1
|
Liu X, Yang Y, Fan Q, Zhang Q, Ji Q. Effect of Ultraviolet-B Radiating Drosophila melanogaster as Host on the Quality of Trichopria drosophilae, a Pupal Parasitoid of Drosophila suzukii. INSECTS 2023; 14:insects14050423. [PMID: 37233051 DOI: 10.3390/insects14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The pupal parasitoid, Trichopria drosophilae Perkins (Hymenoptera: Diapriidae), is an ectoparasitoid of the genus Drosophila with great potential for application in biological control based on its excellent control efficiency for Drosophila suzukii Matsumura (Diptera: Drosophilidae), and it has has even been commercialized by biofactories. Due to its characteristics of short life cycle, large number of offspring, easy rearing, rapid reproduction, and low cost, Drosophila melanogaster (Diptera: Drosophilidae) is currently being utilized as a host to mass produce T. drosophilae. To simplify the mass rearing process and omit the separation of hosts and parasitoids, ultraviolet-B (UVB) was used as an irradiation source to irradiate D. melanogaster pupae, and the effects on T. drosophilae were studied. The results showed that UVB radiation significantly reduces host emergence and affects the duration of parasitoid development (female: F0 increased from 21.50 to 25.80, F1 from 23.10 to 26.10; male: F0 decreased from 17.00 to 14.10, F1 from 17.20 to 14.70), which has great significance for the separation of hosts and parasitoids as well as of females and males. Of the various studied conditions, UVB irradiation was ideal when the host was supplied with parasitoids for 6 h. The selection test results showed that the female-to-male ratio of emerging parasitoids in this treatment was highest at 3.47. The no-selection test resulted in the highest rates of parasitization and parasitoid emergence rate, maximized inhibition of host development, and allowed the omission of the separation step. Finally, the results of the semi-field test showed that the parasitoids bred in this treatment could search for their hosts normally and could therefore be directly applied in the biological control of Drosophila pests in the field.
Collapse
Affiliation(s)
- Xuxiang Liu
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Yongbang Yang
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qingwen Fan
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qinyuan Zhang
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| | - Qinge Ji
- Biological Control Research Institute, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China Fruit Fly Research and Control Center of FAO/IAEA, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou 350002, China
| |
Collapse
|
2
|
Zeng L, Jin S, Xu YQ, Granato D, Fu YQ, Sun WJ, Yin JF, Xu YQ. Exogenous stimulation-induced biosynthesis of volatile compounds: Aroma formation of oolong tea at postharvest stage. Crit Rev Food Sci Nutr 2022; 64:76-86. [PMID: 35900156 DOI: 10.1080/10408398.2022.2104213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Volatile organic compounds (VOCs) are produced by plants responding to biotic and abiotic stresses. According to their biosynthetic sources, induced VOCs are divided into three major classes: terpenoids, phenylpropanoid/benzenoid, and fatty acid derivatives. These compounds with specific aroma characteristics importantly contribute to the aroma quality of oolong tea. Shaking and rocking is the crucial procedure for the aroma formation of oolong tea by exerting mechanical damage to fresh tea leaves. Abundant studies have been carried out to investigate the formation mechanisms of VOCs during oolong tea processing in recent years. This review systematically introduces the biosynthesis of VOCs in plants, and the volatile changes due to biotic and abiotic stresses are summarized and expatiated, using oolong tea as an example.
Collapse
Affiliation(s)
- Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan-Qun Xu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Zhejiang, China
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Yan-Qing Fu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Wei-Jiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, National Engineering & Technology Research Center for Tea Industry, Key Laboratory of Tea Biology and Resources Utilization, Hangzhou, China
| |
Collapse
|
3
|
Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris. Molecules 2020; 25:molecules25143200. [PMID: 32668802 PMCID: PMC7397131 DOI: 10.3390/molecules25143200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
Calluna vulgaris (heather) is an aggressive invasive weed on the Central Plateau, North Is., New Zealand (NZ), where it encounters different environmental factors compared to its native range in Europe, such as high ultraviolet radiation (UV) and a lack of specialist herbivores. The specialist herbivore Lochmaea suturalis (heather beetle) was introduced from the United Kingdom (UK) in 1996 as a biocontrol agent to manage this invasive weed. Like other plant invaders, a novel environment may be challenging for heather as it adjusts to its new conditions. This process of “adjustment” involves morphological and physiological changes often linked to phenotypic plasticity. The biochemical responses of exotic plants to environmental variables in their invaded range is poorly understood. The production and release of volatile organic compounds (VOCs) is essential to plant communication and highly susceptible to environmental change. This study therefore aimed to explore the VOC emissions of heather in response to different levels of UV exposure, and to feeding damage by L. suturalis. Using tunnel houses clad with UV-selective filters, we measured VOCs produced by heather under NZ ambient, 20% attenuated, and 95% attenuated solar UV treatments. We also compared VOC emissions in the field at adjacent sites where L. suturalis was present or absent. Volatiles produced by the same target heather plants were measured at four different times in the spring and summer of 2018–2019, reflecting variations in beetle’s abundance, feeding stage and plant phenology. Heather plants under 95% attenuated UV produced significantly higher amounts of (E)-β-farnesene, decanal, benzaldehyde, and benzeneacetaldehyde compared to 25% attenuated and ambient UV radiation. We also found significant differences in volatiles produced by heather plants in beetle-present versus beetle-absent sites on most sampling occasions. We also recorded a lower number of generalist herbivores on heather at sites where L. suturalis was present. Interactions between invasive plants, a novel environment, and the native communities they invade, are discussed.
Collapse
|
4
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:315-327. [PMID: 30304528 PMCID: PMC6305188 DOI: 10.1093/jxb/ery347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Carvalho SD, Castillo JA. Influence of Light on Plant-Phyllosphere Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1482. [PMID: 30369938 PMCID: PMC6194327 DOI: 10.3389/fpls.2018.01482] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/21/2018] [Indexed: 05/11/2023]
Abstract
Plant-phyllosphere interactions depend on microbial diversity, the plant host and environmental factors. Light is perceived by plants and by microorganisms and is used as a cue for their interaction. Photoreceptors respond to narrow-bandwidth wavelengths and activate specific internal responses. Light-induced plant responses include changes in hormonal levels, production of secondary metabolites, and release of volatile compounds, which ultimately influence plant-phyllosphere interactions. On the other hand, microorganisms contribute making some essential elements (N, P, and Fe) biologically available for plants and producing growth regulators that promote plant growth and fitness. Therefore, light directly or indirectly influences plant-microbe interactions. The usage of light-emitting diodes in plant growth facilities is helping increasing knowledge in the field. This progress will help define light recipes to optimize outputs on plant-phyllosphere communications. This review describes research advancements on light-regulated plant-phyllosphere interactions. The effects of full light spectra and narrow bandwidth-wavelengths from UV to far-red light are discussed.
Collapse
Affiliation(s)
- Sofia D. Carvalho
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - José A. Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
6
|
Vaidya P, McDurmon A, Mattoon E, Keefe M, Carley L, Lee CR, Bingham R, Anderson JT. Ecological causes and consequences of flower color polymorphism in a self-pollinating plant (Boechera stricta). THE NEW PHYTOLOGIST 2018; 218:380-392. [PMID: 29369384 DOI: 10.1111/nph.14998] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
Intraspecific variation in flower color is often attributed to pollinator-mediated selection, yet this mechanism cannot explain flower color polymorphisms in self-pollinating species. Indirect selection mediated via biotic and abiotic stresses could maintain flower color variation in these systems. The selfing forb, Boechera stricta, typically displays white flowers, but some individuals produce purple flowers. We quantified environmental correlates of flower color in natural populations. To disentangle plasticity from genotypic variation, we performed a multiyear field experiment in five gardens. In controlled conditions, we evaluated herbivore preferences and the effects of drought stress and soil pH on flower color expression. In natural populations, purple-flowered individuals experienced lower foliar herbivory than did their white-flowered counterparts. This pattern also held in the common gardens. Additionally, low-elevation environments induced pigmented flowers (plasticity), and the likelihood of floral pigmentation decreased with source elevation of maternal families (genetic cline). Viability selection favored families with pigmented flowers. In the laboratory, herbivores exerted greater damage on tissue derived from white- vs purple-flowered individuals. Furthermore, drought induced pigmentation in white-flowered lineages, and white-flowered plants had a fecundity advantage in the well-watered control. Flower color variation in selfing species is probably maintained by herbivory, drought stress, and other abiotic factors that vary spatially.
Collapse
Affiliation(s)
- Priya Vaidya
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Ansley McDurmon
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Emily Mattoon
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Michaela Keefe
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Natural and Environmental Sciences, Western State Colorado University, Gunnison, CO, 81231, USA
| | - Lauren Carley
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
- University Program in Ecology, Duke University, Durham, NC, 27708, USA
| | - Cheng-Ruei Lee
- Institute of Ecology and Evolutionary Biology & Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Robin Bingham
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Natural and Environmental Sciences, Western State Colorado University, Gunnison, CO, 81231, USA
| | - Jill T Anderson
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Gaudreau M, Abram PK, Brodeur J. Host egg pigmentation protects developing parasitoids from ultraviolet radiation. OIKOS 2017. [DOI: 10.1111/oik.04217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mathilde Gaudreau
- Inst. de Recherche en Biologie Végétale; Dépt de sciences biologiques, Univ. de Montréal; Montréal QC Canada
| | - Paul K. Abram
- Inst. de Recherche en Biologie Végétale; Dépt de sciences biologiques, Univ. de Montréal; Montréal QC Canada
- Agriculture and Agri-Food Canada; Agassiz Research and Development Centre; Agassiz BC Canada
| | - Jacques Brodeur
- Inst. de Recherche en Biologie Végétale; Dépt de sciences biologiques, Univ. de Montréal; Montréal QC Canada
| |
Collapse
|
8
|
Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:278. [PMID: 28303147 PMCID: PMC5332372 DOI: 10.3389/fpls.2017.00278] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 05/06/2023]
Abstract
Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.
Collapse
Affiliation(s)
- Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology of Leiden, Leiden UniversityLeiden, Netherlands
| | | | | |
Collapse
|
9
|
Clavijo McCormick A. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 2016; 6:8569-8582. [PMID: 28031808 PMCID: PMC5167045 DOI: 10.1002/ece3.2567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022] Open
Abstract
The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.
Collapse
|
10
|
Different Narrow-Band Light Ranges Alter Plant Secondary Metabolism and Plant Defense Response to Aphids. J Chem Ecol 2016; 42:989-1003. [PMID: 27589867 DOI: 10.1007/s10886-016-0755-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Light of different wavelengths affects various physiological processes in plants. Short-wavelength radiation (like UV) can activate defense pathways in plants and enhance the biosynthesis of secondary metabolites (such as flavonoids and glucosinolates) responsible for resistance against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. In this study, broccoli (Brassica oleracea var. italica) plants were grown for 4 weeks in a climate chamber under conventional fluorescent tubes and were additionally treated with UV-B (310 nm), UV-A (365 or 385 nm), or violet (420 nm) light generated with UV-B tubes or light-emitting diodes (LEDs). The objective was to determine the influence of narrow bandwidths of light (from UV-B to violet) on plant secondary metabolism and on the performance of the cabbage aphid Brevicoryne brassicae (a specialist) and the green peach aphid Myzus persicae (a generalist). Among flavonol glycosides, specific quercetin and kaempferol glycosides increased markedly under UV-B, while among glucosinolates only 4-methoxy-3-indolylmethyl showed a 2-fold increase in plants exposed to UV-B and UV-A. The concentration of 3-indolylmethyl glucosinolate in broccoli plants increased with UV-B treatment. Brevicoryne brassicae adult weights and fecundity were lower on UV-B treated plants compared to UV-A or violet light-treated plants. Adult weights and fecundity of M. persicae were increased under UV-B and UV-A treatments. When specific light wavelengths are used to induce metabolic changes in plants, the specificity of the induced effects on herbivores should be considered.
Collapse
|
11
|
|
12
|
Becker C, Desneux N, Monticelli L, Fernandez X, Michel T, Lavoir AV. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342982. [PMID: 26788501 PMCID: PMC4692980 DOI: 10.1155/2015/342982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.
Collapse
Affiliation(s)
- Christine Becker
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Lucie Monticelli
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Xavier Fernandez
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Thomas Michel
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Violette Lavoir
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| |
Collapse
|
13
|
Bergamini LL, Almeida-Neto M. Female Preference and Offspring Performance in the Seed Beetle Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae): A Multi-Scale Comparison. NEOTROPICAL ENTOMOLOGY 2015; 44:328-337. [PMID: 26174958 DOI: 10.1007/s13744-015-0294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
The search for and choice of oviposition sites are a key step in the life cycle of herbivorous insects. Theory predicts that natural selection should favor the discrimination ability of female insects to select between high- and low-quality oviposition sites. However, correlation between female preference and offspring performance is apparently lacking or even negative in some herbivore-plant systems. A possible explanation for this seeming failure is that most studies have focused on a single factor and spatial scale. Here, we investigated the preference-performance relationship in the seed beetle Gibbobruchus bergamini Manfio & Ribeiro-Costa (Coleoptera: Chrysomelidae). We took into account several potential factors affecting oviposition choices and larval survivorship through a multi-level approach. Hierarchical analysis that controlled for the non-independence of observations demonstrated that oviposition site choices were not related to the factors that most influenced larval survivorship. The apparent effects of other pod-feeding herbivores were greater at the plant and branch scales while at the pod level the most important factors were plant-related variables. Oviposition choices seemed to be time-constrained, meaning that females have little opportunity to further increase offspring performance through additional compensatory choices.
Collapse
Affiliation(s)
- L L Bergamini
- Depto de Ecologia, Univ Federal de Goiás, 74001-970, Goiânia, GO, Brasil,
| | | |
Collapse
|
14
|
Reudler JH, Elzinga JA. Photoperiod-Induced Geographic Variation in Plant Defense Chemistry. J Chem Ecol 2015; 41:139-48. [DOI: 10.1007/s10886-015-0550-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
15
|
Stoepler TM, Lill JT. Direct and indirect effects of light environment generate ecological trade-offs in herbivore performance and parasitism. Ecology 2013; 94:2299-310. [DOI: 10.1890/12-2068.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Ðinh ST, Gális I, Baldwin IT. UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. PLANT, CELL & ENVIRONMENT 2013; 36:590-606. [PMID: 22897424 DOI: 10.1111/j.1365-3040.2012.02598.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Depending on geographical location, plants are exposed to variable amounts of UVB radiation and herbivore attack. Because the role(s) of UVB in the priming and/or accumulation of plant defence metabolites against herbivores are not well understood, we used field-grown Nicotiana attenuata plants to explore the effects of UVB on herbivore performance. Consistent with previous reports, UVB-exposed plants accumulated higher levels of ultraviolet (UV)-absorbing compounds (rutin, chlorogenic acid, crypto-chlorogenic acid and dicaffeoylspermidine). Furthermore, UVB increased the accumulation of jasmonic acid, jasmonoyl-L-isoleucine and abscisic acid, all phytohormones which regulate plant defence against biotic and abiotic stress. In herbivore bioassays, N. attenuata plants experimentally protected from UVB were more infested by mirids in three consecutive field seasons. Among defence metabolites measured, 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) showed strongly altered accumulation patterns. While constitutive HGL-DTGs levels were higher under UVB, N. attenuata plants exposed to mirid bugs (Tupiocoris notatus) had still more HGL-DTGs under UVB, and mirids preferred to feed on HGL-DTGs-silenced plants when other UVB protecting factors were eliminated by UVB filters. We conclude that UVB exposure not only stimulates UV protective screens but also affects plant defence mechanisms, such as HGL-DTGs accumulation, and modulates ecological interactions of N. attenuata with its herbivores in nature.
Collapse
Affiliation(s)
- So'n Tru'ò'ng Ðinh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
17
|
Mazza CA, Giménez PI, Kantolic AG, Ballaré CL. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions. PHYSIOLOGIA PLANTARUM 2013; 147:307-15. [PMID: 22671980 DOI: 10.1111/j.1399-3054.2012.01661.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 05/07/2023]
Abstract
Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification.
Collapse
Affiliation(s)
- Carlos A Mazza
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
18
|
Wargent JJ, Jordan BR. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production. THE NEW PHYTOLOGIST 2013; 197:1058-1076. [PMID: 23363481 DOI: 10.1111/nph.12132] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/04/2012] [Indexed: 05/06/2023]
Abstract
Largely because of concerns regarding global climate change, there is a burgeoning interest in the application of fundamental scientific knowledge in order to better exploit environmental cues in the achievement of desirable endpoints in crop production. Ultraviolet (UV) radiation is an energetic driver of a diverse range of plant responses and, despite historical concerns regarding the damaging consequences of UV-B radiation for global plant productivity as related to stratospheric ozone depletion, current developments representative of a range of organizational scales suggest that key plant responses to UV-B radiation may be exploitable in the context of a sustainable contribution towards the strengthening of global crop production, including alterations in secondary metabolism, enhanced photoprotection, up-regulation of the antioxidative response and modified resistance to pest and disease attack. Here, we discuss the prospect of this paradigm shift in photobiology, and consider the linkages between fundamental plant biology and crop-level outcomes that can be applied to the plant UV-B response, in addition to the consequences for related biota and many other facets of agro-ecosystem processes.
Collapse
Affiliation(s)
- Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brian R Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, 7647, Christchurch, New Zealand
| |
Collapse
|
19
|
Davey MP, Susanti NI, Wargent JJ, Findlay JE, Paul Quick W, Paul ND, Jenkins GI. The UV-B photoreceptor UVR8 promotes photosynthetic efficiency in Arabidopsis thaliana exposed to elevated levels of UV-B. PHOTOSYNTHESIS RESEARCH 2012; 114:121-31. [PMID: 23161229 DOI: 10.1007/s11120-012-9785-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/31/2012] [Indexed: 05/05/2023]
Abstract
The UV-B photoreceptor UVR8 regulates expression of genes in response to UV-B, some encoding chloroplast proteins, but the importance of UVR8 in maintaining photosynthetic competence is unknown. The maximum quantum yield of PSII (F (v)/F(m)) and the operating efficiency of PSII (Φ(PSII)) were measured in wild-type and uvr8 mutant Arabidopsis thaliana. The importance of specific UVR8-regulated genes in maintaining photosynthetic competence was examined using mutants. Both F (v)/F(m) and Φ(PSII) decreased when plants were exposed to elevated UV-B, in general more so in uvr8 mutant plants than wild-type. UV-B increased the level of psbD-BLRP (blue light responsive promoter) transcripts, encoding the PSII D2 protein. This increase was mediated by the UVR8-regulated chloroplast RNA polymerase sigma factor SIG5, but SIG5 was not required to maintain photosynthetic efficiency at elevated UV-B. Levels of the D1 protein of PSII decreased markedly when plants were exposed to elevated UV-B, but there was no significant difference between wild-type and uvr8 under conditions where the mutant showed increased photoinhibition. The results show that UVR8 promotes photosynthetic efficiency at elevated levels of UV-B. Loss of the DI polypeptide is probably important in causing photoinhibition, but does not entirely explain the reduced photosynthetic efficiency of the uvr8 mutant compared to wild-type.
Collapse
Affiliation(s)
- Matthew P Davey
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Fukaya M, Uesugi R, Ohashi H, Sakai Y, Sudo M, Kasai A, Kishimoto H, Osakabe M. Tolerance to Solar Ultraviolet-B Radiation in the Citrus Red Mite, An Upper Surface User of Host Plant Leaves. Photochem Photobiol 2012; 89:424-31. [DOI: 10.1111/php.12001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/12/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Midori Fukaya
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Ryuji Uesugi
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Hirokazu Ohashi
- Fruit Tree Experiment Station; Wakayama Research Center of Agriculture; Wakayama; Japan
| | - Yuta Sakai
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Masaaki Sudo
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Atsushi Kasai
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Hidenari Kishimoto
- Kuchinotsu Citrus Research Station; National Institute of Fruit Tree Science; Nagasaki; Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| |
Collapse
|
21
|
Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, Heaton JC, Wargent JJ. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. PHYSIOLOGIA PLANTARUM 2012; 145:565-81. [PMID: 22150399 DOI: 10.1111/j.1399-3054.2011.01553.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.
Collapse
Affiliation(s)
- Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Demkura PV, Ballaré CL. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. MOLECULAR PLANT 2012; 5:642-52. [PMID: 22447155 DOI: 10.1093/mp/sss025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Light is emerging as a central regulator of plant immune responses against herbivores and pathogens. Solar UV-B radiation plays an important role as a positive modulator of plant defense. However, since UV-B photons can interact with a wide spectrum of molecular targets in plant tissues, the mechanisms that mediate their effects on plant defense have remained elusive. Here, we show that ecologically meaningful doses of UV-B radiation increase Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea and that this effect is mediated by the photoreceptor UVR8. The UV-B effect on plant resistance was conserved in mutants impaired in jasmonate (JA) signaling (jar1-1 and P35S:JAZ10.4) or metabolism of tryptophan-derived defense compounds (pen2-1, pad3-1, pen2 pad3), suggesting that neither regulation of the JA pathway nor changes in levels of indolic glucosinolates (iGS) or camalexin are involved in this response. UV-B radiation, acting through UVR8, increased the levels of flavonoids and sinapates in leaf tissue. The UV-B effect on pathogen resistance was still detectable in tt4-1, a mutant deficient in chalcone synthase and therefore impaired in the synthesis of flavonoids, but was absent in fah1-7, a mutant deficient in ferulic acid 5-hydroxylase, which is essential for sinapate biosynthesis. Collectively, these results indicate that UVR8 plays an important role in mediating the effects of UV-B radiation on pathogen resistance by controlling the expression of the sinapate biosynthetic pathway.
Collapse
Affiliation(s)
- Patricia V Demkura
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Holopainen JK. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? TREE PHYSIOLOGY 2011; 31:1356-77. [PMID: 22112623 DOI: 10.1093/treephys/tpr111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.
Collapse
Affiliation(s)
- Jarmo K Holopainen
- Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
24
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
25
|
Wargent JJ, Elfadly EM, Moore JP, Paul ND. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa. PLANT, CELL & ENVIRONMENT 2011; 34:1401-13. [PMID: 21535014 DOI: 10.1111/j.1365-3040.2011.02342.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent.
Collapse
Affiliation(s)
- Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | |
Collapse
|
26
|
Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 2011; 10:226-41. [DOI: 10.1039/c0pp90035d] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defenseThe present review is one in the special series of reviews on animal–plant interactions. CAN J ZOOL 2010. [DOI: 10.1139/z10-032] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants can respond to feeding or egg deposition by herbivorous arthropods by changing the volatile blend that they emit. These herbivore-induced plant volatiles (HIPVs) can attract carnivorous natural enemies of the herbivores, such as parasitoids and predators, a phenomenon that is called indirect plant defense. The volatile blends of infested plants can be very complex, sometimes consisting of hundreds of compounds. Most HIPVs can be classified as terpenoids (e.g., (E)-β-ocimene, (E,E)-α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene), green leaf volatiles (e.g., hexanal, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate), phenylpropanoids (e.g., methyl salicylate, indole), and sulphur- or nitrogen-containing compounds (e.g., isothiocyanates or nitriles, respectively). One highly intriguing question has been which volatiles out of the complex blend are the most important ones for the carnivorous natural enemies to locate "suitable host plants. Here, we review the methods and techniques that have been used to elucidate the carnivore-attracting compounds. Electrophysiological methods such as electroantennography have been used with parasitoids to elucidate which compounds can be perceived by the antennae. Different types of elicitors and inhibitors have widely been applied to manipulate plant volatile blends. Furthermore, transgenic plants that were genetically modified in specific steps in one of the signal transduction pathways or biosynthetic routes have been used to find steps in HIPV emission crucial for indirect plant defense. Furthermore, we provide an overview on biotic and abiotic factors that influence the emission of HIPVs and how this can affect the interactions between members of different trophic levels. Consequently, we review the progress that has been made in this exciting research field during the past 30 years since the first studies on HIPVs emerged and we highlight important issues to be addressed in the future.
Collapse
Affiliation(s)
- Roland Mumm
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
- Plant Research International, Wageningen UR, 6700 PB Wageningen, the Netherlands
- Centre of BioSystems Genomics, 6700AB Wageningen, the Netherlands
| |
Collapse
|
28
|
Jang J, Yang YC, Zhang GH, Chen H, Lu JL, Du YY, Ye JH, Ye Q, Borthakur D, Zheng XQ, Liang YR. Effect of Ultra-Violet B on Release of Volatiles in Tea Leaf. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2010. [DOI: 10.1080/10942910902716976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Impacts of Ultraviolet Radiation on Interactions Between Plants and Herbivorous Insects: A Chemo-Ecological Perspective. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Mazza CA, Izaguirre MM, Curiale J, Ballaré CL. A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum. Proc Biol Sci 2009; 277:367-73. [PMID: 19846453 DOI: 10.1098/rspb.2009.1565] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; lambda <or= 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315-400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (lambda >or= 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with lambda > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of lambda(max) = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia.
Collapse
Affiliation(s)
- Carlos A Mazza
- Ifeva, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, , Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
31
|
Kuhlmann F, Müller C. Independent responses to ultraviolet radiation and herbivore attack in broccoli. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3467-75. [PMID: 19542197 PMCID: PMC2724694 DOI: 10.1093/jxb/erp182] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/09/2009] [Accepted: 05/13/2009] [Indexed: 05/20/2023]
Abstract
The plant responses to ultraviolet-B radiation (UV-B) and to insect herbivory are believed to be partially similar. In this study, responses to these factors were investigated in the crop species broccoli (Brassica oleracea L. convar. botrytis, Brassicaceae). Plants were first grown under three UV-B regimes (80%, 23%, and 4% transmittance of ambient UV-B) in greenhouses covered with either innovative materials (high and medium transmittance) or conventional glass (low transmittance). Half of the plants then remained under these conditions, but the other half were transferred to the field with ambient light and herbivore access for up to 3 d. The plant responses to distinct environmental conditions were examined by analysing the morphological and chemical parameters of plants kept inside and plants exposed in the field. Furthermore, suitability of field-exposed plants to naturally occurring insects was investigated in relation to UV-B pretreatment. High levels of UV-B radiation led to increased flavonoid concentrations, but to a lower biomass accumulation in broccoli. These patterns remained after outdoor exposure. However, UV-induced changes of plant traits did not alter attractiveness to herbivorous insects: thrips, whiteflies, and aphids attacked plants independently of UV-B pretreatment. A 3-fold increase of indolyl glucosinolate concentrations occurred in above-ground tissue of all the plants, most likely due to massive herbivore attack after 3 d of field exposure. The results show that plants respond with high specificity to different abiotic and biotic impacts, demonstrating the separate perception and processing of stress factors.
Collapse
Affiliation(s)
- Franziska Kuhlmann
- Julius-von-Sachs Institute of Biosciences, University of Würzburg, Julius-von-Sachs Platz 3, D-97082 Würzburg, Germany
| | - Caroline Müller
- Department of Chemical Ecology, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
32
|
Abstract
Plants respond to insect herbivory with the production of volatiles that attract carnivorous enemies of the herbivores, a phenomenon called indirect defence or 'plants crying for help'. Plants are under selection to maximize Darwinian fitness, and this can be done by making the right 'decisions' (i.e. by responding to environmental stress in ways that maximize seed production). Plant decisions related to the response to herbivory in terms of the emission of herbivore-induced volatiles include 'to respond or not to respond', 'how fast to respond', 'how to respond' and 'when to stop responding'. In this review, the state-of-the-art of the research field is presented in the context of these decisions that plants face. New questions and directions for future research are identified. To understand the consequences of plant responses in a community context, it is important to expand research from individual interactions to multispecies interactions in a community context. To achieve this, detailed information on underlying mechanisms is essential and first steps on this road have been made. This selective review addresses the ecology of herbivore-induced plant volatiles (HIPVs) by integrating information on mechanisms and ecological functions. New questions are identified as well as challenges for extending current information to community ecology.
Collapse
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands.
| |
Collapse
|
33
|
Andrady A, Aucamp PJ, Bais A, Ballaré CL, Björn LO, Bornman JF, Caldwell M, Cullen AP, Erickson DJ, de Gruijl FR, Häder DP, Ilyas M, Kulandaivelu G, Kumar HD, Longstreth J, McKenzie RL, Norval M, Paul N, Redhwi HH, Smith RC, Solomon KR, Sulzberger B, Takizawa Y, Tang X, Teramura AH, Torikai A, van der Leun JC, Wilson SR, Worrest RC, Zepp RG. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2008. Photochem Photobiol Sci 2009; 8:13-22. [PMID: 19256109 DOI: 10.1039/b820432m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.
Collapse
|
34
|
Wargent JJ, Gegas VC, Jenkins GI, Doonan JH, Paul ND. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. THE NEW PHYTOLOGIST 2009; 183:315-326. [PMID: 19402876 DOI: 10.1111/j.1469-8137.2009.02855.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Responses specific to ultraviolet B (UV-B) wavelengths are still poorly understood, both in terms of initial signalling and effects on morphogenesis. Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is the only known UV-B specific signalling component, but the role of UVR8 in leaf morphogenesis is unknown. The regulatory effects of UVR8 on leaf morphogenesis at a range of supplementary UV-B doses were characterized, revealing both UVR8-dependent and independent responses to UV irradiation. Inhibition of epidermal cell division in response to UV-B is largely independent of UVR8. However, overall leaf growth under UV-B irradiation in wild-type plants is enhanced compared with a uvr8 mutant because of a UVR8-dependent compensatory increase of cell area in wild-type plants. UVR8 was also required for the regulation of endopolyploidy in response to UV-B, and the uvr8 mutant also has a lower density of stomata than the wild type in the presence of UV-B, indicating that UVR8 has a regulatory role in other developmental events. Our findings show that, in addition to regulating UV-protective gene expression responses, UVR8 is involved in controlling aspects of leaf growth and morphogenesis. This work extends our understanding of how UV-B response is orchestrated at the whole-plant level.
Collapse
Affiliation(s)
- Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Vasilis C Gegas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Gareth I Jenkins
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H Doonan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|