1
|
Yin L, An Y, Chen X, Yan HX, Zhang T, Lu XG, Yan JT. Local vibration therapy promotes the recovery of nerve function in rats with sciatic nerve injury. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:265-273. [PMID: 35153133 DOI: 10.1016/j.joim.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE It has been reported that local vibration therapy can benefit recovery after peripheral nerve injury, but the optimized parameters and effective mechanism were unclear. In the present study, we investigated the effect of local vibration therapy of different amplitudes on the recovery of nerve function in rats with sciatic nerve injury (SNI). METHODS Adult male Sprague-Dawley rats were subjected to SNI and then randomly divided into 5 groups: sham group, SNI group, SNI + A-1 mm group, SNI + A-2 mm group, and SNI + A-4 mm group (A refers to the amplitude; n = 10 per group). Starting on the 7th day after model initiation, local vibration therapy was given for 21 consecutive days with a frequency of 10 Hz and an amplitude of 1, 2 or 4 mm for 5 min. The sciatic function index (SFI) was assessed before surgery and on the 7th, 14th, 21st and 28th days after surgery. Tissues were harvested on the 28th day after surgery for morphological, immunofluorescence and Western blot analysis. RESULTS Compared with the SNI group, on the 28th day after surgery, the SFIs of the treatment groups were increased; the difference in the SNI + A-2 mm group was the most obvious (95% confidence interval [CI]: [5.86, 27.09], P < 0.001), and the cross-sectional areas of myocytes in all of the treatment groups were improved. The G-ratios in the SNI + A-1 mm group and SNI + A-2 mm group were reduced significantly (95% CI: [-0.12, -0.02], P = 0.007; 95% CI: [-0.15, -0.06], P < 0.001). In addition, the expressions of S100 and nerve growth factor proteins in the treatment groups were increased; the phosphorylation expressions of ERK1/2 protein in the SNI + A-2 mm group and SNI + A-4 mm group were upregulated (95% CI: [0.03, 0.96], P = 0.038; 95% CI: [0.01, 0.94], P = 0.047, respectively), and the phosphorylation expression of Akt in the SNI + A-1 mm group was upregulated (95% CI: [0.11, 2.07], P = 0.031). CONCLUSION Local vibration therapy, especially with medium amplitude, was able to promote the recovery of nerve function in rats with SNI; this result was linked to the proliferation of Schwann cells and the activation of the ERK1/2 and Akt signaling pathways.
Collapse
Affiliation(s)
- Lu Yin
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yun An
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao Chen
- Department of Rehabilitation Medicine, the Second Rehabilitation Hospital of Shanghai, Shanghai 200441, China
| | - Hui-Xin Yan
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Tao Zhang
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xin-Gang Lu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Jun-Tao Yan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
2
|
He QR, Cong M, Yu FH, Ji YH, Yu S, Shi HY, Ding F. Peripheral nerve fibroblasts secrete neurotrophic factors to promote axon growth of motoneurons. Neural Regen Res 2022; 17:1833-1840. [PMID: 35017446 PMCID: PMC8820717 DOI: 10.4103/1673-5374.332159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Peripheral nerve fibroblasts play a critical role in nerve development and regeneration. Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes. Fibroblasts of different phenotypes can guide the migration of Schwann cells to the same sensory or motor phenotype. In this study, we analyzed the different effects of peripheral nerve-derived fibroblasts and cardiac fibroblasts on motoneurons. Compared with cardiac fibroblasts, peripheral nerve fibroblasts greatly promoted motoneuron neurite outgrowth. Transcriptome analysis results identified 491 genes that were differentially expressed in peripheral nerve fibroblasts and cardiac fibroblasts. Among these, 130 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts. These genes may be involved in axon guidance and neuron projection. Three days after sciatic nerve transection in rats, peripheral nerve fibroblasts accumulated in the proximal and distal nerve stumps, and most expressed brain-derived neurotrophic factor. In vitro, brain-derived neurotrophic factor secreted from peripheral nerve fibroblasts increased the expression of β-actin and F-actin through the extracellular regulated protein kinase and serine/threonine kinase pathways, and enhanced motoneuron neurite outgrowth. These findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of gene expression. Peripheral nerve fibroblasts can promote motoneuron neurite outgrowth.
Collapse
Affiliation(s)
- Qian-Ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Fan-Hui Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Hua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Yan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
3
|
Liu Y, Wang H. Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration. Neural Regen Res 2020; 15:189-198. [PMID: 31552884 PMCID: PMC6905333 DOI: 10.4103/1673-5374.265540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Xi F, Xu RJ, Xu JH, Ma JJ, Wang WH, Wang F, Ma YX, Qi SB, Zhang HC, Zhang HN, Qin XZ, Chen JQ, Li B, Liu CM, Yang HL, Meng B, Saijilafu. Calcium/calmodulin-dependent protein kinase II regulates mammalian axon growth by affecting F-actin length in growth cone. J Cell Physiol 2019; 234:23053-23065. [PMID: 31134625 DOI: 10.1002/jcp.28867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
While axon regeneration is a key determinant of functional recovery of the nervous system after injury, it is often poor in the mature nervous system. Influx of extracellular calcium (Ca2+ ) is one of the first phenomena that occur following axonal injury, and calcium/calmodulin-dependent protein kinase II (CaMKII), a target substrate for calcium ions, regulates the status of cytoskeletal proteins such as F-actin. Herein, we found that peripheral axotomy activates CaMKII in dorsal root ganglion (DRG) sensory neurons, and inhibition of CaMKII impairs axon outgrowth in both the peripheral and central nervous systems (PNS and CNS, respectively). Most importantly, we also found that the activation of CaMKII promotes PNS and CNS axon growth, and regulatory effects of CaMKII on axon growth occur via affecting the length of the F-actin. Thus, we believe our findings provide clear evidence that CaMKII is a critical modulator of mammalian axon regeneration.
Collapse
Affiliation(s)
- Feng Xi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Ren-Jie Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Orthopaedics, Suzhou Municipal Hospital, The Affiliated Hospital of Nanjing Medical University, Suzhou, Jiangsu, P. R. China
| | - Jin-Hui Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jin-Jin Ma
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Wei-Hua Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Feng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Yan-Xia Ma
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Shi-Bin Qi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hong-Cheng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Hao-Nan Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Xu-Zhen Qin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Jian-Quan Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Science, Beijing, P. R. China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Lin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Bin Meng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
5
|
Sullivan TB, Robert LC, Teebagy PA, Morgan SE, Beatty EW, Cicuto BJ, Nowd PK, Rieger-Christ KM, Bryan DJ. Spatiotemporal microRNA profile in peripheral nerve regeneration: miR-138 targets vimentin and inhibits Schwann cell migration and proliferation. Neural Regen Res 2018; 13:1253-1262. [PMID: 30028335 PMCID: PMC6065231 DOI: 10.4103/1673-5374.235073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
While the peripheral nervous system has regenerative ability, restoration of sufficient function remains a challenge. Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration, including myelination, neuroplasticity, kinase signaling in nerve axoplasm, and cell migration; however, the mechanisms regulating its expression within Schwann cell (SC) remain unexplored. The aim of this study was to profile the spatial and temporal expression profile of microRNA (miRNA) in a regenerating rat sciatic nerve after transection, and explore the potential role of miR-138-5p targeting vimentin in SC proliferation and migration. A rat sciatic nerve transection model, utilizing a polyethylene nerve guide, was used to investigate miRNA expression at 7, 14, 30, 60, and 90 days during nerve regeneration. Relative levels of miRNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction. In vitro assays were conducted with cultured Schwann cells transfected with miRNA mimics and assessed for migratory and proliferative potential. The top seven dysregulated miRNAs reported in this study have been implicated in cell migration elsewhere, and GO and KEGG analyses predicted activities essential to wound healing. Transfection of one of these, miRNA-138-5p, into SCs reduced cell migration and proliferation. miR-138-5p has been shown to directly target vimentin in cancer cells, and the luciferase assay performed here in rat Schwann cells confirmed it. These results detail a role of miR-138-5p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system.
Collapse
Affiliation(s)
- Travis B. Sullivan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Litchfield C. Robert
- Tissue Engineering Laboratory, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Patrick A. Teebagy
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Shannon E. Morgan
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Evan W. Beatty
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Bryan J. Cicuto
- Department of Plastic and Reconstructive Surgery, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Peter K. Nowd
- Department of Translational Research, Lahey Hospital & Medical Center, Burlington, MA, USA
| | | | - David J. Bryan
- Tissue Engineering Laboratory, Lahey Hospital & Medical Center, Burlington, MA, USA
- Department of Plastic and Reconstructive Surgery, Lahey Hospital & Medical Center, Burlington, MA, USA
| |
Collapse
|
6
|
Yi S, Wang XH, Xing LY. Transcriptome analysis of adherens junction pathway-related genes after peripheral nerve injury. Neural Regen Res 2018; 13:1804-1810. [PMID: 30136696 PMCID: PMC6128067 DOI: 10.4103/1673-5374.237127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural regeneration process is driven by a wide range of molecules and pathways. Adherens junctions are critical cellular junctions for the integrity of peripheral nerves. However, few studies have systematically characterized the transcript changes in the adherens junction pathway following injury. In this study, a rat model of sciatic nerve crush injury was established by forceps. Deep sequencing data were analyzed using comprehensive transcriptome analysis at 0, 1, 4, 7, and 14 days after injury. Results showed that most individual molecules in the adherens junctions were either upregulated or downregulated after nerve injury. The mRNA expression of ARPC1B, ARPC3, TUBA8, TUBA1C, CTNNA2, ACTN3, MET, HGF, NME1 and ARF6, which are involved in the adherens junction pathway and in remodeling of adherens junctions, was analyzed using quantitative real-time polymerase chain reaction. Most of these genes were upregulated in the sciatic nerve stump following peripheral nerve injury, except for CTNNA2, which was downregulated. Our findings reveal the dynamic changes of key molecules in adherens junctions and in remodeling of adherens junctions. These key genes provide a reference for the selection of clinical therapeutic targets for peripheral nerve injury.
Collapse
Affiliation(s)
- Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xing-Hui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ling-Yan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Gey M, Wanner R, Schilling C, Pedro MT, Sinske D, Knöll B. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 2017; 6:rsob.160091. [PMID: 27581653 PMCID: PMC5008009 DOI: 10.1098/rsob.160091] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022] Open
Abstract
Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types.
Collapse
Affiliation(s)
- Manuel Gey
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Renate Wanner
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Corinna Schilling
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Bezirkskrankenhaus Günzburg, Ulm University, 89081 Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
8
|
Learning to swim, again: Axon regeneration in fish. Exp Neurol 2017; 287:318-330. [DOI: 10.1016/j.expneurol.2016.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
|
9
|
Ma KH, Hung HA, Svaren J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J Neurosci 2016; 36:9135-47. [PMID: 27581455 PMCID: PMC5005723 DOI: 10.1523/jneurosci.1370-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome after nerve injury, our results have highlighted a novel epigenomic pathway in which reversal of the Polycomb pathway of repressive histone methylation is required for activation of a significant number of injury-induced genes.
Collapse
Affiliation(s)
- Ki H Ma
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Holly A Hung
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - John Svaren
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
10
|
Rosińska S, Leśniak W, Filipek A. Distinct effect of CacyBP/SIP on the ERK1/2-CREB-BDNF pathway in undifferentiated and differentiated neuroblastoma NB2a cells. Neurochem Int 2016; 97:65-72. [DOI: 10.1016/j.neuint.2016.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
|
11
|
Segond von Banchet G, König C, Patzer J, Eitner A, Leuchtweis J, Ebbinghaus M, Boettger MK, Schaible HG. Long-Lasting Activation of the Transcription Factor CREB in Sensory Neurons by Interleukin-1β During Antigen-Induced Arthritis in Rats: A Mechanism of Persistent Arthritis Pain? Arthritis Rheumatol 2016; 68:532-41. [PMID: 26473326 DOI: 10.1002/art.39445] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/17/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In spite of successful treatment of immune-mediated arthritis, many patients still experience pain. We undertook this study to investigate whether antigen-induced arthritis (AIA) in rats triggers neuronal changes in sensory neurons that outlast the inflammatory process. METHODS We induced unilateral AIA in the knee joint and assessed in sensory neurons the expression of CREB, a transcription factor that regulates genes involved in neuronal plasticity. We tested whether neutralization of the effects of tumor necrosis factor (TNF) by etanercept or infliximab or neutralization of the effects of interleukin-1β (IL-1β) by anakinra influences the up-regulation of phospho-CREB, and we studied the up-regulation of phospho-CREB by IL-1β and TNF in cultured dorsal root ganglion (DRG) neurons. RESULTS Unilateral AIA caused bilateral up-regulation of phospho-CREB in lumbar DRG neurons. While inflammation and pain subsided within 21 days, the up-regulation of phospho-CREB still persisted on day 42. At this time point mechanical hyperalgesia at the knee reappeared in the absence of swelling. TNF neutralization during AIA significantly reduced pain-related behavior but did not prevent phospho-CREB up-regulation. In contrast, anakinra, which only reduced thermal hyperalgesia, prevented phospho-CREB up-regulation, suggesting a role of IL-1β in this process. In cultured DRG neurons the application of IL-1β significantly enhanced phospho-CREB. CONCLUSION Immune-mediated arthritis causes neuroplastic changes in sensory neurons that outlast the inflammatory phase. Such changes may facilitate the persistence or recurrence of pain after remission of arthritis. IL-1β is an important trigger in this process, although its neutralization barely reduced mechanical hyperalgesia during inflammation.
Collapse
Affiliation(s)
| | - Christian König
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Jessica Patzer
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Annett Eitner
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Johannes Leuchtweis
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Matthias Ebbinghaus
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Michael K Boettger
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| | - Hans-Georg Schaible
- Jena University Hospital and Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
12
|
Gordon T, Tetzlaff W. Regeneration-associated genes decline in chronically injured rat sciatic motoneurons. Eur J Neurosci 2015; 42:2783-91. [DOI: 10.1111/ejn.13070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Tessa Gordon
- Neuroscience and Mental Health Institute; Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB T6G 2S2 Canada
- Department of Surgery; Division of Plastic Reconstructive Surgery; 5549A The Hospital for Sick Children; 555 University Avenue Toronto ON M5G 1X8 Canada
| | - Wolfram Tetzlaff
- ICORD (International Collaboration on Repair Discoveries); Blusson Spinal Cord Centre; 818 W. 10th Avenue Vancouver BC V5Z 1M9 Canada
- Departments of Zoology and Surgery; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
13
|
Pinkernelle J, Raffa V, Calatayud MP, Goya GF, Riggio C, Keilhoff G. Growth factor choice is critical for successful functionalization of nanoparticles. Front Neurosci 2015; 9:305. [PMID: 26388717 PMCID: PMC4557102 DOI: 10.3389/fnins.2015.00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
| | - Vittoria Raffa
- Department of Biology, University of PisaPisa, Italy
- Institute of Life Science, Scuola Superiore Sant' AnnaPisa, Italy
| | | | - Gerado F. Goya
- Aragon Institute of Nanosciences, University of ZaragozaZaragoza, Spain
- Department of Condensed Matter Physics, University of ZaragozaSpain
| | - Cristina Riggio
- Institute of Life Science, Scuola Superiore Sant' AnnaPisa, Italy
| | - Gerburg Keilhoff
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University of MagdeburgMagdeburg, Germany
| |
Collapse
|
14
|
Simpson MT, Venkatesh I, Callif BL, Thiel LK, Coley DM, Winsor KN, Wang Z, Kramer AA, Lerch JK, Blackmore MG. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Mol Cell Neurosci 2015; 68:272-83. [PMID: 26306672 DOI: 10.1016/j.mcn.2015.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023] Open
Abstract
Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension.
Collapse
Affiliation(s)
- Matthew T Simpson
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ishwariya Venkatesh
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Ben L Callif
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Laura K Thiel
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Denise M Coley
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Kristen N Winsor
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Zimei Wang
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Audra A Kramer
- Marquette University, Department of Biomedical Sciences, 53201, United States
| | - Jessica K Lerch
- The Ohio State University, The Center for Brain and Spinal Cord Repair, The Department of Neuroscience, 43210, United States
| | - Murray G Blackmore
- Marquette University, Department of Biomedical Sciences, 53201, United States.
| |
Collapse
|
15
|
Hung HA, Sun G, Keles S, Svaren J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem 2015; 290:6937-50. [PMID: 25614629 PMCID: PMC4358118 DOI: 10.1074/jbc.m114.622878] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.
Collapse
Affiliation(s)
- Holly A Hung
- From the Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Guannan Sun
- Departments of Biostatistics and Medical Informatics and
| | - Sunduz Keles
- Departments of Biostatistics and Medical Informatics and
| | - John Svaren
- From the Waisman Center, Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
16
|
Freidin M, Asche-Godin S, Abrams CK. Gene expression profiling studies in regenerating nerves in a mouse model for CMT1X: uninjured Cx32-knockout peripheral nerves display expression profile of injured wild type nerves. Exp Neurol 2015; 263:339-49. [PMID: 25447941 PMCID: PMC4262134 DOI: 10.1016/j.expneurol.2014.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 11/20/2022]
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the maintenance of intact myelinated peripheral nerves and to establish the necessary conditions for successful regeneration and remyelination following nerve injury.
Collapse
Affiliation(s)
- Mona Freidin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Samantha Asche-Godin
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Charles K Abrams
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
17
|
Gordon T, You S, Cassar SL, Tetzlaff W. Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons. Exp Neurol 2014; 264:26-32. [PMID: 25446720 DOI: 10.1016/j.expneurol.2014.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/24/2022]
Abstract
Chronically axotomized motoneurons progressively fail to regenerate their axons. Since axonal regeneration is associated with the increased expression of tubulin, actin and GAP-43, we examined whether the regenerative failure is due to failure of chronically axotomized motoneurons to express and sustain the expression of these regeneration associated genes (RAGs). Chronically axotomized facial motoneurons were subjected to a second axotomy to mimic the clinical surgical procedure of refreshing the proximal nerve stump prior to nerve repair. Expression of α1-tubulin, actin and GAP-43 was analyzed in axotomized motoneurons using in situ hybridization followed by autoradiography and silver grain quantification. The expression of these RAGs by acutely axotomized motoneurons declined over several months. The chronically injured motoneurons responded to a refreshment axotomy with a re-increase in RAG expression. However, this response to a refreshment axotomy of chronically injured facial motoneurons was less than that seen in acutely axotomized facial motoneurons. These data demonstrate that the neuronal RAG expression can be induced by injury-related signals and does not require acute deprivation of target derived factors. The transient expression is consistent with a transient inflammatory response to the injury. We conclude that transient RAG expression in chronically axotomized motoneurons and the weak response of the chronically axotomized motoneurons to a refreshment axotomy provides a plausible explanation for the progressive decline in regenerative capacity of chronically axotomized motoneurons.
Collapse
Affiliation(s)
- T Gordon
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada.
| | - S You
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada
| | - S L Cassar
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada
| | - W Tetzlaff
- Department of Neuroscience, University of Alberta, Edmonton, AB T6G 2S2, Canada; ICORD (International Collaboration on Repair Discoveries), Canada; Department Zoology, University of British Columbia, Vancouver, V5Z 1M9, BC, Canada; Department Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Cyclic AMP signaling: a molecular determinant of peripheral nerve regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651625. [PMID: 25177696 PMCID: PMC4142170 DOI: 10.1155/2014/651625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
Abstract
Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into motion a cascade of responses that includes inflammation, Schwann cell mobilization, and the degeneration of the nerve fibers distal to the injury site. Yet, the injured PNS differentiates itself from the injured central nervous system (CNS) in its remarkable capacity for self-recovery, which, depending upon the length and type of nerve injury, involves a series of molecular events in both the injured neuron and associated Schwann cells that leads to axon regeneration, remyelination repair, and functional restitution. Herein we discuss the essential function of the second messenger, cyclic adenosine monophosphate (cyclic AMP), in the PNS repair process, highlighting the important role the conditioning lesion paradigm has played in understanding the mechanism(s) by which cyclic AMP exerts its proregenerative action. Furthermore, we review the studies that have therapeutically targeted cyclic AMP to enhance endogenous nerve repair.
Collapse
|
19
|
Elzière L, Sar C, Ventéo S, Bourane S, Puech S, Sonrier C, Boukhadaoui H, Fichard A, Pattyn A, Valmier J, Carroll P, Méchaly I. CaMKK-CaMK1a, a new post-traumatic signalling pathway induced in mouse somatosensory neurons. PLoS One 2014; 9:e97736. [PMID: 24840036 PMCID: PMC4026325 DOI: 10.1371/journal.pone.0097736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons innervating peripheral tissues display complex responses to peripheral nerve injury. These include the activation and suppression of a variety of signalling pathways that together influence regenerative growth and result in more or less successful functional recovery. However, these responses can be offset by pathological consequences including neuropathic pain. Calcium signalling plays a major role in the different steps occurring after nerve damage. As part of our studies to unravel the roles of injury-induced molecular changes in dorsal root ganglia (DRG) neurons during their regeneration, we show that the calcium calmodulin kinase CaMK1a is markedly induced in mouse DRG neurons in several models of mechanical peripheral nerve injury, but not by inflammation. Intrathecal injection of NRTN or GDNF significantly prevents the post-traumatic induction of CaMK1a suggesting that interruption of target derived factors might be a starter signal in this de novo induction. Inhibition of CaMK signalling in injured DRG neurons by pharmacological means or treatment with CaMK1a siRNA resulted in decreased velocity of neurite growth in vitro. Altogether, the results suggest that CaMK1a induction is part of the intrinsic regenerative response of DRG neurons to peripheral nerve injury, and is thus a potential target for therapeutic intervention to improve peripheral nerve regeneration.
Collapse
Affiliation(s)
- Lucie Elzière
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Chamroeun Sar
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Sylvie Puech
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Corinne Sonrier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Hassan Boukhadaoui
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Jean Valmier
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
| | - Ilana Méchaly
- Institute for Neurosciences of Montpellier, I.N.S.E.R.M. U1051, Montpellier, France
- Department BioMV, University of Montpellier II, Montpellier, France
| |
Collapse
|
20
|
Hur J, Sullivan KA, Callaghan BC, Pop-Busui R, Feldman EL. Identification of factors associated with sural nerve regeneration and degeneration in diabetic neuropathy. Diabetes Care 2013; 36:4043-9. [PMID: 24101696 PMCID: PMC3836098 DOI: 10.2337/dc12-2530] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diabetic neuropathy (DN) demonstrate variable degrees of nerve regeneration and degeneration. Our aim was to identify risk factors associated with sural nerve degeneration in patients with DN. RESEARCH DESIGN AND METHODS Demographic, anthropometric, biochemical, and anatomical data of subjects with DN from a 52-week trial of acetyl-L-carnitine were retrospectively examined. Based on the change in sural nerve myelinated fiber density (ΔMFD%), subjects were divided into three groups: regenerator (top 16 percentiles, n = 67), degenerator (bottom 16 percentiles, n = 67), and intermediate (n = 290), with dramatically increased, decreased, and steady ΔMFD%, respectively. ANOVA, Fisher exact test, and multifactorial logistic regression were used to evaluate statistical significance. RESULTS ΔMFD%s were 35.6 ± 17.4 (regenerator), -4.8 ± 12.1 (intermediate), and -39.8 ± 11.0 (degenerator). HbA1c at baseline was the only factor significantly different across the three groups (P = 0.01). In multifactorial logistic regression, HbA1c at baseline was also the only risk factor significantly different between regenerator (8.3 ± 1.6%) and degenerator (9.2 ± 1.8%) (odds ratio 0.68 [95% CI 0.54-0.85]; P < 0.01). Support Vector Machine classifier using HbA1c demonstrated 62.4% accuracy of classifying subjects into regenerator or degenerator. A preliminary microarray experiment revealed that upregulated genes in the regenerator group are enriched with cell cycle and myelin sheath functions, while downregulated genes are enriched in immune/inflammatory responses. CONCLUSIONS These data, based on the largest cohort with ΔMFD% information, suggest that HbA1c levels predict myelinated nerve fiber regeneration and degeneration in patients with DN. Therefore, maintaining optimal blood glucose control is likely essential in patients with DN to prevent continued nerve injury.
Collapse
|
21
|
Saleh A, Chowdhury SKR, Smith DR, Balakrishnan S, Tessler L, Schartner E, Bilodeau A, Van Der Ploeg R, Fernyhough P. Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol Brain 2013; 6:45. [PMID: 24152426 PMCID: PMC4016027 DOI: 10.1186/1756-6606-6-45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background A luminex-based screen of cytokine expression in dorsal root ganglia (DRG) and nerve of type 1 diabetic rodents revealed interleukin-1 (IL-1α) and IL-1β to be significantly depressed. We, therefore, tested the hypothesis that impaired IL-1α and IL-1β expression in DRG may contribute to aberrant axon regeneration and plasticity seen in diabetic sensory neuropathy. In addition, we determined if these cytokines could optimize mitochondrial bioenergetics since mitochondrial dysfunction is a key etiological factor in diabetic neuropathy. Results Cytokines IL-1α and IL-1β were reduced 2-fold (p<0.05) in DRG and/or nerve of 2 and 5 month streptozotocin (STZ)-diabetic rats. IL-2 and IL-10 were unchanged. IL-1α and IL-1β induced similar 2 to 3-fold increases in neurite outgrowth in cultures derived from control or diabetic rats (p<0.05). STAT3 phosphorylation on Tyr705 or Ser727 was depressed in DRG from STZ-diabetic mice and treatment of cultures derived from STZ-diabetic rats with IL-1β for 30 min raised phosphorylation of STAT3 on Tyr705 and Ser727 by 1.5 to 2-fold (p<0.05). shRNA-based or AG490 inhibition of STAT3 activity or shRNA blockade of endogenous IL-1β expression completely blocked neurite outgrowth. Cultured neurons derived from STZ-diabetic mice were treated for 24 hr with IL-1β and maximal oxygen consumption rate and spare respiratory capacity, both key measures of bioenergetic fidelity that were depressed in diabetic compared with control neurons, were enhanced 2-fold. This effect was blocked by AG490. Conclusions Endogenous synthesis of IL-1β is diminished in nerve tissue in type 1 diabetes and we propose this defect triggers reduced STAT3 signaling and mitochondrial function leading to sup-optimal axonal regeneration and plasticity.
Collapse
Affiliation(s)
- Ali Saleh
- Division of Neurodegenerative Disorders, St, Boniface Hospital Research Centre, R4048 - 351 Tache Ave, Winnipeg, MB R2H 2A6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Patterns of target tissue reinnervation and trophic factor expression after nerve grafting. Plast Reconstr Surg 2013; 131:989-1000. [PMID: 23385987 DOI: 10.1097/prs.0b013e3182870445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reinnervation of target tissues determines functional outcomes after nerve grafting, which is important in traumatic injury caused by accidents or consequences resulting from surgical removal of tumors. Previous studies documented the influences of nerve repair mainly based on nerve morphometry but rarely compared the final outcomes according to target reinnervation patterns by nerve fibers of different categories. METHODS In a mouse model of nerve grafting, the authors analyzed the innervation indexes of different target tissues after transection-reimplantation on the sciatic nerve, which were defined as a parameter on the operated side normalized to that on the control side. RESULTS Muscle reinnervation appeared to be the best compared with skin reinnervation (p < 0.0001) and sweat gland reinnervation (p < 0.0001) at postoperative month 3. The sudomotor reinnervation was relatively higher than the cutaneous reinnervation (p = 0.014). The abundance of trophin transcripts for brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and neurotrophin 3 (NT3) was higher in plantar muscles on the operated side than those on the control side. In contrast, transcripts of BDNF, GDNF, nerve growth factor, and NT3 were all similar in the footpad skin between the operated and control sides. CONCLUSIONS The results suggested that, compared with the skin, muscles achieved the best reinnervation after nerve grafting, which was related to higher expression of BDNF, GDNF, and NT3 in muscles than in the skin.
Collapse
|