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Raju Misra
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
- Public Health Microbiology, United Kingdom Health Security Agency, London E14 4PU, UK
| | - Dagmara Aleksandrowicz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 81-348 Gdynia, Poland
| | - Dariusz Nałęcz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 81-348 Gdynia, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| |
Collapse
|
2
|
Zhang J, Gao J, Zeng X, Wang Z, Chen C, Rong C, Li S, Cai L, Wang L, Zhang L, Tian Z. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167570. [PMID: 39547518 DOI: 10.1016/j.bbadis.2024.167570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/22/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Enamel formation is a developmental event governed by intricate molecular signal pathways. Cdc42 is proven to regulate enamel development yet its underlying role and molecular mechanism in early amelogenesis remain elusive. The extracellular matrix of tooth germ basement membrane is critical for the regulation of ameloblast differentiation. Present study investigated whether Cdc42 influences amelogenesis by affecting ECM synthesis and how Cdc42 regulates ameloblasts differentiation. Epithelial-specific knockout of Cdc42 (Cdc42-cKO) mice model was employed to study the ECM expression including Fibronectin (Fn) and amelogenesis markers. Cdc42-cKO mice results in retarded ameloblast differentiation and enamel matrix decrease. Fn synthesis in the enamel organ and basal membrane was totally diminished along with Cdc42 knockdown. YAP acting as the Cdc42 downstream transcription factor, its distribution in ameloblasts was synchronously attenuated by Cdc42 knockdown and nuclear localization progressively decreased with tooth germ development. Cdc42 unidirectionally controls the Fn synthesis via YAP regulation. Overall, ameloblast differentiation inhibition by silencing of Cdc42 was successfully rescued by YAP activation. We demonstrated that Cdc42 as an initiator, mediated downstream pathway through transcriptional activator YAP, thereby affecting ameloblast differentiation by controlling Fn synthesis. The Cdc42-YAP-Fn signaling axis are elucidated to act critical role during the early amelogenesis.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiangliang Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zijie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuying Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chao Rong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shaowei Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingxuan Cai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Luchen Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhihui Tian
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China; School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Zheng J, Yu R, Tang Y, Su S, Wang S, Liao C, Li X, Liao J, Yu D, Ai T, Zhao W, Yau V, Liu C, Wu L, Cao Y. Cdc42 deletion yielded enamel defects by disrupting mitochondria and producing reactive oxygen species in dental epithelium. Genes Dis 2024; 11:101194. [PMID: 39022131 PMCID: PMC11253269 DOI: 10.1016/j.gendis.2023.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 07/20/2024] Open
Abstract
Developmental defects of enamel are common due to genetic and environmental factors before and after birth. Cdc42, a Rho family small GTPase, regulates prenatal tooth development in mice. However, its role in postnatal tooth development, especially enamel formation, remains elusive. Here, we investigated Cdc42 functions in mouse enamel development and tooth repair after birth. Cdc42 showed highly dynamic temporospatial patterns in the developing incisors, with robust expression in ameloblast and odontoblast layers. Strikingly, epithelium-specific Cdc42 deletion resulted in enamel defects in incisors. Ameloblast differentiation was inhibited, and hypomineralization of enamel was observed upon epithelial Cdc42 deletion. Proteomic analysis showed that abnormal mitochondrial components, phosphotransferase activity, and ion channel regulator activity occurred in the Cdc42 mutant dental epithelium. Reactive oxygen species accumulation was detected in the mutant mice, suggesting that abnormal oxidative stress occurred after Cdc42 depletion. Moreover, Cdc42 mutant mice showed delayed tooth repair and generated less calcified enamel. Mitochondrial dysfunction and abnormal oxygen consumption were evidenced by reduced Apool and Timm8a1 expression, increased Atp5j2 levels, and reactive oxygen species overproduction in the mutant repair epithelium. Epithelium-specific Cdc42 deletion attenuated ERK1/2 signaling in the labial cervical loop. Aberrant Sox2 expression in the mutant labial cervical loop after clipping might lead to delayed tooth repair. These findings suggested that mitochondrial dysfunction, up-regulated oxidative stress, and abnormal ion channel activity may be among multiple factors responsible for the observed enamel defects in Cdc42 mutant incisors. Overall, Cdc42 exerts multidimensional and pivotal roles in enamel development and is particularly required for ameloblast differentiation and enamel matrix formation.
Collapse
Affiliation(s)
- Jinxuan Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Rongcheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yiqi Tang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Sihui Su
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Sainan Wang
- Guangdong Provincial Key Laboratory of Oral Diseases, Guangzhou, Guangdong 510055, China
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Chenxi Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Xuecong Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Jiabin Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Tingting Ai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Vicky Yau
- Department of Oral and Maxillofacial Surgery, University at Buffalo, Buffalo, NY 14214, USA
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Liping Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| |
Collapse
|
4
|
Guo S, Yang H, Liu J, Meng Z, Sui L. Heat Shock Proteins in Tooth Development and Injury Repair. Int J Mol Sci 2023; 24:ijms24087455. [PMID: 37108621 PMCID: PMC10138928 DOI: 10.3390/ijms24087455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Heat shock proteins (HSPs) are a class of molecular chaperones with expression increased in response to heat or other stresses. HSPs regulate cell homeostasis by modulating the folding and maturation of intracellular proteins. Tooth development is a complex process that involves many cell activities. During tooth preparation or trauma, teeth can be damaged. The damaged teeth start their repair process by remineralizing and regenerating tissue. During tooth development and injury repair, different HSPs have different expression patterns and play a special role in odontoblast differentiation and ameloblast secretion by mediating signaling pathways or participating in protein transport. This review explores the expression patterns and potential mechanisms of HSPs, particularly HSP25, HSP60 and HSP70, in tooth development and injury repair.
Collapse
Affiliation(s)
- Shuling Guo
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Haosun Yang
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Jiacheng Liu
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Zhaosong Meng
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| | - Lei Sui
- School of Stomatology, Tianjin Medical University, Tianjin 300014, China
| |
Collapse
|
5
|
Profiling long noncoding RNA alterations during the stromal cell-derived factor-1α-induced odontogenic differentiation of human dental pulp stem cells. Arch Oral Biol 2022; 137:105393. [DOI: 10.1016/j.archoralbio.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022]
|
6
|
Deng S, Fan L, Wang Y, Zhang Q. Constitutive activation of β-catenin in odontoblasts induces aberrant pulp calcification in mouse incisors. J Mol Histol 2021; 52:567-576. [PMID: 33689044 DOI: 10.1007/s10735-021-09965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
During dentin formation, odontoblast polarization ensures that odontoblasts directionally secrete dentin matrix protein, leading to tubular dentin formation; however, little is known about the major features and regulatory mechanisms of odontoblast polarization. In a study of epithelial cell polarization, β-catenin was shown to serve as a structural component of cadherin-based adherens junctions to initiate cell polarity. However, the role of β-catenin in odontoblast polarization has not been well investigated. In this study, we explored whether β-catenin participated in odontoblast polarization to regulate the secretion of mineralization proteins. We established Col1-CreErt2; β-catenin exon3fl/fl (CA-β-catenin) mice, which constitutively activate β-catenin in odontoblasts. CA-β-catenin mice exhibited disorganization and depolarization of incisor odontoblasts. Moreover, the incisor dentin was hypomineralized, and ectopic calcification was found in mouse incisor pulp. In addition, by constitutive activation of β-catenin, the expression levels of the core polarity molecule Cdc42 and its downstream polarity protein complex Par3-Par6-aPKC were decreased in the incisors of CA-β-catenin mice. These findings suggest that β-catenin plays an essential role in dentin formation by regulating odontoblast polarization.
Collapse
Affiliation(s)
- Shijian Deng
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
| | - Linlin Fan
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Pediatric Dentistry, Wuxi Stomatology Hospital, Jiangsu, China
| | - Yunfei Wang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China
- Department of Endodontics, Shanghai Xuhui District Dental Center, Shanghai, China
| | - Qi Zhang
- Department of Endodontics, School and Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
7
|
Zhan Y, Wang H, Zhang L, Pei F, Chen Z. HDAC6 Regulates the Fusion of Autophagosome and Lysosome to Involve in Odontoblast Differentiation. Front Cell Dev Biol 2020; 8:605609. [PMID: 33330506 PMCID: PMC7732691 DOI: 10.3389/fcell.2020.605609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Odontoblast differentiation is an important process during tooth development in which pre-odontoblasts undergo elongation, polarization, and finally become mature secretory odontoblasts. Many factors have been found to regulate the process, and our previous studies demonstrated that autophagy plays an important role in tooth development and promotes odontoblastic differentiation in an inflammatory environment. However, it remains unclear how autophagy is modulated during odontoblast differentiation. In this study, we found that HDAC6 was involved in odontoblast differentiation. The odontoblastic differentiation capacity of human dental papilla cells was impaired upon HDAC6 inhibition. Moreover, we found that HDAC6 and autophagy exhibited similar expression patterns during odontoblast differentiation both in vivo and in vitro; the expression of HDAC6 and the autophagy related proteins ATG5 and LC3 increased as differentiation progressed. Upon knockdown of HDAC6, LC3 puncta were increased in cytoplasm and the autophagy substrate P62 was also increased, suggesting that autophagic flux was affected in human dental papilla cells. Next, we determined the mechanism during odontoblastic differentiation and found that the HDAC6 substrate acetylated-Tubulin was up-regulated when HDAC6 was knocked down, and LAMP2, LC3, and P62 protein levels were increased; however, the levels of ATG5 and Beclin1 showed no obvious change. Autophagosomes accumulated while the number of autolysosomes was decreased as determined by mRFP-GFP-LC3 plasmid labeling. This suggested that the fusion between autophagosomes and lysosomes was blocked, thus affecting the autophagic process during odontoblast differentiation. In conclusion, HDAC6 regulates the fusion of autophagosomes and lysosomes during odontoblast differentiation. When HDAC6 is inhibited, autophagosomes can't fuse with lysosomes, autophagy activity is decreased, and it leads to down-regulation of odontoblastic differentiation capacity. This provides a new perspective on the role of autophagy in odontoblast differentiation.
Collapse
Affiliation(s)
- Yunyan Zhan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haisheng Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fei Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Liu X, Xie F, Lai G, Wang J. Roles of heterogeneous nuclear ribonucleoprotein L in enamel organ development and the differentiation of ameloblasts. Arch Oral Biol 2020; 120:104933. [PMID: 33137652 DOI: 10.1016/j.archoralbio.2020.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We aimed to explore the role of Heterogeneous Nuclear Ribonucleoprotein L(hnRNP L) in enamel organ development through hnRNP L conditional knockout mice and knockdown of hnRNP L expression in mouse ameloblast-lineage cells (mALCs) METHODS: We created K14cre-mediated hnRNP L conditional knockout mice (hnRNP LK14/fl) and silenced the expression of hnRNP L in mALCs to investigate the role of hnRNP L in enamel organ development. RESULTS We found that hnRNP LK14/fl mice presented enamel organ development defects with reduced number of inner enamel epithelium (IEE) cells. The proliferation and differentiation of the IEE cells/ameloblasts were suppressed. The cell proliferation and mineralization ability were also decreased after hnRNP L knockdown. Further studies showed that Bone Morphogenetic Protein (BMP) signaling pathway was attenuated after the knockdown of hnRNP L expression both in vivo and in vitro. CONCLUSIONS These findings suggest that hnRNP L plays a critical role in enamel organ development by promoting the IEE cell/ameloblast proliferation and differentiation. BMP signaling pathway may be involved in the process.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Furong Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyun Lai
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| | - Jun Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
9
|
Zhou YJ, Yan GX, Liu CW, Zhang X, Hu Y, Hao XQ, Zhao H, Shi C, Sun HC. [Polarity of ameloblasts and odontoblasts and their related regulators]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:309-313. [PMID: 31218868 DOI: 10.7518/hxkq.2019.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polarity of ameloblasts and odontoblasts is crucial for their differentiation and function. Polarity-related molecules play an important role in this process. This review summarizes the process of polarity formation of ameloblasts and odontoblasts and their related regulators.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Guang-Xing Yan
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Cang-Wei Liu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xue Zhang
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yue Hu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xin-Qing Hao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Huan Zhao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Ce Shi
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Hong-Chen Sun
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| |
Collapse
|
10
|
Chang B, Svoboda KKH, Liu X. Cell polarization: From epithelial cells to odontoblasts. Eur J Cell Biol 2018; 98:1-11. [PMID: 30473389 DOI: 10.1016/j.ejcb.2018.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cell polarity identifies the asymmetry of a cell. Various types of cells, including odontoblasts and epithelial cells, polarize to fulfil their destined functions. Odontoblast polarization is a prerequisite and fundamental step for tooth development and tubular dentin formation. Current knowledge of odontoblast polarization, however, is very limited, which greatly impedes the development of novel approaches for regenerative endodontics. Compared to odontoblasts, epithelial cell polarization has been extensively studied over the last several decades. The knowledge obtained from epithelia polarization has been found applicable to other cell types, which is particularly useful considering the remarkable similarities of the morphological and compositional features between polarized odontoblasts and epithelia. In this review, we first discuss the characteristics, the key regulatory factors, and the process of epithelial polarity. Next, we compare the known facts of odontoblast polarization with epithelial cells. Lastly, we clarify knowledge gaps in odontoblast polarization and propose the directions for future research to fill the gaps, leading to the advancement of regenerative endodontics.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
11
|
Zheng J, Nie X, He L, Yoon A, Wu L, Zhang X, Vats M, Schiff M, Xiang L, Tian Z, Ling J, Mao J. Epithelial Cdc42 Deletion Induced Enamel Organ Defects and Cystogenesis. J Dent Res 2018; 97:1346-1354. [PMID: 29874522 PMCID: PMC6199676 DOI: 10.1177/0022034518779546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cdc42, a Rho family small GTPase, regulates cytoskeleton organization, vesicle trafficking, and other cellular processes in development and homeostasis. However, Cdc42's roles in prenatal tooth development remain elusive. Here, we investigated Cdc42 functions in mouse enamel organ. Cdc42 showed highly dynamic temporospatial patterns in the developing enamel organ, with robust expression in the outer enamel epithelium, stellate reticulum (SR), and stratum intermedium layers. Strikingly, epithelium-specific Cdc42 deletion resulted in cystic lesions in the enamel organ. Cystic lesions were first noted at embryonic day 15.5 and progressively enlarged during gestation. At birth, cystic lesions occupied the bulk of the entire enamel organ, with intracystic erythrocyte accumulation. Ameloblast differentiation was retarded upon epithelial Cdc42 deletion. Apoptosis occurred in the Cdc42 mutant enamel organ prior to and synchronously with cystogenesis. Transmission electron microscopy examination showed disrupted actin assemblies, aberrant desmosomes, and significantly fewer cell junctions in the SR cells of Cdc42 mutants than littermate controls. Autophagosomes were present in the SR cells of Cdc42 mutants relative to the virtual absence of autophagosome in the SR cells of littermate controls. Epithelium-specific Cdc42 deletion attenuated Wnt/β-catenin and Shh signaling in dental epithelium and induced aberrant Sox2 expression in the secondary enamel knot. These findings suggest that excessive cell death and disrupted cell-cell connections may be among multiple factors responsible for the observed cystic lesions in Cdc42 mutant enamel organs. Taken together, Cdc42 exerts multidimensional and pivotal roles in enamel organ development and is particularly required for cell survival and tooth morphogenesis.
Collapse
Affiliation(s)
- J. Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X. Nie
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L. He
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - A.J. Yoon
- Oral and Maxillofacial Pathology Division, College of Dental Medicine, Columbia University, New York, NY, USA
| | - L. Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X. Zhang
- Departments of Ophthalmology, Pathology, and Cell Biology, Columbia University, New York, NY, USA
| | - M. Vats
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - M.D. Schiff
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - L. Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Z. Tian
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
| | - J. Ling
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - J.J. Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Center for Craniofacial Regeneration, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Orthopedic Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Chen H, Guo S, Xia Y, Yuan L, Lu M, Zhou M, Fang M, Meng L, Xiao Z, Ma J. The role of Rho-GEF Trio in regulating tooth root development through the p38 MAPK pathway. Exp Cell Res 2018; 372:158-167. [PMID: 30268758 DOI: 10.1016/j.yexcr.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Trio, the Rho guanine nucleotide exchange factor (Rho-GEF), plays diverse roles in cell migration, cell axon guidance and cytoskeleton reorganization. Conserved during evolution, Trio encodes two guanine nucleotide exchange factor domains (GEFs) and activates small GTPases. The Rho-family small GTPases RhoA and Rac1, which are target molecules of Trio, have been described to engage in craniofacial development and tooth formation. However, the exact role of Trio in tooth development remains elusive. In this study, we generated Wnt1-cre;Triofl/fl mice to address the potential function of Trio in tooth development. Wnt1-cre;Triofl/fl mice showed short root deformity as well as decreased expression of odontogenic makers such as RUNX2, OSX, OCN, and OPN. In vitro, Trio was silenced in human stem cells of dental papilla (SCAPs). Compared with the control group, the proliferation and migration ability in the experimental group was disrupted. After knocking down Trio in SCAPs, the cells showed phenotypes of poor odontogenic differentiation and weak mineralized nodules. To study the underlying mechanism, we investigated the p38 MAPK pathway and found that loss of Trio blocked the cascade transduction of p38 MAPK signaling. In conclusion, we identified Trio as a novel coordinator in regulating root development and clarified its relevant molecular events.
Collapse
Affiliation(s)
- Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Mengting Lu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Meng Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
13
|
Tian Z, Lv X, Zhang M, Wang X, Chen Y, Tang P, Xu P, Zhang L, Wu B, Zhang L. Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2623-2632. [DOI: 10.1016/j.bbadis.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 12/01/2022]
|
14
|
Alampally H, Chandrashekar C, Rodrigues G, Carnelio S. Fascin in tooth germs: an immunohistochemical analysis. J Histotechnol 2018. [DOI: 10.1080/01478885.2017.1404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Harishanker Alampally
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, India
| | - Chethana Chandrashekar
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, India
| | - Gabriel Rodrigues
- Department of General Surgery, Kasturba Medical College, Manipal University, Manipal, India
| | - Sunitha Carnelio
- Department of Oral and Maxillofacial Pathology, Manipal College of Dental Sciences, Manipal University, Manipal, India
| |
Collapse
|
15
|
Yang Y, Li Z, Chen G, Li J, Li H, Yu M, Zhang W, Guo W, Tian W. GSK3β regulates ameloblast differentiation via Wnt and TGF-β pathways. J Cell Physiol 2018; 233:5322-5333. [PMID: 29215720 DOI: 10.1002/jcp.26344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Wnt and TGF-β signaling pathways participate in regulating a variety of cell fates during organogenesis, including tooth development. Despite well-documented, the specific mechanisms, especially how these two pathways act coordinately in regulating enamel development, remain unknown. In this study, we identified Glycogen Synthase Kinase 3 beta (GSK3β), a negative regulator of Wnt signal pathway, participated in ameloblast differentiation via Wnt and TGF-β pathways during enamel development. In vitro rat mandible culture treated with specific GSK3β inhibitor SB415286 displayed enamel defects, accompanied by disrupted ameloblasts polarization, while odontoblasts and dentin appeared to be unaffected. Moreover, after GSK3β knockdown by lentivirus-mediated RNA silencing, HAT-7 cells displayed abnormal cell polarity and cell adhesion, and failed to synthesize appreciable amounts of ameloblast-specific proteins. More importantly, inactivation of GSK3β caused upregulated Wnt and downregulated TGF-β pathway, while reactivation of TGF-β signaling or suppression of Wnt signaling partially rescued the differentiation defects of ameloblasts caused by the GSK3β knock-down. Taken together, these results suggested that GSK3β was essential for ameloblasts differentiation, which might be indirectly mediated through Wnt and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Yaling Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Ziyue Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiping Zhang
- Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Otsu K, Ida-Yonemochi H, Fujiwara N, Harada H. The Semaphorin 4D-RhoA-Akt Signal Cascade Regulates Enamel Matrix Secretion in Coordination With Cell Polarization During Ameloblast Differentiation. J Bone Miner Res 2016; 31:1943-1954. [PMID: 27218883 DOI: 10.1002/jbmr.2876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022]
Abstract
During tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology. Immunohistochemistry revealed that the restricted expression of semaphorin 4D (Sema4D) and RhoA activation status are closely associated with ameloblast differentiation in mouse incisors. In addition, in vitro gain-of-function and loss-of-function experiments demonstrated that Sema4D acts upstream of RhoA to regulate cell polarity and amelogenin expression via the Plexin B1/Leukemia-associated RhoGEF (LARG) complex during ameloblast differentiation. Experiments in transgenic mice demonstrated that expression of a dominant-negative form of RhoA in dental epithelium hindered ameloblast differentiation and subsequent enamel formation, as well as perturbing the establishment of polarized cell morphology and vectorial amelogenin expression. Finally, we showed that spatially restricted Akt mediates between Sema4D-RhoA signaling and these downstream cellular events. Collectively, our results reveal a novel signaling network, the Sema4D-RhoA-Akt signal cascade, that coordinates cellular function and morphology and highlights the importance of specific spatiotemporally restricted components of a signaling pathway in the regulation of ameloblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Fujiwara
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Iwate, Japan
| |
Collapse
|
17
|
Hasegawa K, Wada H, Nagata K, Fujiwara H, Wada N, Someya H, Mikami Y, Sakai H, Kiyoshima T. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) expression and possible function in mouse tooth germ development. J Mol Histol 2016; 47:375-87. [PMID: 27234941 DOI: 10.1007/s10735-016-9680-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 01/01/2023]
Abstract
Abnormal expression of Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1) is involved in the pathogenesis of FSHD. FRG1 is also important for the normal muscular and vascular development. Our previous study showed that FRG1 is one of the highly expressed genes in the mandible on embryonic day 10.5 (E10.5) than on E12.0. In this study, we investigated the temporospatial expression pattern of FRG1 mRNA and protein during the development of the mouse lower first molar, and also evaluated the subcellular localization of the FRG1 protein in mouse dental epithelial (mDE6) cells. The FRG1 expression was identified in the dental epithelial and mesenchymal cells at the initiation and bud stages. It was detected in the inner enamel epithelium at the cap and early bell stages. At the late bell and root formation stages, these signals were detected in ameloblasts and odontoblasts during the formation of enamel and dentin matrices, respectively. The FRG1 protein was localized in the cytoplasm in the mouse tooth germ in vivo, while FRG1 was detected predominantly in the nucleus and faintly in the cytoplasm in mDE6 cells in vitro. In mDE6 cells treated with bone morphogenetic protein 4 (BMP4), the protein expression of FRG1 increased in cytoplasm, suggesting that FRG1 may translocate to the cytoplasm. These findings suggest that FRG1 is involved in the morphogenesis of the tooth germ, as well as in the formation of enamel and dentin matrices and that FRG1 may play a role in the odontogenesis in the mouse following BMP4 stimulation.
Collapse
Affiliation(s)
- Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kengo Nagata
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroaki Fujiwara
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hirotaka Someya
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yurie Mikami
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hidetaka Sakai
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
18
|
Yanuaryska RD, Miyoshi K, Adiningrat A, Horiguchi T, Tanimura A, Hagita H, Noma T. Sp6 regulation of Rock1 promoter activity in dental epithelial cells. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 61:306-17. [PMID: 25264049 DOI: 10.2152/jmi.61.306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sp6 is a transcription factor of the SP/KLF family and an indispensable regulator of the morphological dynamics of ameloblast differentiation during tooth development. However, the underlying molecular mechanisms remain unclear. We have previously identified one of the Sp6 downstream genes, Rock1, which is involved in ameloblast polarization. In this study, we investigated the transcriptional regulatory mechanisms of Rock1 by Sp6. First, we identified the transcription start sites (TSS) and cloned the 5'-flanking region of Rock1. Serial deletion analyses identified a critical region for Rock1 promoter activity within the 249-bp upstream region of TSS, and chromatin immunoprecipitation assays revealed Sp6-binding to this region. Subsequent transient transfection experiments showed that Rock1 promoter activity is enhanced by Sp6, but reduced by Sp1. Treatment of dental epithelial cells with the GC-selective DNA binding inhibitor, mithramycin A, affected Rock1 promoter activity in loss of enhancement by Sp6, but not repression by Sp1. Further site-directed mutagenesis indicated that the region from -206 to -150 contains responsive elements for Sp6. Taken together, we conclude that Sp6 positively regulates Rock1 transcription by direct binding to the Rock1 promoter region from -206 to -150, which functionally distinct from Sp1.
Collapse
Affiliation(s)
- Ryna Dwi Yanuaryska
- Department of Molecular Biology, Institute of Health Biosciences, the University of Tokushima Graduate School
| | | | | | | | | | | | | |
Collapse
|
19
|
Li J, Li H, Tian Y, Yang Y, Chen G, Guo W, Tian W. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Exp Cell Res 2015; 345:6-16. [PMID: 26708290 DOI: 10.1016/j.yexcr.2015.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Otsu K, Harada H. Rho GTPases in ameloblast differentiation. JAPANESE DENTAL SCIENCE REVIEW 2015; 52:32-40. [PMID: 28408954 PMCID: PMC5382790 DOI: 10.1016/j.jdsr.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial–mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell–cell and cell–matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.
Collapse
Affiliation(s)
- Keishi Otsu
- Corresponding author. Tel.: +81 19 651 5111x5881; fax: +81 19 908 8017.
| | | |
Collapse
|
21
|
Tomazelli KB, Modolo F, Trentin AG, Garcez RC, Biz MT. Temporo-spatial analysis of Osterix, HNK1 and Sox10 during odontogenesis and maxillaries osteogenesis. Tissue Cell 2015; 47:465-70. [PMID: 26253417 DOI: 10.1016/j.tice.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
Cell differentiation is essential for maxillaries and tooth development. Facial mesenchymal tissue is formed by neural crest cells (NC). These cells are highly migratory, giving rise to various cell types, considered with a high level of plasticity, indicating that they contain progenitor cells with a great power of differentiation. In this study, it was analyzed the presence of NC cell progenitors and mesenchymal stem cells (MSC) during maxillaries osteogenesis and odontogenesis in rats. Histological slides were collected in two phases: embryonic age of 15 and 17 days; 2, 4 and 7 days after birth. Immunohistochemistry for MSC markers (Osterix) and NC cells (Sox10, HNK1) was performed. The results showed positive expression for Osterix and HNK1 in undifferentiated ectomesenchymal cells in early and late stages; Sox10 was present only in early stages in undifferentiated cells. All markers were present in differentiated cells. Although the experiments performed do not allow us to explain a possible role for Osx, HNK1 and Sox10 in both differentiated and undifferentiated cells during osteogenesis and odontogenesis, it had shown important results not yet described: the presence of HNK1 and Sox10 in osteoblasts and odontoblasts in late development stages and in the tooth germ epithelial cells and ameloblasts.
Collapse
Affiliation(s)
- Karin Berria Tomazelli
- Postgraduate Dentistry Program, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe Modolo
- Pathology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Andrea Gonçalves Trentin
- Cellular Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ricardo Castilho Garcez
- Cellular Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Michelle Tillmann Biz
- Morphology Sciences Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
22
|
Li X, Jiang H, Huang Y, Gong Q, Wang J, Ling J. Expression and Function of the Actin-severing Protein Adseverin in the Proliferation, Migration, and Differentiation of Dental Pulp Cells. J Endod 2015; 41:493-500. [DOI: 10.1016/j.joen.2014.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/29/2014] [Accepted: 11/30/2014] [Indexed: 12/18/2022]
|
23
|
Yuan X, Nishikawa S. Angular distribution of cross-sectioned cell boundaries at the distal terminal web in differentiating preameloblasts, inner enamel secretory ameloblasts and outer enamel secretory ameloblasts. Microscopy (Oxf) 2013; 63:33-9. [PMID: 24285861 DOI: 10.1093/jmicro/dft044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cross-sectioned profiles of differentiating preameloblasts, inner enamel secretory ameloblasts and outer enamel secretory ameloblasts at the distal terminal web were quantitatively compared. First, the angles of each line constituting the sectioned cell polygons were measured, and the patterns of angular distribution histograms were compared. Second, all groups of line angles from one differentiating preameloblast population, two inner enamel secretory ameloblast and one outer enamel secretory ameloblast populations at the distal terminal web were compared statistically by the χ(2)-test using the multiple comparison method. The results showed that cell shapes between differentiating preameloblasts and inner enamel secretory ameloblasts were similar, but that those between differentiating preameloblasts and outer enamel secretory ameloblasts and between inner enamel secretory ameloblasts and outer enamel secretory ameloblasts were significantly different. Third, F-actin fluorescence microscopy in the distal terminal web was performed and was consistent with the angular distribution. These results suggest that cell shapes of inner enamel secretory ameloblasts and differentiating preameloblasts at the distal terminal web are specialized for sideways cell movement during decussating tooth enamel formation.
Collapse
Affiliation(s)
- Xiaohong Yuan
- Department of Biology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | |
Collapse
|
24
|
Otsu K, Sakano M, Masuda T, Fujiwara N, Harada H. The role of Rho-kinases in ameloblast differentiation. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ravindran S, Zhang Y, Huang CC, George A. Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Eng Part A 2013; 20:92-102. [PMID: 23859633 DOI: 10.1089/ten.tea.2013.0192] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, root canal therapy is the only clinical treatment available to treat damaged or necrotic dental pulp tissue arising from caries. This treatment results in the loss of tooth vitality. Somatic dental stem cell-based tissue engineering approaches can alleviate this problem by preserving tooth vitality. Dental stem cells are multipotent and under appropriate conditions could be used for dental pulp tissue engineering. Successful use of these cells in pulp repair requires a combination of growth factors and appropriate scaffolds to induce cell differentiation. In this study, we demonstrate the odontogenic differentiation of human dental pulp stem cells (DPSCs) and the human periodontal ligament stem cells when cultured on a decellularized 3D extracellular matrix (ECM) scaffold without the need for exogenous addition of growth factors. Subcutaneous implantation of the ECM scaffolds containing DPSCs showed the formation of dental pulp-like tissue with cells expressing dentin sialoprotein (DSP) and dentin phosphophoryn (DPP). Additionally, we also show that the ECM scaffold can be exploited as a tool to study the extracellular function of multifunctional proteins. These promising results demonstrate the feasibility of developing these biomimetic scaffolds for treatment of dental caries.
Collapse
Affiliation(s)
- Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago , Chicago, Illinois
| | | | | | | |
Collapse
|
26
|
Wang C, Zhao Y, Su Y, Li R, Lin Y, Zhou X, Ye L. C-Jun N-terminal kinase (JNK) mediates Wnt5a-induced cell motility dependent or independent of RhoA pathway in human dental papilla cells. PLoS One 2013; 8:e69440. [PMID: 23844260 PMCID: PMC3700942 DOI: 10.1371/journal.pone.0069440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/14/2013] [Indexed: 01/06/2023] Open
Abstract
Wnt5a plays an essential role in tissue development by regulating cell migration, though the molecular mechanisms are still not fully understood. Our study investigated the pathways involved in Wnt5a-dependent cell motility during the formation of dentin and pulp. Over-expression of Wnt5a promoted cell adhesion and formation of focal adhesion complexes (FACs) in human dental papilla cells (hDPCs), while inhibiting cell migration. Instead of activating the canonical Wnt signal pathway in hDPCs, Wnt5a stimulation induced activation of the JNK signal in a RhoA-dependent or independent manner. Inhibiting JNK abrogated Wnt5a-induced FACs formation but not cytoskeletal rearrangement. Both dominant negative RhoA (RhoA T19N) and constitutively active RhoA mutants (RhoA Q63L) blocked the Wnt5a-dependent changes in hDPCs adhesion, migration and cytoskeletal rearrangement here too, with the exception of the formation of FACs. Taken together, our study suggested that RhoA and JNK signaling have roles in mediating Wnt5a-dependent adhesion and migration in hDPCs, and the Wnt5a/JNK pathway acts both dependently and independently of the RhoA pathway.
Collapse
Affiliation(s)
- Chenglin Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Zhao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Su
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruimin Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan, China
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
27
|
Xue H, Li Y, Everett ET, Ryan K, Peng L, Porecha R, Yan Y, Lucchese AM, Kuehl MA, Pugach MK, Bouchard J, Gibson CW. Ameloblasts require active RhoA to generate normal dental enamel. Eur J Oral Sci 2013; 121:293-302. [PMID: 23841780 DOI: 10.1111/eos.12059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
RhoA plays a fundamental role in regulation of the actin cytoskeleton, intercellular attachment, and cell proliferation. During amelogenesis, ameloblasts (which produce the enamel proteins) undergo dramatic cytoskeletal changes and the RhoA protein level is up-regulated. Transgenic mice were generated that express a dominant-negative RhoA transgene in ameloblasts using amelogenin gene-regulatory sequences. Transgenic and wild-type (WT) molar tooth germs were incubated with sodium fluoride (NaF) or sodium chloride (NaCl) in organ culture. Filamentous actin (F-actin) stained with phalloidin was elevated significantly in WT ameloblasts treated with NaF compared with WT ameloblasts treated with NaCl or with transgenic ameloblasts treated with NaF, thereby confirming a block in the RhoA/Rho-associated protein kinase (ROCK) pathway in the transgenic mice. Little difference in quantitative fluorescence (an estimation of fluorosis) was observed between WT and transgenic incisors from mice provided with drinking water containing NaF. We subsequently found reduced transgene expression in incisors compared with molars. Transgenic molar teeth had reduced amelogenin, E-cadherin, and Ki67 compared with WT molar teeth. Hypoplastic enamel in transgenic mice correlates with reduced expression of the enamel protein, amelogenin, and E-cadherin and cell proliferation are regulated by RhoA in other tissues. Together these findings reveal deficits in molar ameloblast function when RhoA activity is inhibited.
Collapse
Affiliation(s)
- Hui Xue
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T. Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int J Biol Sci 2013; 9:382-90. [PMID: 23630450 PMCID: PMC3638293 DOI: 10.7150/ijbs.5510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/05/2022] Open
Abstract
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.
Collapse
Affiliation(s)
- Masato Yasukawa
- Department of Biological Science and Technology, Graduate school of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jágr M, Eckhardt A, Pataridis S, Mikšík I. Comprehensive proteomic analysis of human dentin. Eur J Oral Sci 2012; 120:259-68. [DOI: 10.1111/j.1600-0722.2012.00977.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michal Jágr
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Adam Eckhardt
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Statis Pataridis
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| | - Ivan Mikšík
- Institute of Physiology; Academy of Sciences of the Czech Republic v.v.i; Prague Czech Republic
| |
Collapse
|
30
|
Huang Z, Kim J, Lacruz RS, Bringas P, Glogauer M, Bromage TG, Kaartinen VM, Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. Eur J Oral Sci 2012; 119 Suppl 1:168-76. [PMID: 22243243 DOI: 10.1111/j.1600-0722.2011.00904.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP-binding protein belonging to the RAS superfamily. RAS members play important roles in controlling focal adhesion complex formation and cytoskeleton contraction, activities with consequences for cell growth, adhesion, migration, and differentiation. To examine the role(s) played by RAC1 protein in cell-matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1(-/-)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent from epithelial organs. Enamel of the Rac1 conditional knockout mouse was characterized by light microscopy, backscattered electron imaging in the scanning electron microscope, microcomputed tomography, and histochemistry. Enamel matrix protein expression was analyzed by western blotting. Major findings showed that the Tomes' processes of Rac1(-/-) ameloblasts lose contact with the forming enamel matrix in unerupted teeth, the amounts of amelogenin and ameloblastin are reduced in Rac1(-/-) ameloblasts, and after eruption, the enamel from Rac1(-/-) mice displays severe structural defects with a complete loss of enamel. These results support an essential role for RAC1 in the dental epithelium involving cell-matrix interactions and matrix biomineralization.
Collapse
Affiliation(s)
- Zhan Huang
- The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peng L, Li Y, Shusterman K, Kuehl M, Gibson CW. Wnt-RhoA signaling is involved in dental enamel development. Eur J Oral Sci 2012; 119 Suppl 1:41-9. [PMID: 22243225 DOI: 10.1111/j.1600-0722.2011.00880.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transgenic mice that express dominant-negative RhoA (RhoA(DN) ) in ameloblasts have hypoplastic enamel with defects in molar cusps. β-catenin and Wnt5a were up-regulated in enamel organs of RhoA(DN) transgenic mice, which indicated that both canonical and non-canonical Wnt pathways are implicated in the process of enamel defect formation. It was hypothesized that expression of RhoA(DN) in ameloblasts interfered with normal enamel development through the pathways that were induced by fluoride. The Wnt and RhoA pathways were further investigated in an ameloblast-lineage cell line (ALC) by treatment with sodium fluoride (NaF). The activities of RhoA and Rho-associated protein kinase (ROCK) II decreased significantly by 8-12 hours, similar to decreased activity in RhoA(DN) transgenic mice. Both canonical and non-canonical Wnt pathways were activated by treatment with NaF, which was verified by western blotting and the β-catenin-TCF/LEF (T cell factor lymphanoid/enhancer factor) reporter gene (TOPflash) assay. β-catenin localization to both cytoplasm and nucleus was up-regulated in NaF-treated ALC, while Gsk-3β, the negative regulator of the Wnt pathway, showed a decreased pattern of expression. The current results indicate that both Wnt and RhoA pathways are implicated in fluoride-induced signaling transductions in the ALC as well as in the development of enamel defects in RhoA(DN) transgenic mice.
Collapse
Affiliation(s)
- Li Peng
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
32
|
Nishikawa S, Kawamoto T. Planar cell polarity protein localization in the secretory ameloblasts of rat incisors. J Histochem Cytochem 2012; 60:376-85. [PMID: 22378702 DOI: 10.1369/0022155412438887] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis.
Collapse
Affiliation(s)
- Sumio Nishikawa
- Department of Biology, Tsurumi University School of Dental Medicine, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | | |
Collapse
|
33
|
Modolo F, Biz MT, de Sousa SM, Fachinelli RDL, Crema VO. Immunohistochemical expression of Rho GTPases in ameloblastomas. J Oral Pathol Med 2011; 41:400-7. [PMID: 22092654 DOI: 10.1111/j.1600-0714.2011.01108.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rho GTPases are proteins that regulate cell cycle, shape, polarization, invasion, migration, and apoptosis, which are important characteristics of normal and neoplastic cells. Rho GTPases expression has been reported in normal tooth germ and several pathologies; however, it has not been evaluated in ameloblastomas. The aim of this study was to analyze the expression and distribution of RhoA, RhoB, Rac1, and Cdc42 Rho GTPases in solid and unicystic ameloblastomas. Three-micrometer sections from paraffin-embedded specimens were evaluated by using an avidin-biotin immunohistochemical method with antibodies against the proteins mentioned above. RhoA and RhoB staining was observed in a high number of cells (P < 0.05) and greater intensity in non-polarized ones. Rac1 was not observed, and Cdc42 did not show any statistical differences between the number of non-polarized and basal positive cells (P > 0.05). Upon comparing the studied ameloblastomas, a higher number of positive cells in the unicystic variant was observed than that in the solid one (P < 0,05). The results obtained suggest that these GTPases could play a role in the ameloblastoma neoplastic epithelial cell phenotype determination (polarized or non-polarized), as well as in variant (solid or unicystic) and subtype (follicular or plexiform) determination. Furthermore, they could participate in solid ameloblastoma invasion mechanisms.
Collapse
Affiliation(s)
- Filipe Modolo
- Pathology Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | | | | | | |
Collapse
|
34
|
Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J Biomed Biotechnol 2011; 2011:320987. [PMID: 22046099 PMCID: PMC3199210 DOI: 10.1155/2011/320987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.
Collapse
|
35
|
Otsu K, Kishigami R, Fujiwara N, Ishizeki K, Harada H. Functional role of Rho-kinase in ameloblast differentiation. J Cell Physiol 2011; 226:2527-34. [PMID: 21792909 DOI: 10.1002/jcp.22597] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During tooth development, inner enamel epithelial (IEE) cells differentiate into enamel-secreting ameloblasts, a polarized and elongated cellular population. The molecular underpinnings of this morphogenesis and cytodifferentiation, however, are not well understood. Here, we show that Rho-associated coiled-coil-containing protein kinase (ROCK) regulates ameloblast differentiation and enamel formation. In mouse incisor organ cultures, inhibition of ROCK, hindered IEE cell elongation and disrupted polarization of differentiated ameloblasts. Expression of enamel matrix proteins, such as amelogenin and ameloblastin, and formation of the terminal band structure of actin and E-cadherin were also perturbed. Cultures of dental epithelial cells revealed that ROCK regulates cell morphology and cell adhesion through localization of actin bundles, E-cadherin, and β-catenin to cell membranes. Moreover, inhibition of ROCK promoted cell proliferation. Small interfering RNA specific for ROCK1 and ROCK2 demonstrated that the ROCK isoforms performed complementary functions in the regulation of actin organization and E-cadherin-mediated cell-cell adhesion. Thus, our results have uncovered a novel role for ROCK in amelogenesis.
Collapse
Affiliation(s)
- Keishi Otsu
- The Advanced Oral Health Science Research Center, Iwate Medical University, Iwate, Japan
| | | | | | | | | |
Collapse
|
36
|
Li Y, Pugach MK, Kuehl MA, Peng L, Bouchard J, Hwang SY, Gibson CW. Dental enamel structure is altered by expression of dominant negative RhoA in ameloblasts. Cells Tissues Organs 2011; 194:227-31. [PMID: 21576911 DOI: 10.1159/000324559] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Using in vitrotooth germ cultures and analysis by confocal microscopy, ameloblasts treated with sodium fluoride were found to have elevated amounts of filamentous actin. Because this response is reduced by inhibitors of the Rho/ROCK signaling pathway, we generated mice that express dominant negative RhoA (RhoA(DN)) in ameloblasts for in vivo analysis. Expression of the EGFP-RhoA(DN) fusion protein was evaluated by RT-PCR and immunohistochemistry, and teeth were analyzed by scanning electron microscopy. The 3 strains expressed at either low (TgEGFP-RhoA(DN)-8), intermediate (TgEGFP-RhoA(DN)-2), or high (TgEGFP-RhoA(DN)-13) levels, and the molar teeth from the 3 strains had enamel hypoplasia and surface defects. We conclude that RhoA(DN) expressed in ameloblasts interferes with normal enamel development through the pathway that is induced by sodium fluoride.
Collapse
Affiliation(s)
- Yong Li
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pa., USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Choi SJ, Song IS, Feng JQ, Gao T, Haruyama N, Gautam P, Robey PG, Hart TC. Mutant DLX 3 disrupts odontoblast polarization and dentin formation. Dev Biol 2010; 344:682-92. [PMID: 20510228 DOI: 10.1016/j.ydbio.2010.05.499] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/30/2022]
Abstract
Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by abnormalities in the thickness and density of bones and teeth. A 4-bp deletion mutation in the Distal-Less 3 (DLX3) gene is etiologic for most cases of TDO. To investigate the in vivo role of mutant DLX3 (MT-DLX3) on dentin development, we generated transgenic (TG) mice expressing MT-DLX3 driven by a mouse 2.3 Col1A1 promoter. Dentin defects were radiographically evident in all teeth and the size of the nonmineralized pulp was enlarged in TG mice, consistent with clinical characteristics in patients with TDO. High-resolution radiography, microcomputed tomography, and SEM revealed a reduced zone of mineralized dentin with anomalies in the number and organization of dentinal tubules in MT-DLX3 TG mice. Histological and immunohistochemical studies demonstrated that the decreased dentin was accompanied by altered odontoblast cytology that included disruption of odontoblast polarization and reduced numbers of odontoblasts. TUNEL assays indicated enhanced odontoblast apoptosis. Expression levels of the apoptotic marker caspase-3 were increased in odontoblasts in TG mice as well as in odontoblastic-like MDPC-23 cells transfected with MT-DLX3 cDNA. Expression of Runx2, Wnt 10A, and TBC1D19 colocalized with DLX3 expression in odontoblasts, and MT-DLX3 significantly reduced expression of all three genes. TBC1D19 functions in cell polarity and decreased TBC1D19 expression may contribute to the observed disruption of odontoblast polarity and apoptosis. These data indicate that MT-DLX3 acts to disrupt odontoblast cytodifferentiation leading to odontoblast apoptosis, and aberrations of dentin tubule formation and dentin matrix production, resulting in decreased dentin and taurodontism. In summary, this TG model demonstrates that MT-DLX3 has differential effects on matrix production and mineralization in dentin and bone and provides a novel tool for the investigation of odontoblast biology.
Collapse
Affiliation(s)
- S J Choi
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|