1
|
Klymiuk MC, Speer J, Marco ID, Elashry MI, Heimann M, Wenisch S, Arnhold S. Determination of the miRNA profile of extracellular vesicles from equine mesenchymal stem cells after different treatments. Stem Cell Res Ther 2025; 16:162. [PMID: 40188160 PMCID: PMC11972531 DOI: 10.1186/s13287-025-04287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common and incurable disease in humans and animals. To gain a better understanding of the pathogenesis and identify potential treatments, miRNAs will be extracted and analysed from extracellular vesicles (EVs) of equine adipose derived mesenchymal stem cells (AdMSCs). METHODS For this purpose we cultivated and pretreated AdMSCs under different conditions: interleukin 1β, shock wave, chondrogenic differentiation, chondrogenic differentiation under hypoxia, or after senescence. After treatment, EVs were harvested from the cell culture supernatants. Next-generation sequencing (NGS) was used to sequence the miRNAs from the EVs. RESULTS A total of 89 miRNAs whose expression was significantly altered compared with that of an untreated negative control were identified. On average, 53 miRNAs were upregulated and 6 miRNAs were downregulated. Among others, the miRNAs eca-miR-101, eca-miR-143, eca-miR-145, eca-miR-146a, eca-miR-27a, eca-miR-29b, eca-miR-93, eca-miR-98, and eca-miR-221 were significantly increased after the stimulations, which, as known anti-inflammatory miRNAs, could be candidates for therapeutic use in the treatment of OA. CONCLUSION These results lay the foundation for further research into the significance and efficacy of these miRNAs so that this knowledge can be improved in further experiments and, ideally, translated into therapeutic use.
Collapse
Affiliation(s)
- Michele C Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Julia Speer
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Manuela Heimann
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
2
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
3
|
Klymiuk MC, Balz N, Elashry MI, Wenisch S, Arnhold S. Effect of storage conditions on the quality of equine and canine mesenchymal stem cell derived nanoparticles including extracellular vesicles for research and therapy. DISCOVER NANO 2024; 19:80. [PMID: 38700790 PMCID: PMC11068712 DOI: 10.1186/s11671-024-04026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles including extracellular vesicles derived from mesenchymal stem cells are of increasing interest for research and clinical use in regenerative medicine. Extracellular vesicles (EVs), including also previously named exosomes, provide a promising cell-free tool for therapeutic applications, which is probably a safer approach to achieve sufficient healing. Storage of EVs may be necessary for clinical applications as well as for further experiments, as the preparation is sometimes laborious and larger quantities tend to be gained. For this purpose, nanoparticles were obtained from mesenchymal stem cells from adipose tissue (AdMSC) of horses and dogs. The EVs were then stored for 7 days under different conditions (- 20 °C, 4 °C, 37 °C) and with the addition of various additives (5 mM EDTA, 25-250 µM trehalose). Afterwards, the size and number of EVs was determined using the nano tracking analyzing method. With our investigations, we were able to show that storage of EVs for up to 7 days at 4 °C does not require the addition of supplements. For the other storage conditions, in particular freezing and storage at room temperature, the addition of EDTA was found to be suitable for preventing aggregation of the particles. Contrary to previous publications, trehalose seems not to be a suitable cryoprotectant for AdMSC-derived EVs. The data are useful for processing and storage of isolated EVs for further experiments or clinical approaches in veterinary medicine.
Collapse
Affiliation(s)
- Michele Christian Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany.
| | - Natalie Balz
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392, Giessen, Germany
| |
Collapse
|
4
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
5
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
6
|
Fitzgerald MJ, Mustapich T, Liang H, Larsen CG, Nellans KW, Grande DA. Tendon Transection Healing Can Be Improved With Adipose-Derived Stem Cells Cultured With Growth Differentiation Factor 5 and Platelet-Derived Growth Factor. Hand (N Y) 2023; 18:436-445. [PMID: 34340572 PMCID: PMC10152530 DOI: 10.1177/15589447211028929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND As hand surgeons, tendon injuries and lacerations are a particularly difficult problem to treat, as poor healing potential and adhesions hamper optimal recovery. Adipose-derived stem cells (ADSCs) have been shown to aid in rat Achilles tendon healing after a puncture defect, and this model can be used to study tendon healing in the upper extremity. We hypothesized that ADSCs cultured with growth differentiation factor 5 (GDF5) and platelet-derived growth factor (PDGF) would improve tendon healing after a transection injury. METHODS Rat Achilles tendons were transected and then left either unrepaired or repaired. Both groups were treated with a hydrogel alone, a hydrogel with ADSCs, or a hydrogel with ADSCs that were cultured with GDF5 and PDGF prior to implantation. Tissue harvested from the tendons was evaluated for gene expression of several genes known to play an important role in successful tendon healing. Histological examination of the tendon healing was also performed. RESULTS In both repaired and unrepaired tendons, those treated with ADSCs cultured with GDF5/PDGF prior to implantation showed the best tendon fiber organization, the smallest gaps, and the most organized blood vessels. Treatment with GDF5/PDGF increased expression of the protenogenesis gene SOX9, promoted cell-to-cell connections, improved cellular proliferation, and enhanced tissue remodeling. CONCLUSIONS Adipose-derived stem cells cultured with GDF5/PDGF prior to implantation can promote tendon repair by improving cellular proliferation, tenogenesis, and vascular infiltration. This effect results in a greater degree of organized tendon healing.
Collapse
Affiliation(s)
| | | | | | | | - Kate W. Nellans
- Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel A. Grande
- Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
7
|
Deng R, Kang R, Jin X, Wang Z, Liu X, Wang Q, Xie L. Mechanical stimulation promotes MSCs healing the lesion of intervertebral disc annulus fibrosus. Front Bioeng Biotechnol 2023; 11:1137199. [PMID: 36845186 PMCID: PMC9950411 DOI: 10.3389/fbioe.2023.1137199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and scaffolds offer promising perspectives for annulus fibrosus (AF) repair. The repair effect was linked to features of the local mechanical environment related to the differentiation of MSCs. In this study, we established a Fibrinogen-Thrombin-Genipin (Fib-T-G) gel which is sticky and could transfer strain force from AF tissue to the human mesenchymal stem cells (hMSCs) embedded in the gel. After the Fib-T-G biological gel was injected into the AF fissures, the histology scores of intervertebral disc (IVD) and AF tissue showed that Fib-T-G gel could better repair the AF fissure in caudal IVD of rats, and increase the expression of AF-related proteins including Collagen 1 (COL1), Collagen 2 (COL2) as well as mechanotransduction-related proteins including RhoA and ROCK1. To clarify the mechanism that sticky Fib-T-G gel induces the healing of AF fissures and the differentiation of hMSCs, we further investigated the differentiation of hMSCs under mechanical strain in vitro. It was demonstrated that both AF-specific genes, including Mohawk and SOX-9, and ECM markers (COL1, COL2, aggrecan) of hMSCs were up-regulated in the environment of strain force. Moreover, RhoA/ROCK1 proteins were also found to be significantly up-regulated. In addition, we further -demonstrated that the fibrochondroinductive effect of the mechanical microenvironment process could be significantly blocked or up-regulated by inhibiting the RhoA/ROCK1 pathway or overexpressing RhoA in MSCs, respectively. Summarily, this study will provide a therapeutic alternative to repair AF tears and provide evidence that RhoA/ROCK1 is vital for hMSCs response to mechanical strain and AF-like differentiation.
Collapse
Affiliation(s)
- Rongrong Deng
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Xiaoyu Jin
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Zihan Wang
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| | - Qing Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Ran Kang, ; Xin Liu, ; Lin Xie,
| |
Collapse
|
8
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
9
|
Influence of mechanical and TGF-β3 stimulation on the tenogenic differentiation of tonsil-derived mesenchymal stem cells. BMC Mol Cell Biol 2022; 23:3. [PMID: 35032998 PMCID: PMC8761285 DOI: 10.1186/s12860-021-00400-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Background Organogenesis from tonsil-derived mesenchymal cells (TMSCs) has been reported, wherein tenogenic markers are expressed depending on the chemical stimulation during tenogenesis. However, there are insufficient studies on the mechanical strain stimulation for tenogenic cell differentiation of TMSCs, although these cells possess advantages as a cell source for generating tendinous tissue. The purpose of this study was to investigate the effects of mechanical strain and transforming growth factor-beta 3 (TGF-β3) on the tenogenic differentiation of TMSCs and evaluate the expression of tendon-related genes and extracellular matrix (ECM) components, such as collagen. Results mRNA expression of tenogenic genes was significantly higher when the mechanical strain was applied than under static conditions. Moreover, mRNA expression of tenogenic genes was significantly higher with TGF-β3 treatment than without. mRNA expression of osteogenic and chondrogenic genes was not significantly different among different mechanical strain intensities. In cells without TGF-β3 treatment, double-stranded DNA concentration decreased, while the amount of normalized collagen increased as the intensity of mechanical strain increased. Conclusions Mechanical strain and TGF-β3 have significant effects on TMSC differentiation into tenocytes. Mechanical strain stimulates the differentiation of TMSCs, particularly into tenocytes, and cell differentiation, rather than proliferation. However, a combination of these two did not have a synergistic effect on differentiation. In other words, mechanical loading did not stimulate the differentiation of TMSCs with TGF-β3 supplementation. The effect of mechanical loading with TGF-β3 treatment on TMSC differentiation can be manipulated according to the differentiation stage of TMSCs. Moreover, TMSCs have the potential to be used for cell banking, and compared to other mesenchymal stem cells, they can be procured from patients via less invasive procedures.
Collapse
|
10
|
Sarıkaya B, Gümüşderelioğlu M. Aligned silk fibroin/poly-3-hydroxybutyrate nanofibrous scaffolds seeded with adipose-derived stem cells for tendon tissue engineering. Int J Biol Macromol 2021; 193:276-286. [PMID: 34687764 DOI: 10.1016/j.ijbiomac.2021.10.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
In this work we investigated tenogenic differentiation of adipose-derived mesenchymal stem cells (AdMSCs), which were seeded onto silk fibroin/poly-3-hydroxybutyrate (SF/P3HB) scaffolds with aligned topography, and high mechanical strength. The electrospinning process was optimized by using the response surface method (RSM) and SF/P3HB nanofibrous matrices with a total polymer concentration of 5% (SF: PHB = 3: 1), flow rate 1 mL/h, collector rotation speed 2000 rpm, applied voltage 14 kV, and collector distance 25 cm were obtained. The average fiber diameter was 699 ± 203 nm and 80% of the nanofibers were aligned within the ±15o range. SF reinforcement reduced the crystallinity of P3HB, and the elastic modulus was found to be 197.0 ± 7.7 MPa. The scaffolds showed bacteriostatic effect. A 21-day of cell culture study was performed with rat rAdMSCs in the absence and presence of tenogenic differentiation factor-5 (GDF-5). The results demonstrated that SF/P3HB scaffolds allow the cells to proliferate and differentiate to the tenocytes. However, no significant effect of GDF-5 on the differentiation of cells was observed. These findings indicated that our aligned SF/P3HB scaffolds have a significant potential to be used for tendon tissue engineering.
Collapse
Affiliation(s)
- Burcu Sarıkaya
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Division, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Graduate School of Science and Engineering, Bioengineering Division, Ankara, Turkey.
| |
Collapse
|
11
|
Tenogenic Potential of Equine Fetal Mesenchymal Stem Cells Under The In Vitro Effect of Bone Morphogenetic Protein-12 (BMP-12). J Equine Vet Sci 2021; 104:103681. [PMID: 34416999 DOI: 10.1016/j.jevs.2021.103681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Equine adult bone marrow-derived MSCs (BM-MSCs) may be induced into the tenogenic lineage after exposure with bone morphogenetic protein-12 (BMP-12). Despite fetal BM-MSCs have showed a greater differentiation potential compared to adults, the tenogenic differentiation capacity of equine fetal BM-MSC have not been reported. Thus, the aim of the present study was to evaluate the in vitro tenogenic differentiation potential of equine fetal BM-MSCs under the effect of BMP-12. Equine fetal BM-MSCs were exposed to three concentrations of BMP-12 (25, 50 and 100 ng/mL) during a 21-day culture period. Levels of mRNA of tenogenic markers decorin (DCN), tenomodulin (TNMD), scleraxis (SCX), collagen 1α1 (COL1α1) and protein expression of Col1α1 were evaluated. Plastic adherent cells exhibited specific MSC profile including expression of CD73 and lack of expression of CD34. Gene expression levels of DCN, TNMD, SCX and COL1α1 were increased in equine fetal BM-MSC exposed to three different concentrations of BMP-12 during a 21-day culture period. Equine fetal BM-MSCs displayed specific expression profiles suggesting features of MSCs and multipotent capacity. Furthermore, up-regulation of tenogenic markers DCN, TNMD, COL1α1 and SCX after exposure to different concentrations of BMP-12 suggests that equine fetal BM-MSCs have potential to activate selected genes that control tenogenic differentiation.
Collapse
|
12
|
Differentiation of human adipose-derived mesenchymal stem cells toward tenocyte by platelet-derived growth factor-BB and growth differentiation factor-6. Cell Tissue Bank 2021; 23:237-246. [PMID: 34013429 DOI: 10.1007/s10561-021-09935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Mesenchymal Stem Cells (MSCs) are important in regenerative medicine and tissue engineering and will be a very sensible choice for repair and regeneration of tendon. New biological practices, such as cellular therapy using stem cells, are promising for facilitating or expediting tendon therapy. Before using these cells clinically, it is best to check and confirm the optimal conditions for differentiation of these cells in the laboratory. Hence, in the present study, the impacts of PDGF-BB and GDF-6 supplementation on adipose-derived MSCs (ASCs) culture were studied. The frozen ASC were recovered and expanded in basic culture medium (DMEM with 10%FBS). The cells after passage five (P5) were treated with basic medium containing L-Prolin, Ascorbic Acid and only PDGF-BB or GDF-6 (20 ng/ml) or both of them (mix) as 3 groups for 14 days to investigate efficiency of ASCs differentiation towards tenocytes. The cells culturing in basic medium were used as control group. To validate tenogenic differentiation, H&E and Sirius Red staining were used to assess cell morphology and collagen production, respectively. In addition, mRNA levels of collagen I and III, Scleraxis and Tenomodulin as tenogenic markers were analyzed using qPCR. In all test groups, cells appeared slenderer, elongated cytoplasmic attributes compared to the control cells. The intensity of Sirius Red staining was significantly higher in GDF-6, PDGF-BB alone, than in group without supplements. The optical density was higher in the GDF-6 than PDGF-BB and mix-group. QPCR results showed that Col I and III gene expression was increased in all groups compared to the control. SCX expression was significantly increased only in the PDGF-BB group. TNMD mRNA expression was not significant among groups. In this study, we have corroborated that human ASCs are reactionary to tenogenic induction by GDF-6 and PDGF-BB alone or in combination. These outcomes will help greater insight into GDF-6 and PDGF-BB driven tenogenesis of ASCs and new directions of discovery in the design of ASC-based treatments for tendon healing.
Collapse
|
13
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
14
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
15
|
3D Bioprinting of Human Adipose-Derived Stem Cells and Their Tenogenic Differentiation in Clinical-Grade Medium. Int J Mol Sci 2020; 21:ijms21228694. [PMID: 33218011 PMCID: PMC7698777 DOI: 10.3390/ijms21228694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the best combination of cells and biomaterials is a key challenge for the development of tendon tissue engineering (TE) strategies. Adipose-derived stem cells (ASCs) are ideal candidates for this purpose. In addition, controlled cell-based products adherent to good manufacturing practice (GMP) are required for their clinical scale-up. With this aim, in this study, ASC 3D bioprinting and GMP-compliant tenogenic differentiation were investigated. In detail, primary human ASCs were embedded within a nanofibrillar-cellulose/alginate bioink and 3D-bioprinted into multi-layered square-grid matrices. Bioink viscoelastic properties and scaffold ultrastructural morphology were analyzed by rheology and scanning electron microscopy (SEM). The optimal cell concentration for printing among 3, 6 and 9 × 106 ASC/mL was evaluated in terms of cell viability. ASC morphology was characterized by SEM and F-actin immunostaining. Tenogenic differentiation ability was then evaluated in terms of cell viability, morphology and expression of scleraxis and collagen type III by biochemical induction using BMP-12, TGF-β3, CTGF and ascorbic acid supplementation (TENO). Pro-inflammatory cytokine release was also assessed. Bioprinted ASCs showed high viability and survival and exhibited a tenocyte-like phenotype after biochemical induction, with no inflammatory response to the bioink. In conclusion, we report a first proof of concept for the clinical scale-up of ASC 3D bioprinting for tendon TE.
Collapse
|
16
|
Sheng R, Jiang Y, Backman LJ, Zhang W, Chen J. The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells Int 2020; 2020:8824783. [PMID: 33029149 PMCID: PMC7532391 DOI: 10.1155/2020/8824783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
17
|
Javanshir S, Younesi Soltani F, Dowlati G, Parham A, Naderi-Meshkin H. Induction of tenogenic differentiation of equine adipose-derived mesenchymal stem cells by platelet-derived growth factor-BB and growth differentiation factor-6. Mol Biol Rep 2020; 47:6855-6862. [PMID: 32875433 DOI: 10.1007/s11033-020-05742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Managing tendon healing process is complicated mainly due to the limited regeneration capacity of tendon tissue. Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and have been considered for tendon repair and regeneration. This study aimed to evaluate the capacity of equine adipose tissue-derived cells (eASCs) to differentiate into tenocytes in response to platelet-derived growth factor-BB (PDGF-BB) and growth differentiation factor-6 (GDF-6) in vitro. Frozen characterized eASCS of 3 mares were thawed and the cells were expanded in basic culture medium (DMEM supplemented with 10% FBS). The cells at passage 5 were treated for 14 days in different conditions including: (1) control group in basic culture medium (CM), (2) induction medium as IM (CM containing L-prolin, and ascorbic acid (AA)) supplemented with PDGF-BB (20 ng/ml), (3) IM supplemented with GDF-6 (20 ng/ml), and (4) IM supplemented with PDGF-BB and GDF-6. At the end of culture period (14th day), tenogenic differentiation was evaluated. Sirius Red staining was used to assess collagen production, and H&E was used for assessing cell morphology. mRNA levels of collagen type 1 (colI), scleraxis (SCX), and Mohawk (MKX), as tenogenic markers, were analyzed using real-time reverse-transcription polymerase chain reaction (qPCR). H&E staining showed a stretching and spindle shape (tenocyte-like) cells in all treated groups compared to unchanged from of cells in control groups. Also, Sirius red staining data showed a significant increase in collagen production in all treated groups compared with the control group. MKX expression was significantly increased in PDGF-BB and mixed groups and COLI expression was significantly increased only in PDGF-BB group. In conclusion, our results showed that PDGF-BB and GDF-6 combination could induce tenogenic differentiation in eASCs. These in vitro findings could be useful for cell therapy in equine regenerative medicine.
Collapse
Affiliation(s)
- Shabnam Javanshir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Younesi Soltani
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Dowlati
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
18
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther 2019; 10:181. [PMID: 31215490 PMCID: PMC6582602 DOI: 10.1186/s13287-019-1291-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries, as one of the most common orthopedic disorders, are the major cause of early retirement or wastage among sport horses which mainly affect the superficial digital flexor tendon (SDFT). Tendon repair is a slow process, and tendon tissue is often replaced by scar tissue. The current treatment options are often followed by an incomplete recovery that increases the susceptibility to re-injury. Recently, cell therapy has been used in veterinary medicine to treat tendon injuries, although the risk of ectopic bone formation after cell injection is possible in some cases. In vitro tenogenic induction may overcome the mentioned risk in clinical application. Moreover, a better understanding of treatment strategies for musculoskeletal injuries in horse may have future applications for human and vice versa. This comprehensive review outlines the current strategies of stem cell therapy in equine tendon injury and in vitro tenogenic induction of equine stem cell.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
20
|
Vascular Endothelial Growth Factor Enhances Proliferation of Human Tenocytes and Promotes Tenogenic Gene Expression. Plast Reconstr Surg 2019; 142:1240-1247. [PMID: 30113440 DOI: 10.1097/prs.0000000000004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND In obtaining human tenocytes for tendon tissue engineering, a low proliferation rate and phenotype loss during passaging is a problem. It was the authors' aim to evaluate the influence of vascular endothelial growth factor (VEGF) on human tenocyte growth and gene expression. METHODS Human tenocytes were exposed to human VEGF in various concentrations (5, 10, and 20 ng/ml) for 5 days. Cell proliferation was counted and expression of tendon-related genes was analyzed. RESULTS Tenocyte count was 1.4 × 10(5)/ml, 2.7 × 10(5)/ml, 2.3 × 10(5)/ml, and 3.7 × 10(5)/ml for 0, 5, 10, and 20 ng/ml VEGF, respectively. Expression of Col1 was up-regulated 6.4 ± 4.2-fold, 60.1 ± 21.6-fold, and 15.8 ± 10.2-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant with p < 0.05. Col3 was down-regulated to 0.2 ± 0.1-fold, 0.3 ± 0.1-fold, and 0.1 ± 0.03-fold for 5, 10, and 20 ng/ml VEGF; all differences were significant. Eln was up-regulated 2.3 ± 1.7-fold, 25.5 ± 10.9-fold, and 16.6 ± 9.0-fold for 5, 10, and 20 ng/ml VEGF; differences were significant for 10 and 20 ng/ml VEGF. TSC was down-regulated to 0.3 ± 0.1-fold and 0.3 ± 0.1-fold for 5 and 20 ng/ml VEGF; differences were significant for 5 and 20 ng/ml. SCX was up-regulated to 31.3 ± 8.5-fold, 49.1 ± 23.4-fold, and 20.9 ± 9.5-fold for 5, 10, and 20 ng/ml VEGF; all changes were significant. CONCLUSIONS VEGF enhances proliferation and expression of tendon-related genes in human tenocytes. It could therefore be a useful addition for tenocyte cultivation.
Collapse
|
21
|
Klymiuk MC, Balz N, Elashry MI, Heimann M, Wenisch S, Arnhold S. Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res 2019; 15:42. [PMID: 30691449 PMCID: PMC6348641 DOI: 10.1186/s12917-019-1789-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells are used for different therapeutic approaches, e.g. for osteoarthritis, lesions of the tendon as well as for bone defects. Current research on the mechanism of stem cells on the repair of damaged tissue suggest an important role of a cell-to-cell communication through secreted extracellular vesicles, mainly represented by exosomes. To enhance the scarce knowledge on the functional role of exosomes we compared as a first step different techniques to isolate and identify exosomes from the supernatant of equine adipose derived mesenchymal stem cells for further characterization and usage in functional assays. RESULTS It was possible to obtain exosomes secreted from equine adipose derived mesenchymal stem cells with three common techniques: a stepwise ultracentrifugation at 100.000 g, an ultrafiltration with 3 kDa exclusion membranes and a charge-based precipitation method. The mean sizes and amounts of exosomes isolated with the different techniques were measured by the nanoparticle tracking analysis. The diameter ranged between 116.2 nm (ultracentrifugation), 453.1 nm (precipitation) and 178.7 nm (ultrafiltration), the counts of particles / ml ranged between 9.6 × 108 (ultracentrifugation), 2.02 × 109 (precipitation) and 52.5 × 109 (ultrafiltration). Relevant marker for exosomes, tetraspanins CD9, CD63 and CD81 were detectable by immunofluorescence staining of the investigated exosomes secreting mesenchymal stem cells. In addition, transmission electron microscopy and immunogold labeling with CD9 and CD90 was performed to display the morphological shape of exosomes and existence of marker relevant for exosomes (CD9) and mesenchymal stem cells (CD90). Western blot analysis of CD9 and CD90 of exosomes ensured the specificity of the rare available respectively cross reacting antibodies against equine antigens. CONCLUSION Exosomes generated by equine mesenchymal stem cells can be obtained by ultrafiltration and ultracentrifugation in an equal quality for in vitro experiments. Especially for later therapeutic usage we recommend ultrafiltration due to a higher concentration without aggregation of extracellular vesicles in comparison to exosomes obtained by ultracentrifugation.
Collapse
Affiliation(s)
- Michele Christian Klymiuk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany.
| | - Natalie Balz
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany
| | - Mohamed I Elashry
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany.,Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Manuela Heimann
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Frankfurter Strasse 98, Giessen, 35392, Germany
| |
Collapse
|
22
|
Frauz K, Teodoro LFR, Carneiro GD, Cristina da Veiga F, Lopes Ferrucci D, Luis Bombeiro A, Waleska Simões P, Elvira Álvares L, Leite R de Oliveira A, Pontes Vicente C, Seabra Ferreira R, Barraviera B, do Amaral MEC, Augusto M Esquisatto M, de Campos Vidal B, Rosa Pimentel E, Aparecida de Aro A. Transected Tendon Treated with a New Fibrin Sealant Alone or Associated with Adipose-Derived Stem Cells. Cells 2019; 8:cells8010056. [PMID: 30654437 PMCID: PMC6357188 DOI: 10.3390/cells8010056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering and cell-based therapy combine techniques that create biocompatible materials for cell survival, which can improve tendon repair. This study seeks to use a new fibrin sealant (FS) derived from the venom of Crotalus durissus terrificus, a biodegradable three-dimensional scaffolding produced from animal components only, associated with adipose-derived stem cells (ASC) for application in tendons injuries, considered a common and serious orthopedic problem. Lewis rats had tendons distributed in five groups: normal (N), transected (T), transected and FS (FS) or ASC (ASC) or with FS and ASC (FS + ASC). The in vivo imaging showed higher quantification of transplanted PKH26-labeled ASC in tendons of FS + ASC compared to ASC on the 14th day after transection. A small number of Iba1 labeled macrophages carrying PKH26 signal, probably due to phagocytosis of dead ASC, were observed in tendons of transected groups. ASC up-regulated the Tenomodulin gene expression in the transection region when compared to N, T and FS groups and the expression of TIMP-2 and Scleraxis genes in relation to the N group. FS group presented a greater organization of collagen fibers, followed by FS + ASC and ASC in comparison to N. Tendons from ASC group presented higher hydroxyproline concentration in relation to N and the transected tendons of T, FS and FS + ASC had a higher amount of collagen I and tenomodulin in comparison to N group. Although no marked differences were observed in the other biomechanical parameters, T group had higher value of maximum load compared to the groups ASC and FS + ASC. In conclusion, the FS kept constant the number of transplanted ASC in the transected region until the 14th day after injury. Our data suggest this FS to be a good scaffold for treatment during tendon repair because it was the most effective one regarding tendon organization recovering, followed by the FS treatment associated with ASC and finally by the transplanted ASC on the 21st day. Further investigations in long-term time points of the tendon repair are needed to analyze if the higher tissue organization found with the FS scaffold will improve the biomechanics of the tendons.
Collapse
Affiliation(s)
- Katleen Frauz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Luis Felipe R Teodoro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Giane Daniela Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Fernanda Cristina da Veiga
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Danilo Lopes Ferrucci
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - André Luis Bombeiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Priscyla Waleska Simões
- Engineering, Modeling and Applied Social Sciences Center (CECS), Biomedical Engineering Graduate Program (PPGEBM), Universidade Federal do ABC (UFABC), Alameda da Universidade s/n, 09606-045 São Bernardo do Campo, SP, Brazil.
| | - Lúcia Elvira Álvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Alexandre Leite R de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP ⁻ Universidade Estadual Paulista), Botucatu, SP, St. José Barbosa de Barros, 1780, Fazenda Experimental Lageado, 18610-307 Botucatu, SP, Brazil.
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP ⁻ Universidade Estadual Paulista), Botucatu, SP, St. José Barbosa de Barros, 1780, Fazenda Experimental Lageado, 18610-307 Botucatu, SP, Brazil.
| | - Maria Esméria C do Amaral
- Biomedical Sciences Graduate Program, Herminio Ometto University Center-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, 13607-339 Araras, SP, Brazil.
| | - Marcelo Augusto M Esquisatto
- Biomedical Sciences Graduate Program, Herminio Ometto University Center-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, 13607-339 Araras, SP, Brazil.
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Edson Rosa Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
| | - Andrea Aparecida de Aro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas⁻UNICAMP, Charles Darwin, s/n, CP 6109, 13083-970 Campinas, SP, Brazil.
- Biomedical Sciences Graduate Program, Herminio Ometto University Center-UNIARARAS, Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, 13607-339 Araras, SP, Brazil.
| |
Collapse
|
23
|
Arnhold S, Elashry MI, Klymiuk MC, Wenisch S. Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int J Biol Macromol 2018; 123:889-899. [PMID: 30452985 DOI: 10.1016/j.ijbiomac.2018.11.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Stefan Arnhold
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Mohamed I Elashry
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura 35516, Egypt.
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392 Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen 35392, Giessen, Germany
| |
Collapse
|
24
|
Norelli JB, Plaza DP, Stal DN, Varghese AM, Liang H, Grande DA. Tenogenically differentiated adipose-derived stem cells are effective in Achilles tendon repair in vivo. J Tissue Eng 2018; 9:2041731418811183. [PMID: 30542597 PMCID: PMC6236638 DOI: 10.1177/2041731418811183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to characterize rat adipose-derived stem cells,
induce adipose-derived stem cell tenogenesis, and analyze adipose-derived stem
cell effects on tendon repair in vivo. Adipose-derived stem cells demonstrated
an immunomodulatory, pro-angiogenic, and pro-proliferatory profile in vitro.
Tenogenesis was induced for 1, 7, 14, and 21 days with 24 combinations of growth
differentiation factor-5, 6, and 7 and platelet-derived growth factor–BB.
Adipose-derived stem cells expression of scleraxis and collagen type I increased
the most after 14 days of induction with growth differentiation factor-6 and
platelet-derived growth factor–BB. Achilles excision defects injected with
hydrogel alone (Gp2), with undifferentiated (Gp3) adipose-derived stem cells, or
tenogenically differentiated (Gp4) adipose-derived stem cells exhibited improved
tissue repair compared with untreated tendons (Gp1). Addition of adipose-derived
stem cells improved tissue cytoarchitecture and increased expression of collagen
type I and III, scleraxis, and tenomodulin. Adipose-derived stem cells
significantly improved biomechanical properties (ultimate load and elastic
toughness) over time more than hydrogel alone, while tenogenically
differentiated adipose-derived stem cells improved the mean histological score
and collagen fiber dispersion range closest to normal tendon. In addition,
tendon sections treated with GFP-adipose-derived stem cells exhibited green
fluorescence and positive GFP immunostaining on microscopy confirming the in
vivo survival of adipose-derived stem cells that were injected into tendon
defects to support the effects of adipose-derived stem cells on tissue up to
4.5 weeks post injury.
Collapse
Affiliation(s)
- Jolanta B Norelli
- Donald and Barbara Zucker School of
Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
- Jolanta B Norelli, Orthopaedic Research
Laboratory, The Feinstein Institute for Medical Research, 350 Community Drive,
Manhasset, NY 11030, USA.
| | - Dawid P Plaza
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
- Drexel University College of Medicine,
Philadelphia, PA, USA
| | - Drew N Stal
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Orthopedic Surgery,
Northwell Health, Manhasset, NY, USA
| | - Anish M Varghese
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Haixiang Liang
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Orthopedic Surgery,
Northwell Health, Manhasset, NY, USA
| | - Daniel A Grande
- Donald and Barbara Zucker School of
Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Orthopaedic Research Laboratory, The
Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Orthopedic Surgery,
Northwell Health, Manhasset, NY, USA
| |
Collapse
|
25
|
Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:443-453. [PMID: 29724151 DOI: 10.1089/ten.teb.2018.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tendon injuries are common musculoskeletal system disorders, but the tendons have poor regeneration ability. To address this issue, tendon tissue engineering provides potential strategies for future therapeutic treatment. Elements of the physical microenvironment, such as the mechanical force and surface topography, play a vital role in regulating stem cell fate, enhancing the differentiation efficiency of seed cells in tendon tissue engineering. Various inducible scaffolds have been widely explored for tendon regeneration, and scaffold-enhancing modifications have been extensively studied. In this review, we systematically summarize the effects of the physical microenvironment on stem cell differentiation and tendon regeneration; we also provide an overview of the inducible scaffolds for stem cell tenogenic differentiation. Finally, we suggest some potential scaffold-based therapies for tendon injuries, presenting an interesting perspective on tendon regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhang
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Meng-Fei Liu
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Ri-Chun Liu
- 4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China
| | - Wei-Liang Shen
- 2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China .,7 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Zi Yin
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| | - Xiao Chen
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| |
Collapse
|
26
|
Zhou K, Feng B, Wang W, Jiang Y, Zhang W, Zhou G, Jiang T, Cao Y, Liu W. Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro. Int J Nanomedicine 2018; 13:3867-3881. [PMID: 30013341 PMCID: PMC6038871 DOI: 10.2147/ijn.s161423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Topography at different scales plays an important role in directing mesenchymal stem cell differentiation including adipose-derived stem cells (ASCs) and the differential effect remains to be investigated. Purpose This study aimed to investigate the similarity and difference between micro- and nanoscaled aligned topography for inducing tenogenic differentiation of human ASCs (hASCs). Methods Parallel microgrooved PDMS membrane and a parallel aligned electrospun nanofibers of gelatin/poly-ε-caprolactone mixture were employed as the models for the study. Results Aligned topographies of both microscales and nanoscales could induce an elongated cell shape with parallel alignment, as supported by quantitative cell morphology analysis (cell area, cell body aspect, and cell body major axis angle). qPCR analysis also demonstrated that the aligned topography at both scales could induce the gene expressions of various tenogenic markers at the 7th day of in vitro culture including tenomodulin, collagen I and collagen VI, decorin, tenascin-C and biglycan, but with upregulated expression of scleraxis and tenascin-C only in microscaled topography. Additionally, tenogenic differentiation at the 3rd day was confirmed only at microscale. Furthermore, microscaled topography was confirmed for its tenogenic induction at tissue level as neotendon tissue was formed with the evidence of mature type I collagen fibers only in parallel aligned polyglycolic acid (PGA) microfibers after in vitro culture with mouse ASCs. Instead, only fat tissue was formed in random patterned PGA microfibers. Conclusion Both microscaled and nanoscaled aligned topographies could induce tenogenic differentiation of hASCs and micro-scaled topography seemed better able to induce elongated cell shape and stable tenogenic marker expression when compared to nanoscaled topography. The microscaled inductive effect was also confirmed at tissue level by neotendon formation in vitro.
Collapse
Affiliation(s)
- Kaili Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Bei Feng
- Shanghai Children's Medical Center, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Ting Jiang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| |
Collapse
|
27
|
Engebretson B, Mussett ZR, Sikavitsas VI. The effects of varying frequency and duration of mechanical stimulation on a tissue-engineered tendon construct. Connect Tissue Res 2018; 59:167-177. [PMID: 28459287 DOI: 10.1080/03008207.2017.1324431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Decellularized, discarded human tissues, such as the human umbilical vein, have been widely utilized for tissue engineering applications, including tendon grafts. When recellularized, such natural scaffolds are cultured in 3D dynamic culture environments (bioreactor systems). For tendon tissue-engineered grafts, such systems often employ oscillatory mechanical stimulation in the form uniaxial tensile strain. The three main parameters of such stimulation are frequency, duration, and force. In this study we investigated the effects of changing the duration (0.5, 1, and 2 h/day) and frequency (0.5, 1, 2 cycles/min) of stimulation of a human umbilical vein seeded with mesenchymal stem cells cultured for up to 7 days. Strain of the construct was held constant at 2%. The highest proliferation rates were observed in the 0.5 h/day duration and 1 cycle/min frequency (203% increase) with a close second being 1 h/day and 1 cycle/min frequency (170% increase). Static cultures along with a 2 cycles/min frequency and a 2 h/day duration of stretching did not increase cellular proliferation significantly. Extracellular matrix quality and alignment of the construct fibers had a direct relation to cellularity and those groups with the highest cellularity improved the most. Gene expression indicated cellular activity consistent with tendon-like tissue remodeling. In addition, scleraxis, tenascin-C, and tenomodulin were upregulated in certain groups after 7 days, with osteoblast, chondrocyte, and adipocyte phenotypes depressed. The stimulation parameters investigated in this study indicated that slower frequencies and shorter durations were best for construct quality in early stage cultures.
Collapse
Affiliation(s)
- Brandon Engebretson
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA
| | - Zachary R Mussett
- b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| | - Vassilios I Sikavitsas
- a School of Chemical , Biological and Materials Engineering, University of Oklahoma , Norman , OK , USA.,b Stephenson School of Biomedical Engineering , University of Oklahoma , Norman , OK , USA
| |
Collapse
|
28
|
Pöschke A, Krähling B, Failing K, Staszyk C. Molecular Characteristics of the Equine Periodontal Ligament. Front Vet Sci 2018; 4:235. [PMID: 29376061 PMCID: PMC5768624 DOI: 10.3389/fvets.2017.00235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/14/2017] [Indexed: 02/04/2023] Open
Abstract
The equine periodontal ligament (PDL) is a fibrous connective tissue that covers the intra-alveolar parts of the tooth and anchors it to the alveolar bone-it, therefore, provides a similar function to a tendinous structure. While several studies have considered the formation and structure of tendons, there is insufficient information particularly on the molecular composition of the PDL. Especially for the equine PDL, there is limited knowledge concerning the expression of genes commonly regarded as typical for tendon tissue. In this study, the gene expression of, e.g., collagen type 1 alpha 1 (COL1), collagen type 3 alpha 1 (COL3), scleraxis (SCX), and fibrocartilage markers was examined in the functional mature equine PDL compared with immature and mature equine tendon tissue. PDL samples were obtained from incisor, premolar, and molar teeth from seven adult horses. Additionally, tendon samples were collected from four adult horses and five foals at different sampling locations. Analyses of gene expression were performed using real-time quantitative polymerase chain reaction (qRT-PCR). Significantly higher expression levels of COL1 and 3 were found in the mature equine PDL in comparison with mature tendon, indicating higher rates of collagen production and turnover in the mature equine PDL. The expression levels of SCX, a specific marker for tenogenic-differentiated cells, were on a similar level in functional mature PDL and in mature tendon tissue. Evidence of chondrogenic metaplasia, often found in tendon entheses or in pressurized regions of tendons, was not found in the mature equine PDL. The obtained results justify further experiments focused on the possible use of equine PDL cells for cell-based regenerative therapies.
Collapse
Affiliation(s)
- Antje Pöschke
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Bastian Krähling
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Failing
- Department of Biomathematics, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Staszyk
- Institute of Veterinary-Anatomy, -Histology and -Embryology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Bogdanowicz DR, Lu HH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci 2018; 1410:3-25. [PMID: 29265419 DOI: 10.1111/nyas.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.
Collapse
Affiliation(s)
- Danielle R Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
30
|
Gonçalves AI, Gershovich PM, Rodrigues MT, Reis RL, Gomes ME. Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. J Tissue Eng Regen Med 2017; 12:762-774. [PMID: 28593712 DOI: 10.1002/term.2495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/14/2017] [Accepted: 06/03/2017] [Indexed: 01/05/2023]
Abstract
Cell-based therapies are of particular interest for tendon and ligament regeneration given the low regenerative potential of these tissues. Adipose tissue is an abundant source of stem cells, which may be employed for the healing of tendon lesions. However, human adult multipotent adipose-derived stem cells (hASCs) isolated from the stromal vascular fraction of adipose tissue originate highly heterogeneous cell populations that hinder their use in specific tissue-oriented applications. In this study, distinct subpopulations of hASCs were immunomagnetic separated and their tenogenic differentiation capacity evaluated in the presence of several growth factors (GFs), namely endothelial GF, basic-fibroblast GF, transforming GF-β1 and platelet-derived GF-BB, which are well-known regulators of tendon development, growth and healing. Among the screened hASCs subpopulations, tenomodulin-positive cells were shown to be more promising for tenogenic applications and therefore this subpopulation was further studied, assessing tendon-related markers (scleraxis, tenomodulin, tenascin C and decorin) both at gene and protein level. Additionally, the ability for depositing collagen type I and III forming extracellular matrix structures were weekly assessed up to 28 days. The results obtained indicated that tenomodulin-positive cells exhibit phenotypical features of tendon progenitor cells and can be biochemically induced towards tenogenic lineage, demonstrating that this subset of hASCs can provide a reliable source of progenitor cells for therapies targeting tendon regeneration.
Collapse
Affiliation(s)
- A I Gonçalves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P M Gershovich
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M T Rodrigues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - M E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| |
Collapse
|
31
|
Dale TP, Mazher S, Webb WR, Zhou J, Maffulli N, Chen GQ, El Haj AJ, Forsyth NR. Tenogenic Differentiation of Human Embryonic Stem Cells. Tissue Eng Part A 2017; 24:361-368. [PMID: 28548630 DOI: 10.1089/ten.tea.2017.0017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tendon healing is complex to manage because of the limited regeneration capacity of tendon tissue; stem cell-based tissue engineering approaches may provide alternative healing strategies. We sought to determine whether human embryonic stem cells (hESC) could be induced to differentiate into tendon-like cells by the addition of exogenous bone morphogenetic protein (BMP)12 (growth differentiation factor[GDF]7) and BMP13 (GDF6). hESC (SHEF-1) were maintained with or without BMP12/13 supplementation, or supplemented with BMP12/13 and the Smad signaling cascade blocking agent, dorsomorphin. Primary rat tenocytes were included as a positive control in immunocytochemistry analysis. A tenocyte-like elongated morphology was observed in hESC after 40-days continuous supplementation with BMP12/13 and ascorbic acid (AA). These cells displayed a tenomodulin expression pattern and morphology consistent with that of the primary tenocyte control. Analysis of tendon-linked gene transcription in BMP12/13 supplemented hESC demonstrated consistent expression of COL1A2, COL3A1, DCN, TNC, THBS4, and TNMD levels. Conversely, when hESCs were cultured in the presence of BMP12/13 and dorsomorphin COL3A1, DCN, and TNC gene expression and tendon matrix formation were inhibited. Taken together, we have demonstrated that hESCs are responsive to tenogenic induction via BMP12/13 in the presence of AA. The directed in vitro generation of tenocytes from pluripotent stem cells may facilitate the development of novel repair approaches for this difficult to heal tissue.
Collapse
Affiliation(s)
- Tina P Dale
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Shazia Mazher
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - William R Webb
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Jing Zhou
- 2 School of Life Science, Tsinghua University , Beijing, China
| | - Nicola Maffulli
- 3 Centre for Sport and Exercise Medicine, Queen Mary University of London , United Kingdom
| | - Guo-Qiang Chen
- 2 School of Life Science, Tsinghua University , Beijing, China
| | - Alicia J El Haj
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Nicholas R Forsyth
- 1 Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Faculty of Medicine and Health Sciences, Keele University , Thornburrow Drive, Stoke-on-Trent, Staffordshire, United Kingdom
| |
Collapse
|
32
|
Geburek F, Roggel F, van Schie HTM, Beineke A, Estrada R, Weber K, Hellige M, Rohn K, Jagodzinski M, Welke B, Hurschler C, Conrad S, Skutella T, van de Lest C, van Weeren R, Stadler PM. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: a controlled experimental trial. Stem Cell Res Ther 2017; 8:129. [PMID: 28583184 PMCID: PMC5460527 DOI: 10.1186/s13287-017-0564-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background Adipose tissue is a promising source of mesenchymal stromal cells (MSCs) for the treatment of tendon disease. The goal of this study was to assess the effect of a single intralesional implantation of adipose tissue-derived mesenchymal stromal cells (AT-MSCs) on artificial lesions in equine superficial digital flexor tendons (SDFTs). Methods During this randomized, controlled, blinded experimental study, either autologous cultured AT-MSCs suspended in autologous inactivated serum (AT-MSC-serum) or autologous inactivated serum (serum) were injected intralesionally 2 weeks after surgical creation of centrally located SDFT lesions in both forelimbs of nine horses. Healing was assessed clinically and with ultrasound (standard B-mode and ultrasound tissue characterization) at regular intervals over 24 weeks. After euthanasia of the horses the SDFTs were examined histologically, biochemically and by means of biomechanical testing. Results AT-MSC implantation did not substantially influence clinical and ultrasonographic parameters. Histology, biochemical and biomechanical characteristics of the repair tissue did not differ significantly between treatment modalities after 24 weeks. Compared with macroscopically normal tendon tissue, the content of the mature collagen crosslink hydroxylysylpyridinoline did not differ after AT-MSC-serum treatment (p = 0.074) while it was significantly lower (p = 0.027) in lesions treated with serum alone. Stress at failure (p = 0.048) and the modulus of elasticity (p = 0.001) were significantly lower after AT-MSC-serum treatment than in normal tendon tissue. Conclusions The effect of a single intralesional injection of cultured AT-MSCs suspended in autologous inactivated serum was not superior to treatment of surgically created SDFT lesions with autologous inactivated serum alone in a surgical model of tendinopathy over an observation period of 22 weeks. AT-MSC treatment might have a positive influence on collagen crosslinking of remodelling scar tissue. Controlled long-term studies including naturally occurring tendinopathies are necessary to verify the effects of AT-MSCs on tendon disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0564-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Geburek
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| | - Florian Roggel
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Hans T M van Schie
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Roberto Estrada
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Kathrin Weber
- Pferdeklink Kirchheim, Nürtinger Straße 200, 73230, Kirchheim unter Teck, Germany
| | - Maren Hellige
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559, Hannover, Germany
| | - Michael Jagodzinski
- Department of Orthopedic Trauma, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625, Hannover, Germany
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Chris van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM, Utrecht, The Netherlands
| | - Peter M Stadler
- Equine Clinic, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|
33
|
Yang G, Rothrauff BB, Lin H, Yu S, Tuan RS. Tendon-Derived Extracellular Matrix Enhances Transforming Growth Factor-β3-Induced Tenogenic Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng Part A 2017; 23:166-176. [PMID: 27809678 DOI: 10.1089/ten.tea.2015.0498] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of the limited and unsatisfactory outcomes of clinical tendon repair, tissue engineering approaches using adult mesenchymal stem cells are being considered a promising alternative strategy to heal tendon injuries. Successful and functional tendon tissue engineering depends on harnessing the biochemical cues presented by the native tendon extracellular matrix (ECM) and the embedded tissue-specific biofactors. In this study, we have prepared and characterized the biological activities of a soluble extract of decellularized tendon ECM (tECM) on adult adipose-derived stem cells (ASCs), on the basis of histological, biochemical, and gene expression analyses. The results showed that tECM enhances the proliferation and transforming growth factor (TGF)-β3-induced tenogenesis of ASCs in both plate and scaffold cultures in vitro, and modulates matrix deposition of ASCs seeded in scaffolds. These findings suggest that combining tendon ECM extract with TGF-β3 treatment is a possible alternative approach to induce tenogenesis for ASCs.
Collapse
Affiliation(s)
- Guang Yang
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh Swanson School of Engineering , Pittsburgh, Pennsylvania
| | - Benjamin B Rothrauff
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hang Lin
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Shuting Yu
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,5 School of Medicine, Tsinghua University , Beijing, China
| | - Rocky S Tuan
- 1 Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, University of Pittsburgh Swanson School of Engineering , Pittsburgh, Pennsylvania.,4 Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Biologic and Tissue Engineering Strategies for Tendon Repair. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0019-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Youngstrom DW, LaDow JE, Barrett JG. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connect Tissue Res 2016; 57:454-465. [PMID: 27028488 DOI: 10.3109/03008207.2015.1117458] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jade E LaDow
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jennifer G Barrett
- b Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| |
Collapse
|
36
|
Induction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching. Stem Cells Int 2016; 2016:7342379. [PMID: 27630718 PMCID: PMC5007347 DOI: 10.1155/2016/7342379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Tendon and ligament pathologies are still a therapeutic challenge, due to the difficulty in restoring the complex extracellular matrix architecture and biomechanical strength. While progress is being made in cell-based therapies and tissue engineering approaches, comprehensive understanding of the fate of progenitor cells in tendon healing is still lacking. The aim of this study was to investigate the effect of decellularized tendon matrix and moderate cyclic stretching as natural stimuli which could potentially direct tenogenic fate. Equine adipose-derived mesenchymal stromal cells (MSC) were seeded on decellularized tendon matrix scaffolds. Mechanical stimulation was applied in a custom-made cyclic strain bioreactor. Assessment was performed 4 h, 8 h, and 24 h following mechanical stimulation. Scaffold culture induced cell alignment and changes in expression of tendon-related genes, although cell viability was decreased compared to monolayer culture. Short mechanical stimulation periods enhanced most of the scaffold-induced effects. Collagen 1A2 expression levels were decreased, while collagen 3A1 and decorin levels were increased. Tenascin-C and scleraxis expression showed an initial decrease but had increased 24 h after stimulation. The results obtained suggest that decellularized tendon matrix, supported by cyclic stretching, can induce tenogenic differentiation and the synthesis of tendon components important for matrix remodeling.
Collapse
|
37
|
Rehmann MS, Luna JI, Maverakis E, Kloxin AM. Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 2016; 104:1162-74. [PMID: 26748903 PMCID: PMC5510610 DOI: 10.1002/jbm.a.35650] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/19/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising for the regeneration of tendon and ligament tissues. Toward realizing this potential, microenvironment conditions are needed for promoting robust lineage-specific differentiation into tenocytes/ligament fibroblasts. Here, we utilized a statistical design of experiments approach to examine combinations of matrix modulus, composition, and soluble factors in human MSC tenogenic/ligamentogenic differentiation. Specifically, well-defined poly(ethylene glycol)-based hydrogels were synthesized using thiol-ene chemistry providing a bioinert base for probing cell response to extracellular matrix cues. Monomer concentrations were varied to achieve a range of matrix moduli (E ∼ 10-90 kPa), and different ratios of integrin-binding peptides were incorporated (GFOGER and RGDS for collagen and fibronectin, respectively), mimicking aspects of developing tendon/ligament tissue. A face-centered central composite response surface design was utilized to understand the contributions of these cues to human MSC differentiation in the presence of soluble factors identified to promote tenogenesis/ligamentogenesis (BMP-13 and ascorbic acid). Increasing modulus and collagen mimetic peptide content increased relevant gene expression and protein production or retention (scleraxis, collagen I, tenascin-C). These findings could inform the design of materials for tendon/ligament regeneration. More broadly, the design of experiments enabled efficient data acquisition and analysis, requiring fewer replicates than if each factor had been varied one at a time. This approach can be combined with other stimuli (for example, mechanical stimulation) toward a better mechanistic understanding of differentiation down these challenging lineages.
Collapse
Affiliation(s)
- Matthew S Rehmann
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Jesus I Luna
- Department of Dermatology, School of Medicine, University of California, Davis, California, 95816
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, California, 95816
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716
| |
Collapse
|
38
|
Trumbull A, Subramanian G, Yildirim-Ayan E. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online 2016; 15:43. [PMID: 27103394 PMCID: PMC4840975 DOI: 10.1186/s12938-016-0150-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/24/2016] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal tissues are constantly under mechanical strains within their microenvironment. Yet, little is understood about the effect of in vivo mechanical milieu strains on cell development and function. Thus, this review article outlines the in vivo mechanical environment of bone, muscle, cartilage, tendon, and ligaments, and tabulates the mechanical strain and stress in these tissues during physiological condition, vigorous, and moderate activities. This review article further discusses the principles of mechanical loading platforms to create physiologically relevant mechanical milieu in vitro for musculoskeletal tissue regeneration. A special emphasis is placed on adipose-derived stem cells (ADSCs) as an emerging valuable tool for regenerative musculoskeletal tissue engineering, as they are easily isolated, expanded, and able to differentiate into any musculoskeletal tissue. Finally, it highlights the current state-of-the art in ADSCs-guided musculoskeletal tissue regeneration under mechanical loading.
Collapse
Affiliation(s)
- Andrew Trumbull
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Gayathri Subramanian
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA. .,Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH, 43614, USA.
| |
Collapse
|
39
|
Vuornos K, Björninen M, Talvitie E, Paakinaho K, Kellomäki M, Huhtala H, Miettinen S, Seppänen-Kaijansinkko R, Haimi S. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Tissue Eng Part A 2016; 22:513-23. [PMID: 26919401 DOI: 10.1089/ten.tea.2015.0276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growing number of musculoskeletal defects increases the demand for engineered tendon. Our aim was to find an efficient strategy to produce tendon-like matrix in vitro. To allow efficient differentiation of human adipose stem cells (hASCs) toward tendon tissue, we tested different medium compositions, biomaterials, and scaffold structures in preliminary tests. This is the first study to report that medium supplementation with 50 ng/mL of growth and differentiation factor-5 (GDF-5) and 280 μM l-ascorbic acid are essential for tenogenic differentiation of hASCs. Tenogenic medium (TM) was shown to significantly enhance tendon-like matrix production of hASCs compared to other tested media groups. Cell adhesion, proliferation, and tenogenic differentiation of hASCs were supported on braided poly(l/d)lactide (PLA) 96l/4d copolymer filament scaffolds in TM condition compared to foamed poly(l-lactide-co-ɛ-caprolactone) (PLCL) 70L/30CL scaffolds. A uniform cell layer formed on braided PLA 96/4 scaffolds when hASCs were cultured in TM compared to maintenance medium (MM) condition after 14 days of culture. Furthermore, total collagen content and gene expression of tenogenic marker genes were significantly higher in TM condition after 2 weeks of culture. The elastic modulus of PLA 96/4 scaffold was more similar to the elastic modulus reported for native Achilles tendon. Our study showed that the optimized TM is needed for efficient and rapid in vitro tenogenic extracellular matrix production of hASCs. PLA 96/4 scaffolds together with TM significantly stimulated hASCs, thus demonstrating the potential clinical relevance of this novel and emerging approach to tendon injury treatments in the future.
Collapse
Affiliation(s)
- Kaisa Vuornos
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Miina Björninen
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Elina Talvitie
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Kaarlo Paakinaho
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Minna Kellomäki
- 3 Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology , Tampere, Finland
| | - Heini Huhtala
- 4 Tampere School of Health Sciences, University of Tampere , Tampere, Finland
| | - Susanna Miettinen
- 1 Adult Stem Cells, BioMediTech, University of Tampere , Tampere, Finland .,2 Science Center, Tampere University Hospital , Tampere, Finland
| | - Riitta Seppänen-Kaijansinkko
- 5 Department of Oral and Maxillofacial Sciences, Clinicum, Faculty of Medicine, University of Helsinki , Helsinki, Finland .,6 Department of Oral and Maxillofacial Diseases, Head and Neck Center, Helsinki University Hospital , Helsinki, Finland
| | - Suvi Haimi
- 5 Department of Oral and Maxillofacial Sciences, Clinicum, Faculty of Medicine, University of Helsinki , Helsinki, Finland .,7 Department of Biomaterials Science and Technology, University of Twente , Enschede, The Netherlands
| |
Collapse
|
40
|
Lin X, Shi Y, Cao Y, Liu W. Recent progress in stem cell differentiation directed by material and mechanical cues. ACTA ACUST UNITED AC 2016; 11:014109. [PMID: 26836059 DOI: 10.1088/1748-6041/11/1/014109] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.
Collapse
Affiliation(s)
- Xunxun Lin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, People's Republic of China. Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
42
|
Conze P, van Schie HTM, van Weeren R, Staszyk C, Conrad S, Skutella T, Hopster K, Rohn K, Stadler P, Geburek F. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regen Med 2015; 9:743-57. [PMID: 25431911 DOI: 10.2217/rme.14.55] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS To investigate whether autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) treatment of tendon lesions increases neovascularization during tendon healing. MATERIALS & METHODS A standardized surgical model was used to create lesions in both front limb superficial digital flexor tendons (SDFTs) of nine horses. Either AT-MSCs or control substance was injected intralesionally 2 weeks post-surgery. Color Doppler ultrasonography of SDFTs was performed at regular intervals. Horses were euthanized 22 weeks post-treatment and SDFTs were harvested for histology. RESULTS The color Doppler ultrasonography signal was significantly more extensive at 2 weeks post-treatment and the number of vessels counted on histologic slides was significantly higher at 22 weeks post-treatment in AT-MSC-treated SDFTs. CONCLUSION Our findings indicate that AT-MSC treatment has a beneficial effect on neovascularization of healing tendons.
Collapse
Affiliation(s)
- Philipp Conze
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Bünteweg 9, 30559 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
44
|
In vitro mutual interaction between tenocytes and adipose-derived mesenchymal stromal cells. Cytotherapy 2015; 17:215-23. [DOI: 10.1016/j.jcyt.2014.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/13/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022]
|
45
|
Stanco D, Viganò M, Perucca Orfei C, Di Giancamillo A, Peretti GM, Lanfranchi L, de Girolamo L. Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy. Regen Med 2015; 10:729-43. [PMID: 25565145 DOI: 10.2217/rme.14.92] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Adipose-derived stem cells (ASCs) have been deeply characterized for their usefulness in musculoskeletal tissue regeneration; recently, other mesenchymal stem cell (MSC) sources have also been proposed. This study compares for the first time human tendon stem/progenitor cells isolated from hamstring tendons with human ASCs. MATERIALS & METHODS Human TSPCs and ASCs were isolated from hamstring tendon portions and adipose tissue of healthy donors undergoing ACL reconstruction or liposuction, respectively (n = 7). Clonogenic ability, immunophenotype and multi-differentiation potential were assessed and compared. RESULTS Both populations showed similar proliferation and clonogenic ability and expressed embryonic stem cell genes and MSC surface markers. Tendon stem/progenitor cells showed lower adipogenic and osteogenic ability, but after the chondrogenic differentiation, they produced more abundant glycosaminoglycans and expressed higher levels of aggrecan with regards to ASCs. The tenogenic induction with BMP-12 upregulated SCX and DCN gene expression in both populations. CONCLUSION Our results demonstrate that waste hamstring tendon fragments could represent a convenient MSC source for musculoskeletal regenerative medicine.
Collapse
Affiliation(s)
- Deborah Stanco
- Orthopaedics Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Marco Viganò
- Orthopaedics Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
| | - Carlotta Perucca Orfei
- Orthopaedics Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy
| | | | - Giuseppe M Peretti
- IRCCS Galeazzi Orthopaedic Institute, Via R Galeazzi 4, 20161 Milan, Italy.,Biomedical Science for Health, University of Milan, Milan, Italy
| | - Luciano Lanfranchi
- IRCCS Galeazzi Orthopaedic Institute, Via R Galeazzi 4, 20161 Milan, Italy
| | | |
Collapse
|
46
|
Chen JL, Zhang W, Liu ZY, Heng BC, Ouyang HW, Dai XS. Physical regulation of stem cells differentiation into teno-lineage: current strategies and future direction. Cell Tissue Res 2014; 360:195-207. [DOI: 10.1007/s00441-014-2077-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 12/18/2022]
|
47
|
Burk J, Gittel C, Heller S, Pfeiffer B, Paebst F, Ahrberg AB, Brehm W. Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Res Notes 2014; 7:826. [PMID: 25412928 PMCID: PMC4247609 DOI: 10.1186/1756-0500-7-826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/12/2014] [Indexed: 11/17/2022] Open
Abstract
Background Multipotent mesenchymal stromal cells (MSC) can be recovered from a variety of tissues in the body. Yet, their functional properties were shown to vary depending on tissue origin. While MSC have emerged as a favoured cell type for tendon regenerative therapies, very little is known about the influence of the MSC source on their properties relevant to tendon regeneration. The aim of this study was to assess and compare the expression of tendon extracellular matrix proteins and tendon differentiation markers in MSC derived from different sources as well as in native tendon tissue. MSC isolated from equine bone marrow, adipose tissue, umbilical cord tissue, umbilical cord blood and tendon tissue were characterized and then subjected to mRNA analysis by real-time polymerase chain reaction. Results MSC derived from adipose tissue displayed the highest expression of collagen 1A2, collagen 3A1 and decorin compared to MSC from all other sources and native tendon tissue (p < 0.01). Tenascin-C and scleraxis expressions were highest in MSC derived from cord blood compared to MSC derived from other sources, though both tenascin-C and scleraxis were expressed at significantly lower levels in all MSC compared to native tendon tissue (p < 0.01). Conclusions These findings demonstrate that the MSC source impacts the cell properties relevant to tendon regeneration. Adipose derived MSC might be superior regarding their potential to positively influence tendon matrix reorganization. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-826) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janina Burk
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lopez MJ, Jarazo J. State of the art: stem cells in equine regenerative medicine. Equine Vet J 2014; 47:145-54. [PMID: 24957845 DOI: 10.1111/evj.12311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/01/2014] [Indexed: 12/20/2022]
Abstract
According to Greek mythology, Prometheus' liver grew back nightly after it was removed each day by an eagle as punishment for giving mankind fire. Hence, contrary to popular belief, the concept of tissue and organ regeneration is not new. In the early 20th century, cell culture and ex vivo organ preservation studies by Alexis Carrel, some with famed aviator Charles Lindbergh, established a foundation for much of modern regenerative medicine. While early beliefs and discoveries foreshadowed significant accomplishments in regenerative medicine, advances in knowledge within numerous scientific disciplines, as well as nano- and micromolecular level imaging and detection technologies, have contributed to explosive advances over the last 20 years. Virtually limitless preparations, combinations and applications of the 3 major components of regenerative medicine, namely cells, biomaterials and bioactive molecules, have created a new paradigm of future therapeutic options for most species. It is increasingly clear, however, that despite significant parallels among and within species, there is no 'one-size-fits-all' regenerative therapy. Likewise, a panacea has yet to be discovered that completely reverses the consequences of time, trauma and disease. Nonetheless, there is no question that the promise and potential of regenerative medicine have forever altered medical practices. The horse is a relative newcomer to regenerative medicine applications, yet there is already a large body of work to incorporate novel regenerative therapies into standard care. This review focuses on the current state and potential future of stem cells in equine regenerative medicine.
Collapse
Affiliation(s)
- M J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Equine Health Studies Program, Department of Veterinary Clinical Sciences, Louisiana State University, Baton Rouge, USA
| | | |
Collapse
|
49
|
Gulati BR, Kumar R, Mohanty N, Kumar P, Somasundaram RK, Yadav PS. Bone morphogenetic protein-12 induces tenogenic differentiation of mesenchymal stem cells derived from equine amniotic fluid. Cells Tissues Organs 2014; 198:377-89. [PMID: 24662023 DOI: 10.1159/000358231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
Tendon injuries are common in race horses, and mesenchymal stem cells (MSCs) isolated from adult and foetal tissue have been used for tendon regeneration. In the present study, we evaluated equine amniotic fluid (AF) as a source of MSCs and standardised methodology and markers for their in vitro tenogenic differentiation. Plastic-adherent colonies were isolated from 12 of 20 AF samples by day 6 after seeding and 70-80% cell confluency was reached by day 17. These cells expressed mesenchymal surface markers [cluster of differentiation (CD)73, CD90 and CD105] by reverse transcription (RT)-polymerase chain reaction (PCR) and immunocytochemistry, but did not express haematopoietic markers (CD34, CD45 and CD14). In flow cytometry, the expression of CD29, CD44, CD73 and CD90 was observed in 68.83 ± 1.27, 93.66 ± 1.80, 96.96 ± 0.44 and 93.7 ± 1.89% of AF-MSCs, respectively. Osteogenic, chondrogenic and adipogenic differentiation of MSCs was confirmed by von Kossa and Alizarin red S, Alcian blue and oil red O staining, respectively. Upon supplementation of MSC growth media with 50 ng/ml bone morphogenetic protein (BMP)-12, AF-MSCs differentiated to tenocytes within 14 days. The differentiated cells were more slender, elongated and spindle shaped with thinner and longer cytoplasmic processes and showed expression of tenomodulin and decorin by RT-PCR and immunocytochemistry. In flow cytometry, 96.7 ± 1.90 and 80.9 ± 6.4% of differentiated cells expressed tenomodulin and decorin in comparison to 1.6 and 3.1% in undifferentiated control cells, respectively. Our results suggest that AF is an easily accessible and effective source of MSCs. On BMP-12 supplementation, AF-MSCs can be differentiated to tenocytes, which could be exploited for regeneration of ruptured or damaged tendon in race horses.
Collapse
|
50
|
Mohanty N, Gulati BR, Kumar R, Gera S, Kumar P, Somasundaram RK, Kumar S. Immunophenotypic characterization and tenogenic differentiation of mesenchymal stromal cells isolated from equine umbilical cord blood. In Vitro Cell Dev Biol Anim 2014; 50:538-48. [PMID: 24414976 DOI: 10.1007/s11626-013-9729-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/22/2013] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.
Collapse
Affiliation(s)
- Niharika Mohanty
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, LLR University of Veterinary & Animal Sciences, Hisar, 25004, Haryana, India
| | | | | | | | | | | | | |
Collapse
|