1
|
Martín-Cacheda L, Röder G, Abdala-Roberts L, Moreira X. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. J Chem Ecol 2024; 50:562-572. [PMID: 38904862 PMCID: PMC11493820 DOI: 10.1007/s10886-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116,, Yucatán, Itzimná, 97000. Mérida, México
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, 36080, Spain.
| |
Collapse
|
2
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
3
|
Penczykowski RM, Sieg RD. Plantago spp. as Models for Studying the Ecology and Evolution of Species Interactions across Environmental Gradients. Am Nat 2021; 198:158-176. [PMID: 34143715 DOI: 10.1086/714589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractA central challenge in ecology and evolutionary biology is to understand how variation in abiotic and biotic factors combine to shape the distribution, abundance, and diversity of focal species. Environmental gradients, whether natural (e.g., latitude, elevation, ocean proximity) or anthropogenic (e.g., land-use intensity, urbanization), provide compelling settings for addressing this challenge. However, not all organisms are amenable to the observational and experimental approaches required for untangling the factors that structure species along gradients. Here we highlight herbaceous plants in the genus Plantago as models for studying the ecology and evolution of species interactions along abiotic gradients. Plantago lanceolata and P. major are native to Europe and Asia but distributed globally, and they are established models for studying population ecology and interactions with herbivores, pathogens, and soil microbes. Studying restricted range congeners in comparison with those cosmopolitan species can provide insight into abiotic and biotic determinants of range size and population structure. We highlight one such species, P. rugelii, which is endemic to eastern North America. We give an overview of the literature on these focal Plantago species and explain why they are logical candidates for studies of species interactions across environmental gradients. Finally, we emphasize collaborative and community science approaches that can facilitate such research and note the amenability of Plantago for authentic research projects in science education.
Collapse
|
4
|
Filgueiras CC, Martins AD, Pereira RV, Willett DS. The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. Int J Mol Sci 2019; 20:E5851. [PMID: 31766518 PMCID: PMC6928651 DOI: 10.3390/ijms20235851] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Collapse
|
5
|
Heinen R, Biere A, Bezemer TM. Plant traits shape soil legacy effects on individual plant–insect interactions. OIKOS 2019. [DOI: 10.1111/oik.06812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Robin Heinen
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| | - Arjen Biere
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
| | - T. Martijn Bezemer
- the Netherlands Inst. of Ecology (NIOO‐KNAW), Dept of Terrestrial Ecology Wageningen the Netherlands
- Inst. of Biology, Leiden Univ. Leiden the Netherlands
| |
Collapse
|
6
|
Reduced caterpillar damage can benefit plant bugs in Bt cotton. Sci Rep 2019; 9:2727. [PMID: 30804420 PMCID: PMC6390097 DOI: 10.1038/s41598-019-38917-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bt cotton was genetically modified to produce insecticidal proteins targeting Lepidopteran pests and is therefore only minimally affected by caterpillar damage. This could lead to reduced levels of inherent, systemically inducible defensive compounds in Bt cotton which might benefit other important cotton herbivores such as plant bugs. We studied the effects of plant defense induction on the performance of the plant bug Lygus hesperus by caging nymphs on different food sources (bolls/squares) of Bt and non-Bt cotton which were either undamaged, damaged by Bt tolerant caterpillars, or treated with jasmonic acid (JA). Terpenoid induction patterns of JA-treated and L. hesperus-damaged plants were characterized for different plant structures and artificial diet assays using purified terpenoids (gossypol/heliocide H1/4) were conducted. Nymphs were negatively affected if kept on plants damaged by caterpillars or sprayed with JA. Performance of nymphs was increased if they fed on squares and by the Bt-trait which had a positive effect on boll quality as food. In general, JA-sprayed plants (but not L. hesperus infested plants) showed increased levels of terpenoids in the plant structures analyzed, which was especially pronounced in Bt cotton. Nymphs were not negatively affected by terpenoids in artificial diet assays indicating that other inducible cotton responses are responsible for the found negative effects on L. hesperus. Overall, genetically engineered plant defenses can benefit plant bugs by releasing them from plant-mediated indirect competition with lepidopterans which might contribute to increasing numbers of hemipterans in Bt cotton.
Collapse
|
7
|
Xiao L, Carrillo J, Siemann E, Ding J. Herbivore-specific induction of indirect and direct defensive responses in leaves and roots. AOB PLANTS 2019; 11:plz003. [PMID: 30792834 PMCID: PMC6378760 DOI: 10.1093/aobpla/plz003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 05/07/2023]
Abstract
Herbivory can induce both general and specific responses in plants that modify direct and indirect defence against subsequent herbivory. The type of induction (local versus systemic induction, single versus multiple defence induction) likely depends both on herbivore identity and relationships among different responses. We examined the effects of two above-ground chewing herbivores (caterpillar, weevil) and one sucking herbivore (aphid) on indirect defence responses in leaves and direct defence responses in both leaves and roots of tallow tree, Triadica sebifera. We also included foliar applications of methyl jasmonate (MeJA) and salicylic acid (SA). We found that chewing herbivores and MeJA increased above-ground defence chemicals but SA only increased below-ground total flavonoids. Herbivory or MeJA increased above-ground indirect defence response (extrafloral nectar) but SA decreased it. Principal component analysis showed there was a trade-off between increasing total root phenolics and tannins (MeJA, chewing) versus latex and total root flavonoids (aphid, SA). For individual flavonoids, there was evidence for systemic induction (quercetin), trade-offs between compounds (quercetin versus kaempferitrin) and trade-offs between above-ground versus below-ground production (isoquercetin). Our results suggest that direct and indirect defence responses in leaves and roots depend on herbivore host range and specificity along with feeding mode. We detected relationships among some defence response types, while others were independent. Including multiple types of insects to examine defence inductions in leaves and roots may better elucidate the complexity and specificity of defence responses of plants.
Collapse
Affiliation(s)
- Li Xiao
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juli Carrillo
- Faculty of Land and Food Systems, Centre for Sustainable Food Systems, Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, USA
| | - Jianqing Ding
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Corresponding author’s e-mail address:
| |
Collapse
|
8
|
de Oliveira EF, Pallini A, Janssen A. Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. INSECT SCIENCE 2019. [PMID: 28636085 DOI: 10.1111/1744-7917.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that herbivore-induced plant defenses alter host plant quality and can affect the behavior and performance of later arriving herbivores. Effects of sequential attacks by herbivores that either suppress or induce plant defenses are less well studied. We sequentially infested leaves of tomato plants with a strain of the phytophagous spider mite Tetranychus urticae that induces plant defenses and the closely related Tetranychus evansi, which suppresses plant defenses. Plant quality was quantified through oviposition of both spider mite species and by measuring proteinase inhibitor activity using plant material that had been sequentially attacked by both herbivore species. Spider-mite oviposition data show that T. evansi could suppress an earlier induction of plant defenses by T. urticae, and T. urticae could induce defenses in plants previously attacked by T. evansi in 1 day. Longer attacks by the second species did not result in further changes in oviposition. Proteinase inhibitor activity levels showed that T. evansi suppressed the high activity levels induced by T. urticae to constitutive levels in 1 day, and further suppressed activity to levels similar to those in plants attacked by T. evansi alone. Attacks by T. urticae induced proteinase inhibitor activity in plants previously attacked by T. evansi, eventually to similar levels as induced by T. urticae alone. Hence, plant quality and plant defenses were significantly affected by sequential attacks and the order of attack does not affect subsequent performance, but does affect proteinase inhibitor activity levels. Based on our results, we discuss the evolution of suppression of plant defenses.
Collapse
Affiliation(s)
- Elisa Faria de Oliveira
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
- Department of Entomology, Federal University of Lavras, Lavras, MG, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Arne Janssen
- Section Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Zhu F, Heinen R, van der Sluijs M, Raaijmakers C, Biere A, Bezemer TM. Species-specific plant-soil feedbacks alter herbivore-induced gene expression and defense chemistry in Plantago lanceolata. Oecologia 2018; 188:801-811. [PMID: 30109421 PMCID: PMC6208702 DOI: 10.1007/s00442-018-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Plants actively interact with antagonists and beneficial organisms occurring in the above- and belowground domains of terrestrial ecosystems. In the past decade, studies have focused on the role of plant-soil feedbacks (PSF) in a broad range of ecological processes. However, PSF and its legacy effects on plant defense traits, such as induction of defense-related genes and production of defensive secondary metabolites, have not received much attention. Here, we study soil legacy effects created by twelve common grassland plant species on the induction of four defense-related genes, involved in jasmonic acid signaling, related to chewing herbivore defense (LOX2, PPO7), and in salicylic acid signaling, related to pathogen defense (PR1 and PR2) in Plantago lanceolata in response to aboveground herbivory by Mamestra brassicae. We also assessed soil legacy and herbivory effects on the production of terpenoid defense compounds (the iridoid glycosides aucubin and catalpol) in P. lanceolata. Our results show that both soil legacy and herbivory influence phenotypes of P. lanceolata in terms of induction of Pl PPO7 and Pl LOX2, whereas the expression of Pl PR1 and Pl PR2-1 is not affected by soil legacies, nor by herbivory. We also find species-specific soil legacy effects on the production of aucubin. Moreover, P. lanceolata accumulates more catalpol when they are grown in soils conditioned by grass species. Our study highlights that PSF can influence aboveground plant-insect interactions through the impacts on plant defense traits and suggests that aboveground plant defense responses can be determined, at least partly, by plant-specific legacy effects induced by belowground organisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
| | - Robin Heinen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands.
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands.
| | - Martijn van der Sluijs
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Ciska Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg, 6708PB, Wageningen, The Netherlands
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300RA, Leiden, The Netherlands
| |
Collapse
|
10
|
Heinen R, Biere A, Harvey JA, Bezemer TM. Effects of Soil Organisms on Aboveground Plant-Insect Interactions in the Field: Patterns, Mechanisms and the Role of Methodology. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
STAM JELTJEM, CHRÉTIEN LUCILLE, DICKE MARCEL, POELMAN ERIKH. Response of Brassica oleracea to temporal variation in attack by two herbivores affects preference and performance of a third herbivore. ECOLOGICAL ENTOMOLOGY 2017; 42:803-815. [PMID: 29200601 PMCID: PMC5698737 DOI: 10.1111/een.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 05/21/2023]
Abstract
1. Plants are frequently under attack by multiple insect herbivores, which may interact indirectly through herbivore-induced changes in the plant's phenotype. The identity, order, and timing of herbivore arrivals may influence the outcome of interactions between two herbivores. How these aspects affect, in turn, subsequently arriving herbivores that feed on double herbivore-induced plants has not been widely investigated. 2. This study tested whether the order and timing of arrival of two inducing herbivores from different feeding guilds affected the preference and performance of a subsequently arriving third herbivore, caterpillars of Mamestra brassicae L. (Lepidoptera: Noctuidae). Aphids [Brevicoryne brassicae L. (Hemiptera: Aphididae)] and caterpillars [Plutella xylostella L. (Lepidoptera: Yponomeutidae)] were introduced onto wild Brassica oleracea L. (Brassicaceae) plants in different sequences and with different arrival times. The effects of these plant treatments on M. brassicae caterpillars were assessed in pairwise preference tests and no-choice performance tests. 3. The caterpillars of M. brassicae preferred to feed from undamaged plants rather than double herbivore-induced plants. Compared with undamaged plants, they preferred plant material on which aphids had arrived first followed by caterpillars, whereas they avoided plant material with the reverse order of herbivore arrival. Performance of the caterpillars increased with increasing arrival time between herbivore infestations in double herbivore-induced plants. Although M. brassicae grew faster on plants induced by aphids than on those induced by caterpillars alone, its performance was not affected by the order of previous herbivore arrival. 4. These results imply that the timing of colonisation by multiple herbivores determines the outcome of plant-mediated herbivore-herbivore interactions.
Collapse
Affiliation(s)
- JELTJE M. STAM
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - LUCILLE CHRÉTIEN
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Biology Department, Master Biosciences, École Normale Supérieure de LyonUniversité Claude Bernard Lyon 1Lyon Cedex 07France
| | - MARCEL DICKE
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - ERIK H. POELMAN
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
12
|
Huang W, Robert CAM, Hervé MR, Hu L, Bont Z, Erb M. A mechanism for sequence specificity in plant-mediated interactions between herbivores. THE NEW PHYTOLOGIST 2017; 214:169-179. [PMID: 27898177 PMCID: PMC6079637 DOI: 10.1111/nph.14328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/11/2016] [Indexed: 05/20/2023]
Abstract
Herbivore communities are shaped by indirect plant-mediated interactions whose outcomes are strongly dependent on the sequence of herbivore arrival. However, the mechanisms underlying sequence specificity are poorly understood. We examined the mechanisms that govern sequence-specific effects of the interaction between two specialist maize herbivores, the leaf feeder Spodoptera frugiperda and the root feeder Diabrotica virgifera virgifera. In the field, S. frugiperda reduces D. v. virgifera abundance, but only when it arrives on the plant first. In behavioral experiments, D. v. virgifera larvae continued feeding on plants that they had infested before leaf infestation, but refused to initiate feeding on plants that were infested by S. frugiperda before their arrival. Changes in root-emitted volatiles were sufficient to elicit this sequence-specific behavior. Root volatile and headspace mixing experiments showed that early-arriving D. v. virgifera larvae suppressed S. frugiperda-induced volatile repellents, which led to the maintenance of host attractiveness to D. v. virgifera. Our study provides a physiological and behavioral mechanism for sequence specificity in plant-mediated interactions and suggests that physiological canalization of behaviorally active metabolites can drive sequence specificity and result in strongly diverging herbivore distribution patterns.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | | | - Maxime R. Hervé
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
- INRAUMR1349 IGEPPLe RheuF‐35653France
| | - Lingfei Hu
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | - Zoe Bont
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernAltenbergrain 21Bern3013Switzerland
| |
Collapse
|
13
|
Li X, Guo W, Siemann E, Wen Y, Huang W, Ding J. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense. Oecologia 2016; 182:1107-1115. [PMID: 27623939 DOI: 10.1007/s00442-016-3719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022]
Abstract
Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.
Collapse
Affiliation(s)
- Xiaoqiong Li
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Wenfeng Guo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, 77005, USA
| | - Yuanguang Wen
- College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
14
|
Hernandez-Cumplido J, Glauser G, Benrey B. Cascading effects of early-season herbivory on late-season herbivores and their parasitoids. Ecology 2016; 97:1283-97. [DOI: 10.1890/15-1293.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Johnattan Hernandez-Cumplido
- Laboratory of Evolutionary Entomology; Institute of Biology; Université de Neuchâtel (UNINE); Emile Argand 11 2009 Neuchâtel Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry; University of Neuchâtel; Rue Emile Argand 11 2009 Neuchâtel Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology; Institute of Biology; Université de Neuchâtel (UNINE); Emile Argand 11 2009 Neuchâtel Switzerland
| |
Collapse
|
15
|
Lu J, Robert CAM, Lou Y, Erb M. A conserved pattern in plant-mediated interactions between herbivores. Ecol Evol 2016; 6:1032-40. [PMID: 26811746 PMCID: PMC4720690 DOI: 10.1002/ece3.1922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023] Open
Abstract
Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.
Collapse
Affiliation(s)
- Jing Lu
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Insect Sciences Zhejiang University Zijingang Campus, Yuhangtang Road 866 Hangzhou 310058 China
| | - Christelle A M Robert
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Plant Sciences University of Bern Altenbergrain 213013 Bern Switzerland
| | - Yonggen Lou
- Institute of Insect Sciences Zhejiang University Zijingang Campus, Yuhangtang Road 866 Hangzhou 310058 China
| | - Matthias Erb
- Root Herbivore Interactions Group Department of Biochemistry Max Planck Institute for Chemical Ecology Hans-Knöll-Str. 2107745 Jena Germany; Institute of Plant Sciences University of Bern Altenbergrain 213013 Bern Switzerland
| |
Collapse
|
16
|
Responses of community-level plant-insect interactions to climate warming in a meadow steppe. Sci Rep 2015; 5:18654. [PMID: 26686758 PMCID: PMC4685464 DOI: 10.1038/srep18654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
Climate warming may disrupt trophic interactions, consequently influencing ecosystem functioning. Most studies have concentrated on the temperature-effects on plant-insect interactions at individual and population levels, with a particular emphasis on changes in phenology and distribution. Nevertheless, the available evidence from the community level is limited. A 3-year field manipulative experiment was performed to test potential responses of plant and insect communities, and plant-insect interactions, to elevated temperature in a meadow steppe. Warming increased the biomass of plant community and forbs, and decreased grass biomass, indicating a shift from grass-dominant to grass-forb mixed plant community. Reduced abundance of the insect community under warming, particularly the herbivorous insects, was attributed to lower abundance of Euchorthippus unicolor and a Cicadellidae species resulting from lower food availability and higher defensive herbivory. Lower herbivore abundance caused lower predator species richness because of reduced prey resources and contributed to an overall decrease in insect species richness. Interestingly, warming enhanced the positive relationship between insect and plant species richness, implying that the strength of the plant-insect interactions was altered by warming. Our results suggest that alterations to plant-insect interactions at a community level under climate warming in grasslands may be more important and complex than previously thought.
Collapse
|
17
|
Wang M, Bezemer TM, van der Putten WH, Biere A. Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status. J Chem Ecol 2015; 41:1006-17. [PMID: 26552915 PMCID: PMC4670619 DOI: 10.1007/s10886-015-0644-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, P.O. Box 8132, 6700 ES, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
18
|
Moreira X, Abdala-Roberts L, Hernández-Cumplido J, Cuny MAC, Glauser G, Benrey B. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory. AMERICAN JOURNAL OF BOTANY 2015; 102:1300-1308. [PMID: 26290553 DOI: 10.3732/ajb.1500255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Following herbivore attack, plants can either reduce damage by inducing defenses or mitigate herbivory effects through compensatory growth and reproduction. It is increasingly recognized that such induced defenses in plants are herbivore-specific, but less is known about the specificity of compensatory responses. Damage by multiple herbivores may also lead to synergistic effects on induction and plant fitness that differ from those caused by a single herbivore species. Although largely unstudied, the order of arrival and damage by different herbivore species might also play an important role in the impacts of herbivory on plants.• METHODS We investigated the specificity of defense induction (phenolics) and effects on growth (number of stems and leaves) and reproduction (number of seeds, seed mass, and germination rate) from feeding by two generalist leaf-chewing herbivores (Spodoptera eridania and Diabrotica balteata) on Phaseolus lunatus plants and evaluated whether simultaneous attack by both herbivores and their order of arrival influenced such dynamics.• KEY RESULTS Herbivory increased levels of leaf phenolics, but such effects were not herbivore-specific. In contrast, herbivory enhanced seed germination in an herbivore-specific manner. For all variables measured, the combined effects of both herbivore species did not differ from their individual effects. Finally, the order of herbivore arrival did not influence defense induction, plant growth, or seed number but did influence seed mass and germination.• CONCLUSIONS Overall, this study highlights novel aspects of the specificity of plant responses induced by damage from multiple species of herbivores and uniquely associates such effects with plant lifetime fitness.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28 36080 Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autonoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, México
| | - Johnattan Hernández-Cumplido
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Maximilien A C Cuny
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutive Entomology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
19
|
Milano NJ, Barber NA, Adler LS. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore. ENVIRONMENTAL ENTOMOLOGY 2015; 44:317-324. [PMID: 26313185 DOI: 10.1093/ee/nvv003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.
Collapse
Affiliation(s)
- N J Milano
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| | - N A Barber
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., DeKalb, IL 60115.
| | - L S Adler
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| |
Collapse
|
20
|
Kleine S, Müller C. Drought Stress and Leaf Herbivory Affect Root Terpenoid Concentrations and Growth of Tanacetum vulgare. J Chem Ecol 2014; 40:1115-25. [DOI: 10.1007/s10886-014-0505-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
|
21
|
Huang W, Siemann E, Xiao L, Yang X, Ding J. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions. Nat Commun 2014; 5:4851. [PMID: 25241651 PMCID: PMC4199110 DOI: 10.1038/ncomms5851] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023] Open
Abstract
Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase conspecific adult feeding, but decrease heterospecific aboveground insect feeding and abundance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow herbivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and belowground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. It is unclear how herbivores determine community structure. Here the authors show how interactions between aboveground adults and belowground larvae of a tree flea beetle and multiple heterospecific aboveground species interact via plant defence responses to determine herbivore performance.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Li Xiao
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefang Yang
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|