1
|
Wray S, Taggart MJ. An update on pacemaking in the myometrium. J Physiol 2024. [PMID: 39073139 DOI: 10.1113/jp284753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/30/2024] Open
Abstract
Timely and efficient contractions of the smooth muscle of the uterus - the myometrium - are crucial to a successful pregnancy outcome. These episodic contractions are regulated by spontaneous action potentials changing cell and tissue electrical excitability. In this short review we will document and discuss current knowledge of these processes. Those seeking a conclusive account of myometrial pacemaking mechanisms, or indeed a definitive description of the anatomical site of uterine pacemaking, may be disappointed. Rather, after almost a century of investigation, and in spite of promising studies in the last decade or so, there remain many gaps in our knowledge. We review the progress that has been made using recent technologies including in vivo and ex vivo imaging and electrophysiology and computational modelling, taking evidence from studies of animal and human myometrium, with particular emphasis on what may occur in the latter. We have prioritized physiological studies that bring us closer to understanding function. From our analyses we suggest that in human myometrium there is no fixed pacemaking site, but rather mobile, initiation sites produce the connectivity for synchronizing electrical and contractile activity. We call for more studies and funding, as physiological understanding of pacemaking gives hope to being better able to treat clinical conditions such as preterm and dysfunctional labours.
Collapse
Affiliation(s)
- Susan Wray
- Women's & Children's Health, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, Merseyside, UK
| | - Michael J Taggart
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle, UK
| |
Collapse
|
2
|
Ramos D, Catita J, López-Luppo M, Valença A, Bonet A, Carretero A, Navarro M, Nacher V, Mendez-Ferrer S, Meseguer A, Casellas A, Mendes-Jorge L, Ruberte J. Vascular Interstitial Cells in Retinal Arteriolar Annuli Are Altered During Hypertension. Invest Ophthalmol Vis Sci 2019; 60:473-487. [PMID: 30707220 DOI: 10.1167/iovs.18-25000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose It has been suggested that arteriolar annuli localized in retinal arterioles regulate retinal blood flow acting as sphincters. Here, the morphology and protein expression profile of arteriolar annuli have been analyzed under physiologic conditions in the retina of wild-type, β-actin-Egfp, and Nestin-gfp transgenic mice. Additionally, to study the effect of hypertension, the KAP transgenic mouse has been used. Methods Cellular architecture has been studied using digested whole mount retinas and transmission electron microscopy. The profile of protein expression has been analyzed on paraffin sections and whole mount retinas by immunofluorescence and histochemistry. Results The ultrastructural analysis of arteriolar annuli showed a different cell population found between endothelial and muscle cells that matched most of the morphologic criteria established to define interstitial Cajal cells. The profile of protein expression of these vascular interstitial cells (VICs) was similar to that of interstitial Cajal cells and different from the endothelial and smooth muscle cells, because they expressed β-actin, nestin, and CD44, but they did not express CD31 and α-SMA or scarcely express F-actin. Furthermore, VICs share with pericytes the expression of NG2 and platelet-derived growth factor receptor beta (PDGFR-β). The high expression of Ano1 and high activity of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase observed in VICs was diminished during hypertensive retinopathy suggesting that these cells might play a role on the motility of arteriolar annuli and that this function is altered during hypertension. Conclusions A novel type of VICs has been described in the arteriolar annuli of mouse retina. Remarkably, these cells undergo important molecular modifications during hypertensive retinopathy and might thus be a therapeutic target against this disease.
Collapse
Affiliation(s)
- David Ramos
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Anatomy, Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana López-Luppo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andreia Valença
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aina Bonet
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Navarro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Victor Nacher
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Simon Mendez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and NHS-Blood and Transplant, Cambridge, United Kingdom
| | - Anna Meseguer
- Renal Physiopathology Group, CIBBM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Luísa Mendes-Jorge
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
3
|
Yu W, Zeidel ML, Hill WG. Cellular expression profile for interstitial cells of cajal in bladder - a cell often misidentified as myocyte or myofibroblast. PLoS One 2012; 7:e48897. [PMID: 23145014 PMCID: PMC3492220 DOI: 10.1371/journal.pone.0048897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Interstitial cells of Cajal (ICC) have been identified in urinary bladder of several species, but their presence in mice remains uncertain. Meanwhile, dozens of reports indicate that dysregulation of connexin 43 plays an important role in bladder overactivity, but its localization has not been clearly defined, with reports of expression in either the smooth muscle or in myofibroblasts. We recently identified a population of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) positive cells that resemble ICC and are distinct from smooth muscle, fibroblasts, myofibroblasts and neurons. Thus we sought to define more clearly the molecular signature of ICC and in doing so resolve some of these uncertainties. PRINCIPLE FINDINGS Immunofluorescent localization revealed that NTPDase2-positive cells lie closely adjacent to smooth muscle but are separate from them. NTPDase2 positive cells exhibited co-localization with the widely accepted ICC marker - c-kit. They were further shown to co-localize with other ICC markers CD34 and Ano1, but not with mast cell marker tryptase. Significantly, they show convincing co-localization with connexin 43, which was not present in smooth muscle. The identity of these cells as ICC was further confirmed by the presence of three mesenchymal markers - vimentin, desmin, and PDGFβ receptor, which indicates their mesenchymal origin. Finally, we observed for the first time, the presence of merlin/neurofibromin 2 in ICC. Normally considered a neuronal protein, the presence of merlin suggests ICC in bladder may have a role in neurotransmission. CONCLUSIONS NTPDase2 positive cells in mice bladder are ICC, which can be defined by the presence of c-Kit, CD34, Ano1, NTPDase2, connexin 43, vimentin, desmin, PDGFβ receptor and merlin/NF2. These data establish a definitive molecular expression profile, which can be used to assist in explorations of their functional roles, and the presence of NTPDase2 suggests that purinergic signaling plays a role in regulation of ICC function.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
4
|
Cantarero I, Luesma MJ, Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med 2012; 15:2594-600. [PMID: 21435170 PMCID: PMC4373428 DOI: 10.1111/j.1582-4934.2011.01312.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Blood vessels are highly organized and complex structure, which are far more than simple tubes conducting the blood to almost any tissue of the body. The fine structure of the wall of blood vessels has been studied previously using the electron microscope, but the presence the telocytes associated with vasculature, a specific new cellular entity, has not been studied in depth. Interestingly, telocytes have been recently found in the epicardium, myocardium, endocardium, human term placenta, duodenal lamina propria and pleura. We show the presence of telocytes located on the extracellular matrix of blood vessels (arterioles, venules and capillaries) by immunohistochemistry and transmission electron microscopy. Also, we demonstrated the first evidence of a primary cilium in telocytes. Several functions have been proposed for these cells. Here, the telocyte-blood vessels cell proximity, the relationship between telocytes, exosomes and nervous trunks may have a special significance.
Collapse
Affiliation(s)
- I Cantarero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain.
| | | | | |
Collapse
|
6
|
Rusu MC, Pop F, Hostiuc S, Curcă GC, Streinu-Cercel A. Extrahepatic and intrahepatic human portal interstitial Cajal cells. Anat Rec (Hoboken) 2011; 294:1382-92. [PMID: 21714117 DOI: 10.1002/ar.21441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 05/16/2011] [Indexed: 01/18/2023]
Abstract
Portal interstitial cells of Cajal (PICCs), acting as vascular pacemakers, were previously only identified in nonhumans. Moreover, there is no evidence available about the presence of such cells within the liver. The objective of the study is to evaluate whether or not PICCs are identifiable in humans and, if they are, whether or not they are following the scaffold of portal vein (PV) branches within the liver. We obtained extrahepatic PVs and liver samples from six adult human cadavers, negative for liver disease, in accordance with ethical rules. They were stained with hematoxylin-eosin (HE) and Giemsa, and then we performed immunohistochemistry on formalin-fixed paraffin-embedded specimens for CD117/c-kit, a marker of the Cajal's cells. Immune labeling was also performed for S-100 protein, desmin, glial fibrillary acidic protein (GFAP), neurofilaments, α-smooth muscle actin (α-SMA), and CD34. c-kit-Positive PICCs were identified within the extrahepatic PV, in portal spaces, and septa. On adjacent sections, these PICCs were negative for all the other antibodies used. In conclusion, our study confirms the presence of extrahepatic PICCs on humans, which may act as a possible intrinsic pacemaker in the human PV. However, the intrahepatic PICCs, which were evidenced here for the first time, are in need for further experimental studies to evaluate their functional role. A promising further direction of the study is the PICCs role in the idiopathic portal hypertension.
Collapse
Affiliation(s)
- M C Rusu
- Discipline of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | |
Collapse
|