1
|
Chang X, Wang W, Zhou H. Nitrogen Acquisition by Invasive Plants: Species Preferential N Uptake Matching with Soil N Dynamics Contribute to Its Fitness and Domination. PLANTS (BASEL, SWITZERLAND) 2025; 14:748. [PMID: 40094724 PMCID: PMC11901465 DOI: 10.3390/plants14050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Plant invasions play a significant role in global environmental change. Traditionally, it was believed that invasive plants absorb and utilize nitrogen (N) more efficiently than native plants by adjusting their preferred N forms in accordance with the dominant N forms present in the soil. More recently, invasive plants are now understood to optimize their N acquisition by directly mediating soil N transformations. This review highlights how exotic species optimize their nitrogen acquisition by influencing soil nitrogen dynamics based on their preferred nitrogen forms, and the various mechanisms, including biological nitrification inhibitor (BNI) release, pH alterations, and changes in nutrient stoichiometry (carbon to nitrogen ratio), that regulate the soil nitrogen dynamics of exotic plants. Generally, invasive plants accelerate soil gross nitrogen transformations to maintain a high supply of NH4+ and NO3- in nitrogen-rich ecosystems irrespective of their preference. However, they tend to minimize nitrogen losses to enhance nitrogen availability in nitrogen-poor ecosystems, where, in such situations, plants with different nitrogen preferences usually affect different nitrogen transformation processes. Therefore, a comprehensive understanding requires more situ data on the interactions between invasive plant species' preferential N form uptake and the characteristics of soil N transformations. Understanding the combination of these processes is essential to elucidate how exotic plants optimize nitrogen use efficiency (NUE) and minimize nitrogen losses through denitrification, leaching, or runoff, which are considered critical for the success of invasive plant species. This review also highlights some of the most recent discoveries in the responses of invasive plants to the different forms and amounts of N and how plants affect soil N transformations to optimize their N acquisition, emphasizing the significance of how plant-soil interactions potentially influence soil N dynamics.
Collapse
Affiliation(s)
- Xingang Chang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Wenying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| |
Collapse
|
2
|
Rodrigues JV, Cotovicz LC, Beloto N, Gmach MR, Bezerra LEA. Historical land use changes lead to massive loss of soil carbon stocks in a recovering, semiarid mangrove. MARINE POLLUTION BULLETIN 2024; 208:116980. [PMID: 39342909 DOI: 10.1016/j.marpolbul.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Land use changes lead to substantial releases of carbon from the soil into the atmosphere. In carbon-rich ecosystems, like mangrove forests, this carbon loss may be more intense. This study evaluated soil carbon stocks in a mangrove area historically impacted by salt farming, which is under ecosystem recovery, in the semiarid coast of Northeastern Brazil. The neotropical mangrove sites in the Pacoti River showed marked spatial variability in soil density, texture, organic carbon concentration, nitrogen, and stable isotope signatures (δ13C and δ15N) among sampled sites. Carbon stocks in the top meter layer ranged from only 12 Mg C ha-1 (degraded area) to 283 Mg C ha-1 (preserved Rhizophora mangle stands). The carbon stocks in the well-preserved sites are close to the national and global average, highlighting the importance of semiarid mangroves as efficient carbon sinks and emphasizing the urgency for protection and restoration in light of the ongoing climate emergency.
Collapse
Affiliation(s)
- José Vítor Rodrigues
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. da Abolição 3207, 60165-081 Fortaleza, Ceará, Brazil.
| | - Luiz C Cotovicz
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. da Abolição 3207, 60165-081 Fortaleza, Ceará, Brazil; Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Natalia Beloto
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. da Abolição 3207, 60165-081 Fortaleza, Ceará, Brazil
| | - Maria Regina Gmach
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Luís Ernesto Arruda Bezerra
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. da Abolição 3207, 60165-081 Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Pajares-Murgó M, Garrido JL, Perea AJ, López-García Á, Bastida JM, Prieto-Rubio J, Lendínez S, Azcón-Aguilar C, Alcántara JM. Intransitivity in plant-soil feedbacks is rare but is associated with multispecies coexistence. Ecol Lett 2024; 27:e14408. [PMID: 38504459 DOI: 10.1111/ele.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Although plant-soil feedback (PSF) is being recognized as an important driver of plant recruitment, our understanding of its role in species coexistence in natural communities remains limited by the scarcity of experimental studies on multispecies assemblages. Here, we experimentally estimated PSFs affecting seedling recruitment in 10 co-occurring Mediterranean woody species. We estimated weak but significant species-specific feedback. Pairwise PSFs impose similarly strong fitness differences and stabilizing-destabilizing forces, most often impeding species coexistence. Moreover, a model of community dynamics driven exclusively by PSFs suggests that few species would coexist stably, the largest assemblage with no more than six species. Thus, PSFs alone do not suffice to explain coexistence in the studied community. A topological analysis of all subcommunities in the interaction network shows that full intransitivity (with all species involved in an intransitive loop) would be rare but it would lead to species coexistence through either stable or cyclic dynamics.
Collapse
Affiliation(s)
- Mariona Pajares-Murgó
- Department of Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaen, Spain
- Institute Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Granada, Spain
| | - José L Garrido
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
- Department of Ecología Evolutiva, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Antonio J Perea
- Department of Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaen, Spain
- Institute Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Granada, Spain
| | - Álvaro López-García
- Department of Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaen, Spain
- Institute Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Granada, Spain
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Jesús M Bastida
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Jorge Prieto-Rubio
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Sandra Lendínez
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Concepción Azcón-Aguilar
- Department of Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Julio M Alcántara
- Department of Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaen, Spain
- Institute Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Granada, Spain
| |
Collapse
|
4
|
Liu Q, Song M, Kou L, Li Q, Wang H. Contrasting effects of nitrogen and phosphorus additions on nitrogen competition between coniferous and broadleaf seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160661. [PMID: 36473665 DOI: 10.1016/j.scitotenv.2022.160661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) is a major element limiting plant growth and metabolism. Nitrogen addition can influence plant growth, N uptake, and species interactions, while phosphorus (P) addition may affect N acquisition. However, knowledge of how nutrient availability influences N uptake and species interactions remains limited and controversial. Here, pot experiments were conducted for 14 months, in which conifers (Pinus massoniana and Pinus elliottii) and broadleaved trees (Michelia maudiae and Schima superba) were planted in monoculture or mixture, and provided additional N and P in a full-factorial design. Nitrogen addition increased the biomass, but P addition did not significantly affect the biomass of the four subtropical species. Combined N and P (NP) addition had no additive effect on plant biomass over N addition. Total plant biomass was significantly positively correlated to root traits (branching intensity and root tissue density) and leaf traits (net photosynthetic rate, stomatal conductance, and transpiration rate), but negatively correlated to root diameter in response to nutrient addition. Plant uptake rates of NH4+ or NO3- were not altered by N addition, but P or NP additions decreased NH4+ uptake rates and increased NO3- uptake rates. Neighboring conifers significantly inhibited NH4+ and NO3- uptake rates of the two broadleaf species, but neighboring broadleaves had no effects on the N uptake rates of pine species. The effects of nutrient additions on interspecific interactions differed among species. Nitrogen addition altered the interaction of P. elliottii and M. maudiae from neutral to competition, while P addition altered the interaction of P. massoniana and M. maudiae from neutral to favorable effects. Increasing nutrient availability switched the direction of interspecific interaction in favor of pines. This study provides insights into forest management for productivity improvement and optimizing the selection of broadleaf species regarding differences in soil fertility of subtropical plantations.
Collapse
Affiliation(s)
- Qianyuan Liu
- School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Minghua Song
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingkang Li
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Zhongke Ji'an Institute for Eco-environmental Sciences, Jiangxi Province 343016, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Zhongke Ji'an Institute for Eco-environmental Sciences, Jiangxi Province 343016, China.
| |
Collapse
|
5
|
Ji L, Wei L, Zhang L, Li Y, Tian Y, Liu K, Ren H. Effects of Simulated Nitrogen Deposition and Micro-Environment on the Functional Traits of Two Rare and Endangered Fern Species in a Subtropical Forest. PLANTS (BASEL, SWITZERLAND) 2022; 11:3320. [PMID: 36501359 PMCID: PMC9740810 DOI: 10.3390/plants11233320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Although the effects of N deposition on forest plants have been widely reported, few studies have focused on rare and endangered fern species (REFs). Information is also lacking on the effects of micro-environments on REFs. We investigated the effects of N addition (canopy and understory N addition, CAN, and UAN) and micro-environments (soil and canopy conditions) on the functional traits (growth, defense, and reproduction; 19 traits in total) of two REFs-Alsophila podophylla and Cibotium baromet-in a subtropical forest in South China. We found that, compared to controls, CAN or UAN decreased the growth traits (e.g., plant height, H) of C. baromet, increased its defense traits (e.g., leaf organic acid concentrations, OA), delayed its reproductive event (all-spore release date), and prolonged its reproductive duration. In contrast, A. podophylla showed increased growth traits (e.g., H), decreased defense traits (e.g., OA), and advanced reproductive events (e.g., the all-spore emergence date) under CAN or UAN. Meanwhile, the negative effects on the C. baromet growth traits and A. podophylla defense traits were stronger for CAN than for UAN. In addition, the soil chemical properties always explained more of the variations in the growth and reproductive traits of the two REFs than the N addition. Our study indicates that, under simulated N deposition, C. baromet increases its investment in defense, whereas A. podophylla increases its investment in growth and reproduction; this may cause an increasing A. podophylla population and decreasing C. baromet population in subtropical forests. Our study also highlights the importance of considering micro-environments and the N-addition approach when predicting N deposition impact on subtropical forest REFs.
Collapse
Affiliation(s)
- Lingbo Ji
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Wei
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuanqiu Li
- Shimentai National Natural Reserve, Yingde 513000, China
| | - Yang Tian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ke Liu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Ren
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Pang B, Ma X, Hong J, Xu X, Zhang X, Wang X. Acquisition pattern of nitrogen by microorganisms and plants affected by gravel mulch in a semiarid Tibetan grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154635. [PMID: 35314218 DOI: 10.1016/j.scitotenv.2022.154635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
As an important coarse inorganic fraction of soil, gravel may regulate the effects of the interaction between above- and belowground communities and affect the relationship between microorganisms and plants in alpine ecosystems. However, comparatively little is known about the effects of gravel on the acquisition pattern of nitrogen (N) by microorganisms and plants in alpine ecosystems. In this study, a 15N-labelling experiment was conducted to investigate the acquisition pattern of organic (15N-glycine) and inorganic N (15N-NO3- and 15N-NH4+) by microorganisms and plants under three particle sizes of gravel mulch (fine: 2-10 mm, medium: 10-20 mm, coarse: 20-40 mm) on a semiarid Tibetan grassland. Gravel mulch significantly improved the 15N recovery of Stipa purpurea, but had no significant impacts on A. nanschanica. Therefore, gravel mulch decreased the ratio of microbial biomass 15N recovery to plant biomass 15N recovery for S. purpurea, but caused little effect on the state of N competition between plants and soil microbes for A. nanschanica. The N absorption preference of plants from both species shifted from an individual preference for 15N-NO3- in the natural (i.e., control) microplots to a common preference for 15N-NO3-and 15N-NH4+ in the fine- and medium-sized gravel mulch microplots, while there were no significant differences in microbial N recovery between 15N-NO3- and 15N-NH4+ across all treatments. The results helped to improve the understanding of the acquisition pattern of N by microorganisms and plants under the influence of gravel mulch in alpine ecosystems, and provide theoretical support for revegetation in alpine ecosystems in the future.
Collapse
Affiliation(s)
- Bo Pang
- Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Xainza Alpine Steppe and Wetland Ecosystem Observation Station, Xainza 853100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Ma
- College of Geographical Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jiangtao Hong
- Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Xainza Alpine Steppe and Wetland Ecosystem Observation Station, Xainza 853100, China.
| | - Xin Xu
- Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Xainza Alpine Steppe and Wetland Ecosystem Observation Station, Xainza 853100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoke Zhang
- School of Public Administration, Hohai university, Nanjing 210098, China
| | - Xiaodan Wang
- Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Xainza Alpine Steppe and Wetland Ecosystem Observation Station, Xainza 853100, China.
| |
Collapse
|
7
|
Hu X, Li W, Liu Q, Yin C. Interactions between species change the uptake of ammonium and nitrate in Abies faxoniana and Picea asperata. TREE PHYSIOLOGY 2022; 42:1396-1410. [PMID: 34962272 DOI: 10.1093/treephys/tpab175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plant nitrogen (N) uptake is affected by plant-plant interactions, but the mechanisms remain unknown. A 15N-labeled technique was used in a pot experiment to analyze the uptake rate of ammonium (NH4+) and nitrate (NO3-) by Abies faxoniana Rehd. et Wils and Picea asperata Mast. in single-plant mode, intraspecific and interspecific interactions. The results indicated that the effects of plant-plant interactions on N uptake rate depended on plant species and N forms. Picea asperata had a higher N uptake rate of both N forms than A. faxoniana, and both species preferred NO3-. Compared with single-plant mode, intraspecific interaction increased NH4+ uptake for A. faxoniana but reduced that for P. asperata, while it did not change NO3- uptake for the two species. The interspecific interaction enhanced N uptake of both N forms for A. faxoniana but did not affect the P. asperata compared with single-plant mode. NH4+ and NO3- uptake rates for the two species were regulated by root N concentration, root nitrate reductase activity, root vigor, soil pH and soil N availability under plant-plant interactions. Decreased NH4+ uptake rate for P. asperata under intraspecific interaction was induced by lower root N concentration and nitrate reductase activity. The positive effects of interspecific interaction on N uptake for A. faxoniana could be determined mainly by positive rhizosphere effects, such as high soil pH. From the perspective of root-soil interactions, our study provides insight into how plant-plant interactions affect N uptake, which can help to understand species coexistence and biodiversity maintenance in forest ecosystems.
Collapse
Affiliation(s)
- Xuefeng Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wanting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
| |
Collapse
|
8
|
Reuter R, Ferlian O, Tarkka M, Eisenhauer N, Pritsch K, Simon J. Tree species rather than type of mycorrhizal association drive inorganic and organic nitrogen acquisition in tree-tree interactions. TREE PHYSIOLOGY 2021; 41:2096-2108. [PMID: 33929538 DOI: 10.1093/treephys/tpab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species' mycorrhizal association, but their uptake rather depended on the competitor, indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that the inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.
Collapse
Affiliation(s)
- Robert Reuter
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Mika Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 5, Halle 06120, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, Leipzig 04103, Germany
| | - Karin Pritsch
- Institute of Biochemical Plant Pathology, HelmholtzZentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Ingolstaedter Landstraße 1, Oberschleiβheim 85764, Germany
| | - Judy Simon
- Plant Interactions Ecophysiology Group, Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
9
|
Cabal C, Martinez-Garcia R, de Castro A, Valladares F, Pacala SW. Future paths for the 'exploitative segregation of plant roots' model. PLANT SIGNALING & BEHAVIOR 2021; 16:1891755. [PMID: 33641625 PMCID: PMC8078527 DOI: 10.1080/15592324.2021.1891755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The exploitative segregation of plant roots (ESPR) is a theory that uses a game-theoretical model to predict plant root foraging behavior in space. The original model returns the optimal root distribution assuming exploitative competition between a pair of identical plants in soils with homogeneous resource dynamics. In this short communication, we explore avenues to develop this model further. We discuss: (i) the response of single plants to soil heterogeneity; (ii) the variability of the plant response under uneven competition scenarios; (iii) the importance of accounting for the constraints and limitations to root growth that may be imposed from the plant shoot; (iv) the importance of root functional traits to predict root foraging behavior; (v) potential model extensions to investigate facilitation by incorporating facilitative traits to roots, and (vi) the possibility of allowing plants to tune their response by accounting for non-self and non-kin root recognition. For each case, we introduce the topic briefly and present possible ways to encode those ingredients in the mathematical equations of the ESPR model, providing preliminary results when possible.
Collapse
Affiliation(s)
- Ciro Cabal
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Ricardo Martinez-Garcia
- International Centre for Theoretical Physics-South American Institute for Fundamental Research - Instituto de Física Teórica da UNESP, São Paulo, Brazil
| | - Aurora de Castro
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN, CSIC, Madrid, Spain
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Fernando Valladares
- Department of Biogeography and Global Change, National Museum of Natural Sciences MNCN, CSIC, Madrid, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Móstoles, Spain
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
10
|
Buoso S, Tomasi N, Said-Pullicino D, Arkoun M, Yvin JC, Pinton R, Zanin L. Characterization of physiological and molecular responses of Zea mays seedlings to different urea-ammonium ratios. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:613-623. [PMID: 33774466 DOI: 10.1016/j.plaphy.2021.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 05/14/2023]
Abstract
Despite the wide use of urea and ammonium as N-fertilizers, no information is available about the proper ratio useful to maximize the efficiency of their acquisition by crops. Ionomic analyses of maize seedlings fed with five different mixes of urea and ammonium indicated that after 7 days of treatment, the elemental composition of plant tissues was more influenced by ammonium in the nutrient solution than by urea. Within 24 h, similar high affinity influx rates of ammonium were measured in ammonium-treated seedlings, independently from the amount of the cation present in the nutrient solution (from 0.5 to 2.0 mM N), and it was confirmed by the similar accumulation of 15N derived from ammonium source. After 7 days, some changes in ammonium acquisition occurred among treatments, with the highest ammonium uptake efficiency when the urea-to-ammonium ratio was 3:1. Gene expression analyses of enzymes and transporters involved in N nutrition highlight a preferential induction of the cytosolic N-assimilatory pathway (via GS, ASNS) when both urea and ammonium were supplied in conjunction, this response might explain the higher N-acquisition efficiency when both sources are applied. In conclusion, this study provides new insights on plant responses to mixes of N sources that maximize the N-uptake efficiency by crops and thus could allow to adapt agronomic practices in order to limit the economic and environmental impact of N-fertilization.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Daniel Said-Pullicino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy.
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France.
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France.
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
11
|
Luo X, Xu X, Zheng Y, Guo H, Hu S. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02004-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Xia ZC, Kong CH, Chen LC, Wang P, Wang SL. A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology 2018; 97:2283-2292. [PMID: 27859072 DOI: 10.1002/ecy.1465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022]
Abstract
Plants may affect the performance of neighboring plants either positively or negatively through interspecific and intraspecific interactions. Productivity of mixed-species systems is ultimately the net result of positive and negative interactions among the component species. Despite increasing knowledge of positive interactions occurring in mixed-species tree systems, relatively little is known about the mechanisms underlying such interactions. Based on data from 25-year-old experimental stands in situ and a series of controlled experiments, we test the hypothesis that a broadleaf, non-N fixing species, Michelia macclurei, facilitates the performance of an autotoxic conifer Chinese fir (Cunninghamia lanceolata) through belowground chemical interactions. Chinese fir roots released the allelochemical cyclic dipeptide (6-hydroxy-1,3-dimethyl-8-nonadecyl-[1,4]-diazocane- 2,5-diketone) into the soil environment, resulting in self-growth inhibition, and deterioration of soil microorganisms that improve P availability. However, when grown with M. macclurei the growth of Chinese fir was consistently enhanced. In particular, Chinese fir enhanced root growth and distribution in deep soil layers. When compared with monocultures of Chinese fir, the presence of M. macclurei reduced release and increased degradation of cyclic dipeptide in the soil, resulting in a shift from self-inhibition to chemical facilitation. This association also improved the soil microbial community by increasing arbuscular mycorrhizal fungi, and induced the production of Chinese fir roots. We conclude that interspecific interactions are less negative than intraspecific ones between non-N fixing broadleaf and autotoxic conifer species. The impacts are generated by reducing allelochemical levels, enhancing belowground mutualisms, improving soil properties, and changing root distributions as well as the net effects of all the processes within the soil. In particular, allelochemical context alters the consequences of the belowground ecological interactions with a novel mechanism: reduction of self-inhibition through reduced release and increased degradation of an autotoxic compound in the mixed-species plantations. Such a mechanism would be useful in reforestation programs undertaken to rehabilitate forest plantations that suffer from problems associated with autotoxicity.
Collapse
Affiliation(s)
- Zhi-Chao Xia
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chui-Hua Kong
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Long-Chi Chen
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Peng Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Si-Long Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
13
|
Song M, Yu L, Jiang Y, Lei Y, Korpelainen H, Niinemets Ü, Li C. Nitrogen-controlled intra- and interspecific competition between Populus purdomii and Salix rehderiana drive primary succession in the Gongga Mountain glacier retreat area. TREE PHYSIOLOGY 2017; 37:799-814. [PMID: 28338926 DOI: 10.1093/treephys/tpx017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
In this study, intra- and interspecific competition were investigated in early successional Salix rehderiana Schneider and later-appearing Populus purdomii Rehder under non-fertilized (control) and nitrogen (N)-fertilized conditions in the Hailuogou glacier retreat area. Our aim was to discover whether N is a key factor in plant-plant competition and whether N drives the primary succession process in a glacier retreat area. We analyzed differences in responses to intra- and interspecific competition and N fertilization between P. purdomii and S. rehderiana, including parameters such as biomass accumulation, nutrient absorption, non-structural carbohydrates, photosynthetic capacity, hydrolysable amino acids and leaf ultrastructure. In the control treatments, S. rehderiana individuals subjected to interspecific competition benefited from the presence of P. purdomii plants, as indicated by higher levels of biomass accumulation, photosynthetic capacity, N absorption, amino acid contents and photosynthetic N-use efficiency. However, in the N-fertilized treatments, P. purdomii individuals exposed to interspecific competition benefited from the presence of S. rehderiana plants, as shown by a higher growth rate, enhanced carbon gain capacity, greater amino acid contents, and elevated water-use efficiency, whereas the growth of S. rehderiana was significantly reduced. Our results demonstrate that N plays a pivotal role in determining the asymmetric competition pattern among Salicaceae species during primary succession. We argue that the interactive effects of plant-plant competition and N availability are key mechanisms that drive primary succession in the Gongga Mountain glacier retreat area.
Collapse
Affiliation(s)
- Mengya Song
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Yu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yonglei Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanbao Lei
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27,University of Helsinki, HelsinkiFI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
14
|
Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol. Appl Microbiol Biotechnol 2017; 101:4669-4681. [DOI: 10.1007/s00253-017-8147-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
15
|
Franklin O, Cambui CA, Gruffman L, Palmroth S, Oren R, Näsholm T. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. PLANT, CELL & ENVIRONMENT 2017; 40:25-35. [PMID: 27241731 PMCID: PMC5217072 DOI: 10.1111/pce.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 05/03/2023]
Abstract
The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower - up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production.
Collapse
Affiliation(s)
- Oskar Franklin
- Ecosystems Services and Management ProgramInternational Institute for Applied Systems AnalysisA‐2361LaxenburgAustria
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Camila Aguetoni Cambui
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesSE‐901 85UmeåSweden
| | - Linda Gruffman
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Sari Palmroth
- Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamNC27708USA
| | - Ram Oren
- Nicholas School of the Environment and Earth SciencesDuke UniversityDurhamNC27708USA
| | - Torgny Näsholm
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesSE‐901 85UmeåSweden
- Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| |
Collapse
|
16
|
Putten WH, Bradford MA, Pernilla Brinkman E, Voorde TFJ, Veen GF. Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12657] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wim H. Putten
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
- Laboratory of Nematology Wageningen University PO Box 8123 6700 ES Wageningen The Netherlands
| | - Mark A. Bradford
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
- School of Forestry and Environmental Studies Yale University New Haven CT 06511 USA
| | - E. Pernilla Brinkman
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| | - Tess F. J. Voorde
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| | - G. F. Veen
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| |
Collapse
|
17
|
Lou Y, Clay SA, Davis AS, Dille A, Felix J, Ramirez AHM, Sprague CL, Yannarell AC. An affinity-effect relationship for microbial communities in plant-soil feedback loops. MICROBIAL ECOLOGY 2014; 67:866-76. [PMID: 24402363 PMCID: PMC3984409 DOI: 10.1007/s00248-013-0349-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Feedback loops involving soil microorganisms can regulate plant populations. Here, we hypothesize that microorganisms are most likely to play a role in plant-soil feedback loops when they possess an affinity for a particular plant and the capacity to consistently affect the growth of that plant for good or ill. We characterized microbial communities using whole-community DNA fingerprinting from multiple "home-and-away" experiments involving giant ragweed (Ambrosia trifida L.) and common sunflower (Helianthus annuus L.), and we looked for affinity-effect relationships in these microbial communities. Using canonical ordination and partial least squares regression, we developed indices expressing each microorganism's affinity for ragweed or sunflower and its putative effect on plant biomass, and we used linear regression to analyze the relationship between microbial affinity and effect. Significant linear affinity-effect relationships were found in 75 % of cases. Affinity-effect relationships were stronger for ragweed than for sunflower, and ragweed affinity-effect relationships showed consistent potential for negative feedback loops. The ragweed feedback relationships indicated the potential involvement of multiple microbial taxa, resulting in strong, consistent affinity-effect relationships in spite of large-scale microbial variability between trials. In contrast, sunflower plant-soil feedback may involve just a few key players, making it more sensitive to underlying microbial variation. We propose that affinity-effect relationship can be used to determine key microbial players in plant-soil feedback against a low "signal-to-noise" background of complex microbial datasets.
Collapse
Affiliation(s)
- Yi Lou
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, 1102 S. Goodwin Avenue, Urbana, IL 61801 USA
| | - Sharon A. Clay
- Department of Plant Science, South Dakota State University, Brookings, SD USA
| | - Adam S. Davis
- USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL USA
| | - Anita Dille
- Department of Agronomy, Kansas State University, Manhattan, KS USA
| | - Joel Felix
- Department of Crop and Soil Science, Oregon State University, Corvalis, OR USA
| | | | - Christy L. Sprague
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI USA
| | - Anthony C. Yannarell
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, 1102 S. Goodwin Avenue, Urbana, IL 61801 USA
| |
Collapse
|
18
|
Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. THE NEW PHYTOLOGIST 2013; 198:656-669. [PMID: 23521345 DOI: 10.1111/nph.12235] [Citation(s) in RCA: 355] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/18/2013] [Indexed: 05/06/2023]
Abstract
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.
Collapse
Affiliation(s)
- Yakov Kuzyakov
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), PO Box 9725, Beijing, 100101, China
- Department of Soil Science of Temperate Ecosystems, Göttingen, Germany
- Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), PO Box 9725, Beijing, 100101, China
| |
Collapse
|
19
|
Medina-Roldán E, Bardgett RD. Inter-specific competition, but not different soil microbial communities, affects N chemical forms uptake by competing graminoids of upland grasslands. PLoS One 2012; 7:e51193. [PMID: 23236451 PMCID: PMC3517470 DOI: 10.1371/journal.pone.0051193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022] Open
Abstract
Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists' interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. Here, we report results from a competition experiment testing the hypothesis that soil microbial communities differing in metabolic activity as a result of long-term differences to grazing exposure could modify N uptake of Eriophorum vaginatum L. and Nardus stricta L. These graminoids co-occur on nutrient-poor, mountain grasslands where E. vaginatum decreases and N. stricta increases in response to long-term grazing. We inoculated sterilised soil with soil microbial communities from continuously grazed and ungrazed grasslands and planted soils with both E. vaginatum and N. stricta, and then tracked uptake of isotopically labelled NH(4) (+) (IN) and glycine (ON) into plant tissues. The metabolically different microbial communities had no effect on N uptake by either of the graminoids, which might suggest functional equivalence of soil microbes in their impacts on plant N uptake. Consistent with its dominance in soils with greater concentrations of ON relative to IN in the soluble N pool, Eriophorum vaginatum took up more glycine than N. stricta. Nardus stricta reduced the glycine proportion taken up by E. vaginatum, thus increasing niche overlap in N usage between these species. Local abundances of these species in mountain grasslands are principally controlled by grazing and soil moisture, although our results suggest that changes in the relative availability of ON to IN can also play a role. Our results also suggest that coexistence of these species in mountain grasslands is likely based on non-equilibrium mechanisms such as disturbance and/or soil heterogeneity.
Collapse
Affiliation(s)
- Eduardo Medina-Roldán
- Soil and Ecosystem Ecology Laboratory, Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
| | | |
Collapse
|
20
|
von Felten S, Niklaus PA, Scherer-Lorenzen M, Hector A, Buchmann N. Do grassland plant communities profit from N partitioning by soil depth? Ecology 2012; 93:2386-96. [DOI: 10.1890/11-1439.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Gundale MJ, Hyodo F, Nilsson MC, Wardle DA. Nitrogen niches revealed through species and functional group removal in a boreal shrub community. Ecology 2012; 93:1695-706. [DOI: 10.1890/11-1877.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 2012; 66:265-83. [PMID: 22726216 PMCID: PMC3525954 DOI: 10.1146/annurev-micro-092611-150107] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.
Collapse
Affiliation(s)
- James D. Bever
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Thomas G. Platt
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Elise R. Morton
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
23
|
Knapp AK, Smith MD, Hobbie SE, Collins SL, Fahey TJ, Hansen GJA, Landis DA, La Pierre KJ, Melillo JM, Seastedt TR, Shaver GR, Webster JR. Past, Present, and Future Roles of Long-Term Experiments in the LTER Network. Bioscience 2012. [DOI: 10.1525/bio.2012.62.4.9] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
|
25
|
Trinder CJ, Brooker RW, Davidson H, Robinson D. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate. PLoS One 2012; 7:e29413. [PMID: 22247775 PMCID: PMC3256146 DOI: 10.1371/journal.pone.0029413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022] Open
Abstract
Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.
Collapse
Affiliation(s)
- Clare J Trinder
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Gubsch M, Roscher C, Gleixner G, Habekost M, Lipowsky A, Schmid B, Schulze ED, Steinbeiss S, Buchmann N. Foliar and soil δ15N values reveal increased nitrogen partitioning among species in diverse grassland communities. PLANT, CELL & ENVIRONMENT 2011; 34:895-908. [PMID: 21332507 DOI: 10.1111/j.1365-3040.2011.02287.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant and soil nitrogen isotope ratios (δ¹⁵N) were studied in experimental grassland plots of varying species richness. We hypothesized that partitioning of different sources of soil nitrogen among four plant functional groups (legumes, grasses, small herbs, tall herbs) should increase with diversity. Four years after sowing, all soils were depleted in ¹⁵N in the top 5 cm whereas in non-legume plots soils were enriched in ¹⁵N at 5-25 cm depth. Decreasing foliar δ¹⁵N and Δδ¹⁵N (= foliar δ¹⁵N-soil δ¹⁵N) values in legumes indicated increasing symbiotic N₂ fixation with increasing diversity. In grasses, foliar Δδ¹⁵N also decreased with increasing diversity suggesting enhanced uptake of N depleted in ¹⁵N. Foliar Δδ¹⁵N values of small and tall herbs were unaffected by diversity. Foliar Δδ¹⁵N values of grasses were also reduced in plots containing legumes, indicating direct use of legume-derived N depleted in ¹⁵N. Increased foliar N concentrations of tall and small herbs in plots containing legumes without reduced foliar δ¹⁵N indicated that these species obtained additional mineral soil N that was not consumed by legumes. These functional group and species specific shifts in the uptake of different N sources with increasing diversity indicate complementary resource use in diverse communities.
Collapse
Affiliation(s)
- Marlén Gubsch
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Christiane Roscher
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Gerd Gleixner
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Maike Habekost
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Annett Lipowsky
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Bernhard Schmid
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Ernst-Detlef Schulze
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sibylle Steinbeiss
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Nina Buchmann
- Institute of Plant, Animal and Agroecosystem Sciences, ETH Zurich, Universitaetsstrasse 2, CH-8092 Zurich, SwitzerlandMax Planck Institute for Biogeochemistry, POB 100164, D-07701 Jena, GermanyUFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Strasse 4, D-06120 Halle, GermanyInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandInstitute of Groundwater Ecology, Helmholtz Zentrum Munchen, German Research Centre for Environmental Health GmbH, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| |
Collapse
|
27
|
Structure and spatial self-organization of semi-arid communities through plant–plant co-occurrence networks. ECOLOGICAL COMPLEXITY 2011. [DOI: 10.1016/j.ecocom.2011.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Wang L, Macko SA. Constrained preferences in nitrogen uptake across plant species and environments. PLANT, CELL & ENVIRONMENT 2011; 34:525-34. [PMID: 21118424 DOI: 10.1111/j.1365-3040.2010.02260.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Knowledge of determining factors for nitrogen uptake preferences and how they are modified in changing environments are critical to understand ecosystem nitrogen cycling and to predict plant responses to future environmental changes. Two ¹⁵N tracer experiments utilizing a unique differential labelled nitrogen source were employed in both African savannas and greenhouse settings. The results demonstrated that nitrogen uptake preferences were constrained by the climatic conditions. As mainly indicated by root δ¹⁵N signatures at 1:1 ammonium/nitrate ratio, in the drier environments, plants preferred nitrate and in the wetter environments they preferred ammonium. Nitrogen uptake preferences were different across different ecosystems (e.g. from drier to wetter environments) even for the same species. More significantly, our experiments showed that the plant progeny continued to exhibit the same nitrogen preference as the parent plants in the field, even when removed from their native environment and the nitrogen source was changed dramatically. The climatic constraint of nitrogen uptake preference is likely influenced by ammonium/nitrate ratios in the native habitats of the plants. The constancy in nitrogen preference has important implications in predicting the success of plant communities in their response to climate change, to seed bank use and to reforestation efforts.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
29
|
Spasojevic MJ, Suding KN. Contrasting effects of hemiparasites on ecosystem processes: can positive litter effects offset the negative effects of parasitism? Oecologia 2011; 165:193-200. [PMID: 20658151 PMCID: PMC3015203 DOI: 10.1007/s00442-010-1726-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/08/2010] [Indexed: 10/26/2022]
Abstract
Hemiparasites are known to influence community structure and ecosystem functioning, but the underlying mechanisms are not well studied. Variation in the impacts of hemiparasites on diversity and production could be due to the difference in the relative strength of two interacting pathways: direct negative effects of parasitism and positive effects on N availability via litter. Strong effects of parasitism should result in substantial changes in diversity and declines in productivity. Conversely, strong litter effects should result in minor changes in diversity and increased productivity. We conducted field-based surveys to determine the association of Castilleja occidentalis with diversity and productivity in the alpine tundra. To examine litter effects, we compared the decomposition of Castilleja litter with litter of four other abundant plant species, and examined the decomposition of those four species when mixed with Castilleja. Castilleja was associated with minor changes in diversity but almost a twofold increase in productivity and greater foliar N in co-occurring species. Our decomposition trials suggest litter effects are due to both the rapid N loss of Castilleja litter and the effects of mixing Castilleja litter with co-occurring species. Castilleja produces litter that accelerates decomposition in the alpine tundra, which could accelerate the slow N cycle and boost productivity. We speculate that these positive effects of litter outweigh the effects of parasitism in nutrient-poor systems with long-lived hemiparasites. Determining the relative importance of parasitism and litter effects of this functional group is crucial to understand the strong but variable roles hemiparasites play in affecting community structure and ecosystem processes.
Collapse
Affiliation(s)
- Marko J Spasojevic
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
30
|
Nie M, Lu M, Yang Q, Zhang XD, Xiao M, Jiang LF, Yang J, Fang CM, Chen JK, Li B. Plants' use of different nitrogen forms in response to crude oil contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:157-163. [PMID: 20951484 DOI: 10.1016/j.envpol.2010.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 05/30/2023]
Abstract
In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination.
Collapse
Affiliation(s)
- Ming Nie
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China; Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, PR China
| | - Meng Lu
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Qiang Yang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Xiao-Dong Zhang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Ming Xiao
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Li-Fen Jiang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Ji Yang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Chang-Ming Fang
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China
| | - Jia-Kuan Chen
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China; Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, PR China
| | - Bo Li
- Coastal Ecosystems Research Station of the Yangtze River Estuary, Ministry of Education, Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, PR China; Centre for Watershed Ecology, Institute of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
31
|
Ashton IW, Miller AE, Bowman WD, Suding KN. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 2010; 91:3252-60. [DOI: 10.1890/09-1849.1] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 2010; 25:468-78. [PMID: 20557974 PMCID: PMC2921684 DOI: 10.1016/j.tree.2010.05.004] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 11/28/2022]
Abstract
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and propose that these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance and invasion ecology.
Collapse
Affiliation(s)
- James D Bever
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for plant N nutrition is still a matter of discussion. Several lines of evidence suggest that plants growing in various ecosystems may access organic N species. Many soils display amino acid concentrations similar to, or higher than, those of inorganic N, mainly as a result of rapid hydrolysis of soil proteins. Transporters mediating amino acid uptake have been identified both in mycorrhizal fungi and in plant roots. Studies of endogenous metabolism of absorbed amino acids suggest that L- but not D-enantiomers are efficiently utilized. Dual labelled amino acids supplied to soil have provided strong evidence for plant uptake of organic N in the field but have failed to provide information on the quantitative importance of this process. Thus, direct evidence that organic N contributes significantly to plant N nutrition is still lacking. Recent progress in our understanding of the mechanisms underlying plant organic N uptake may open new avenues for the exploration of this subject.
Collapse
Affiliation(s)
- Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Knut Kielland
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775-0180, USA
| | - Ulrika Ganeteg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|