1
|
Brandl SJ, Yan HF, Casey JM, Schiettekatte NMD, Renzi JJ, Mercière A, Morat F, Côté IM, Parravicini V. A seascape dichotomy in the role of small consumers for coral reef energy fluxes. Ecology 2025; 106:e70065. [PMID: 40125610 DOI: 10.1002/ecy.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 03/25/2025]
Abstract
Biogeochemical fluxes through ecological communities underpin the functioning of ecosystems worldwide. These fluxes are often heavily influenced by small-bodied consumers, such as insects, worms, mollusks, or small vertebrates, which transfer energy and nutrients from autotrophic sources to larger animals. Although coral reefs are one of the most productive ecosystems in the world, we know relatively little about how small consumers make energy available to larger predators and how their roles may vary across reefs. Here, we use community-scale collections of small, bottom-dwelling ("cryptobenthic") reef fishes along with size spectrum analyses, stable isotopes, and demographic modeling to examine their role in harnessing and transferring carbon in two distinct coral reef habitats. Using a comprehensive dataset from Mo'orea (French Polynesia), we demonstrate that, despite only being separated by a narrow reef crest, forereef and backreef habitats harbor distinct communities of cryptobenthic fishes that play vastly divergent roles in carbon transfer. Forereef communities in Mo'orea are depauperate, largely consisting of predatory and planktivorous species that have comparatively high standing biomass (both individually and collectively). In these communities, the combination of size spectra and isotope values suggests important contributions of pelagic subsidies, but the rate of biomass production and turnover (i.e., the rate at which biomass is replenished) is relatively low. In contrast, cryptobenthic fish communities in the backreef are characterized by high abundances of the smallest bodied species, forming a traditional bottom-heavy trophic pyramid that is fueled by benthic autotrophs. In these communities, benthic productivity fuels rapid production and turnover of fish biomass, while pelagic energy channels are notably less productive. Our integrative approach demonstrates the utility of combining multiple methods (e.g., isotopically informed demographic models) to trace energy fluxes through small consumer communities in complex ecosystems. Furthermore, our results highlight that coral reef productivity dynamics are highly habitat-dependent and the role of the smallest coral reef consumers may be most pronounced in shallow systems with limited connectivity to the open ocean.
Collapse
Affiliation(s)
- Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Helen F Yan
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jordan M Casey
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Nina M D Schiettekatte
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Julianna J Renzi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Alexandre Mercière
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| | - Fabien Morat
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| | - Isabelle M Côté
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valeriano Parravicini
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, Pyrénées-Orientales, France
| |
Collapse
|
2
|
Moustaka M, Robbins WD, Wilson SK, Wakefield C, Cuttler MV, O'Leary MJ, Evans RD. Seascape effects on the nursery function of macroalgal habitats. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106767. [PMID: 39368155 DOI: 10.1016/j.marenvres.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Understanding how seascape configuration influences nursery function is important for spatial management and conservation of essential habitats. Here, we examine how local habitat, seascape, and environmental factors influence demographic metrics of juvenile Lethrinus punctulatus and assess spatial variation in macroalgae nursery function. We quantified abundance, biomass, and productivity of juvenile L. punctulatus over three years and estimated size-at-age and condition from collected fish. Abundance, biomass, productivity, and size-at-age exhibited significant spatial variation, although each pattern was best explained by different factors. Lethrinus punctulatus were most abundant in macroalgae-rich seascapes, whereas biomass and productivity peaked where macroalgal cover and water temperatures were high. Conversely, fish exhibited the greatest average daily growth at sites near coral reefs. Processes contributing to spatial variation in size-at-age occur prior to fish reaching ∼5 cm in length and may be due to differences in resource availability, size at settlement, or size-selective mortality. Our findings suggest habitat and resource availability constrain L. punctulatus abundance and productivity, while size-at-age is influenced by size-selective mortality and prey quality. Thus, while seascape configuration can affect nursery function, the degree of influence will depend on the processes involved, emphasising the value of considering multiple metrics when identifying nurseries.
Collapse
Affiliation(s)
- Molly Moustaka
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia; The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia.
| | - William D Robbins
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia; Wildlife Marine, Perth, WA, 6019, Australia
| | - Shaun K Wilson
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Corey Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, 6020, Australia
| | - Michael Vw Cuttler
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Oceans Graduate School, The University of Western Australia, Perth, WA, 6009, Australia
| | - Michael J O'Leary
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Centre for Energy Geoscience, School of Earth Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Richard D Evans
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| |
Collapse
|
3
|
Martinez S, Grover R, Ferrier-Pagès C. Unveiling the importance of heterotrophy for coral symbiosis under heat stress. mBio 2024; 15:e0196624. [PMID: 39207106 PMCID: PMC11481558 DOI: 10.1128/mbio.01966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Global warming endangers reef-building corals as they lose their photosynthetic symbionts, which limits their ability to feed autotrophically. Consequently, heterotrophy, the capture of zooplankton, can become crucial for the energy budget of heat-stressed corals. However, it is difficult to assess the extent of the heterotrophic contribution in corals, as well as the dynamics of nutrient exchange between the host and its symbionts. In this pioneering study, we employed a suite of isotopic markers, including 13C- and 15N bulk tissue isotope measurements, compound-specific isotope analysis of amino acids (CSIA-AAs), and 13C- and 15N-labeled food incubations, to investigate nutrient acquisition and allocation in the coral Stylophora pistillata under controlled and heat-induced bleaching conditions. Bulk isotope values and inorganic carbon assimilation remained unchanged in the bleached corals compared to the control corals, overall indicating undisturbed autotrophic activity of the symbionts under heat stress. However, CSIA-AAs showed an increased dependence on heterotrophy for amino acid synthesis in both the host and the symbionts despite reduced assimilation of 15N-labeled food. Overall, these results suggest that although S. pistillata reduces its assimilation of heterotrophic food under heat stress, the acquisition of amino acids by the coral host and symbionts still relies on heterotrophy. This study emphasizes the importance of using multiple indicators to gain a comprehensive understanding of coral nutrition. It shows that coral dependence on heterotrophy is not only associated with a decline in autotrophic availability. Rather, it demonstrates the ability of S. pistillata to adapt its utilization of food sources to the prevailing environmental conditions.IMPORTANCEThis work highlights that every isotopic marker displays a piece of different information concerning the diet of the model coral S. pistillata. By combining all markers, we observed that although S. pistillata exhibited reduced heterotrophic assimilation under heat stress, amino acid acquisition and synthesis remained dependent on heterotrophy. The findings emphasize the adaptability of corals in utilizing different food sources, which is vital for their resilience and recovery in changing environmental conditions. This research underscores the complexity of coral symbiosis and highlights the need for multiple indicators to understand dietary dynamics comprehensively.
Collapse
Affiliation(s)
- Stephane Martinez
- Centre Scientifique de Monaco, Coral Ecophysiology Team, Monte Carlo, Monaco
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Renaud Grover
- Centre Scientifique de Monaco, Coral Ecophysiology Team, Monte Carlo, Monaco
| | | |
Collapse
|
4
|
Canseco JA, Niklitschek EJ, Quezada-Romegialli C, Yarnes C, Harrod C. Comparing trophic position estimates using bulk and compound specific stable isotope analyses: applying new approaches to mackerel icefish Champsocephalus gunnari. PeerJ 2024; 12:e17372. [PMID: 38770096 PMCID: PMC11104342 DOI: 10.7717/peerj.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Quantifying the tropic position (TP) of an animal species is key to understanding its ecosystem function. While both bulk and compound-specific analyses of stable isotopes are widely used for this purpose, few studies have assessed the consistency between and within such approaches. Champsocephalus gunnari is a specialist teleost that predates almost exclusively on Antarctic krill Euphausia superba. This well-known and nearly constant trophic relationship makes C. gunnari particularly suitable for assessing consistency between TP methods under field conditions. In the present work, we produced and compared TP estimates for C. gunnari and its main prey using a standard bulk and two amino acid-specific stable isotope approaches (CSI-AA). One based on the difference between glutamate and phenylalanine (TPGlx-Phe), and the other on the proline-phenylalanine difference (TPPro-Phe). To do that, samples from C. gunnari, E. superba and four other pelagic invertebrate and fish species, all potential prey for C.gunnari, were collected off the South Orkney Islands between January and March 2019, analyzed using standard isotopic ratio mass spectrometry methods and interpreted following a Bayesian approach. Median estimates (CI95%) for C. gunnari were similar between TPbulk (3.6; CI95%: 3.0-4.8) and TPGlx-Phe(3.4; CI95%:3.2-3.6), and lower for TPPro-Phe (3.1; CI95%:3.0-3.3). TP differences between C. gunnari and E. superba were 1.4, 1.1 and 1.2, all compatible with expectations from the monospecific diet of this predator (ΔTP=1). While these results suggest greater accuracy for Glx-Phe and Pro-Phe, differences observed between both CSI-AA approaches suggests these methods may require further validation before becoming a standard tool for trophic ecology.
Collapse
Affiliation(s)
- Jose Antonio Canseco
- Centro Oceanográfico de Cádiz, Instituto Español de Oceanografía, Cádiz, Cádiz, Spain
| | | | - Claudio Quezada-Romegialli
- Plataforma de Monitoreo Genómico y Ambiental, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Tarapaca, Tarapaca, Chile
| | - Chris Yarnes
- Stable Isotope Facility, UC Davis, Davis, CA, United States of America
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Antofagasta, Antofagasta, Chile
- Nucleo Milenio Invasal, Concepcion, Biobio, Chile
| |
Collapse
|
5
|
Robinson JPW, Benkwitt CE, Maire E, Morais R, Schiettekatte NMD, Skinner C, Brandl SJ. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol Evol 2024; 39:467-478. [PMID: 38105132 DOI: 10.1016/j.tree.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.
Collapse
Affiliation(s)
- James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Renato Morais
- Université Paris Sciences et Lettres, École Pratique des Hautes Études, USR 3278 CRIOBE, Perpignan 66860, France
| | | | - Christina Skinner
- School of the Environment, University of Queensland, St Lucia 4072, QLD, Australia
| | - Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
6
|
Trifari MP, Wooller MJ, Rea L, O'Hara TM, Lescord GL, Parnell AC, Barst BD. Compound-specific stable isotopes of amino acids reveal influences of trophic level and primary production sources on mercury concentrations in fishes from the Aleutian Islands, Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168242. [PMID: 37918743 DOI: 10.1016/j.scitotenv.2023.168242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Total mercury concentrations ([THg]) exceed thresholds of concern in some Steller sea lion (Eumetopias jubatus) tissues from certain portions of the Aleutian Islands, Alaska. We applied compound-specific stable isotope analyses of both carbon and nitrogen in amino acids from fish muscle tissue to quantify the proportional contributions of primary production sources and trophic positions of eight prey species (n = 474 total) that are part of Steller sea lion diets. Previous THg analyses of fish muscle, coupled with monomethylmercury analyses of a subset of samples, substantiated previous findings that fishes from the west of Amchitka Pass, a discrete oceanographic boundary of the Aleutian Archipelago, have higher muscle Hg concentrations relative to fishes from the east. The δ13C values of essential amino acids (EAAs) in fish muscle demonstrated that although most fishes obtained their EAAs primarily from algae, some species varied in the extent to which they relied on this EAA source. The δ15N values of phenylalanine (0.9 to 7.8 ‰), an indicator of the isotopic baseline of a food web, varied widely within and among fish species. Trophic position estimates, accounting for this baseline variation, were higher from the west relative to the east of the pass for some fish species. Trophic magnification slopes using baseline-corrected trophic position estimates indicated similar rates of Hg biomagnification to the east and west of Amchitka Pass. Multiple linear regression models revealed that trophic position was the most important driver of fish muscle [THg] with less variation explained by other parameters. Thus, higher trophic positions but not the rate of Hg biomagnification to the west of Amchitka Pass may play a role in the regional differences in both fish and Steller sea lion [THg]. Although, differences in Hg contamination and uptake at the base of the east and west food webs could not be excluded.
Collapse
Affiliation(s)
- Michelle P Trifari
- Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, USA; Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Matthew J Wooller
- Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, USA; Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Lorrie Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Todd M O'Hara
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Bilingual Laboratory of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Gretchen L Lescord
- University of Florida, School of Forest Fisheries, and Geomatics Sciences, USA; Cooperative Freshwater Ecology Unit, Laurentian University, Ontario, Canada; Wildlife Conservation Society Canada, Thunder Bay, Ontario, Canada
| | - Andrew C Parnell
- Hamilton Institute, Insight Centre for Data Analytics, Maynooth University, Maynooth, Ireland
| | - Benjamin D Barst
- Alaska Stable Isotope Facility, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA; Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA.
| |
Collapse
|
7
|
Barneche DR, Morais RA. Towards detailed predictions of coastal ecosystem function under climate change. PLoS Biol 2023; 21:e3002430. [PMID: 38085704 PMCID: PMC10715641 DOI: 10.1371/journal.pbio.3002430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The complex ways in which ongoing warming will restructure ecosystems remains poorly understood. A new simulation study in PLOS Biology suggests that expected changes in food resources for marine consumers will outpace the direct, pervasive effects of predicted +2.5°C warming.
Collapse
Affiliation(s)
- Diego R. Barneche
- Australian Institute of Marine Science, Crawley, Australia
- Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Renato A. Morais
- Paris Sciences et Lettres Université, École Pratique des Hautes Études, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Perpignan, France
| |
Collapse
|
8
|
Shakya AW, Allgeier JE. Water column contributions to coral reef productivity: overcoming challenges of context dependence. Biol Rev Camb Philos Soc 2023; 98:1812-1828. [PMID: 37315947 DOI: 10.1111/brv.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Coral reefs are declining at an unprecedented rate. Effective management and conservation initiatives necessitate improved understanding of the drivers of production because the high rates found in these ecosystems are the foundation of the many services they provide. The water column is the nexus of coral reef ecosystem dynamics, and functions as the interface through which essentially all energy and nutrients are transferred to fuel both new and recycled production. Substantial research has described many aspects of water column dynamics, often focusing on specific components because water column dynamics are highly spatially and temporally context dependent. Although necessary, a cost of this approach is that these dynamics are often not well linked to the broader ecosystem or across systems. To help overcome the challenge of context dependence, we provide a comprehensive review of this literature, and synthesise it through the perspective of ecosystem ecology. Specifically, we provide a framework to organise the drivers of temporal and spatial variation in production dynamics, structured around five primary state factors. These state factors are used to deconstruct the environmental contexts in which three water column sub-food webs mediate 'new' and 'recycled' production. We then highlight critical pathways by which global change drivers are altering coral reefs via the water column. We end by discussing four key knowledge gaps hindering understanding of the role of the water column for mediating coral reef production, and how overcoming these could improve conservation and management strategies. Throughout, we identify areas of extensive research and those where studies remain lacking and provide a database of 84 published studies. Improved integration of water column dynamics into models of coral reef ecosystem function is imperative to achieve the understanding of ecosystem production necessary to develop effective conservation and management strategies needed to stem global coral loss.
Collapse
Affiliation(s)
- Anjali W Shakya
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI, 48109, USA
| | - Jacob E Allgeier
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Ramirez MD, Avens L, Meylan AB, Shaver DJ, Stahl AR, Meylan PA, Clark JM, Howell LN, Stacy BA, Teas WG, McMahon KW. Dietary plasticity linked to divergent growth trajectories in a critically endangered sea turtle. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Foraging habitat selection and diet quality are key factors that influence individual fitness and meta-population dynamics through effects on demographic rates. There is growing evidence that sea turtles exhibit regional differences in somatic growth linked to alternative dispersal patterns during the oceanic life stage. Yet, the role of habitat quality and diet in shaping somatic growth rates is poorly understood. Here, we evaluate whether diet variation is linked to regional growth variation in hawksbill sea turtles (Eretmochelys imbricata), which grow significantly slower in Texas, United States versus Florida, United States, through novel integrations of skeletal growth, gastrointestinal content (GI), and bulk tissue and amino acid (AA)-specific stable nitrogen (δ15N) and carbon (δ13C) isotope analyses. We also used AA δ15N ΣV values (heterotrophic bacterial re-synthesis index) and δ13C essential AA (δ13CEAA) fingerprinting to test assumptions about the energy sources fueling hawksbill food webs regionally. GI content analyses, framed within a global synthesis of hawksbill dietary plasticity, revealed that relatively fast-growing hawksbills stranded in Florida conformed with assumptions of extensive spongivory for this species. In contrast, relatively slow-growing hawksbills stranded in Texas consumed considerable amounts of non-sponge invertebrate prey and appear to forage higher in the food web as indicated by isotopic niche metrics and higher AA δ15N-based trophic position estimates internally indexed to baseline nitrogen isotope variation. However, regional differences in estimated trophic position may also be driven by unique isotope dynamics of sponge food webs. AA δ15N ΣV values and δ13CEAA fingerprinting indicated minimal bacterial re-synthesis of organic matter (ΣV < 2) and that eukaryotic microalgae were the primary energy source supporting hawksbill food webs. These findings run contrary to assumptions that hawksbill diets predominantly comprise high microbial abundance sponges expected to primarily derive energy from bacterial symbionts. Our findings suggest alternative foraging patterns could underlie regional variation in hawksbill growth rates, as divergence from typical sponge prey might correspond with increased energy expenditure and reduced foraging success or diet quality. As a result, differential dispersal patterns may infer substantial individual and population fitness costs and represent a previously unrecognized challenge to the persistence and recovery of this critically endangered species.
Collapse
|
10
|
Wehi PM, Rogers KM, Jowett T, Sabadel AJM. Interpreting past trophic ecology of a threatened alpine parrot, kea Nestor notabilis, from museum specimens. J Anim Ecol 2023; 92:273-284. [PMID: 35569094 PMCID: PMC10083992 DOI: 10.1111/1365-2656.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
Abstract
When ecosystems are under severe pressure or environments change, trophic position and intraspecific niche width may decrease or narrow, signalling that conservation action is required. In New Zealand, alpine and subalpine ecosystems have been extensively modified through farming since 19th-century European settlement, with consequences for indigenous species such as the kea Nestor notabilis. We investigated feather stable isotope values in the kea and predicted a lower trophic position in modern kea populations, to reflect reduced lowland habitat and a mixed diet with more plant material. We predicted that size and sex would influence trophic values in this sexually dimorphic species, with larger birds more likely to have a high protein diet. We examined potential dietary changes in 68 museum collected kea from 1880s to 2000s, first recording accession details including provenance and sex and measuring culmen length. We used bulk carbon and nitrogen stable isotope analyses (BSIAs) of feathers and a further feather subset using compound-specific stable isotope analyses of amino acids (CSIA-AA) to obtain isotopic values and estimate trophic position. BSIA showed δ15 N values in kea feathers declined through time and could indicate that early century kea were highly omnivorous, with δ15 N values on average higher than in modern kea. Variance in δ15 N values was greater after 1950, driven by a few individuals. Few differences between males and females were evident, although females in the south region had lower δ15 N values. There was a tendency for large male birds to have higher trophic values, perhaps reflecting dominant male bird behaviour noted in historical records. Nonetheless, CSIA-AA performed on a subset of the data suggested that variation in BSIA is likely due to baseline changes rather than relative trophic position which may be more homogenous than these data indicate. Although there was more variability in modern kea, we suggest caution in interpretation. Stable isotope data, particularly CSIA-AA, from museum specimens can reveal potential change in ecological networks as well as sexually dimorphic feeding patterns within species. The data can reveal temporal and regional variation in species trophic position and changes in ecosystem integrity to inform conservation decision-making.
Collapse
Affiliation(s)
- Priscilla M Wehi
- Centre for Sustainability (CSAFE), University of Otago, Dunedin, New Zealand.,Te Pūnaha Matatini Centre of Research Excellence in Complex Systems, University of Auckland, Auckland, New Zealand
| | - Karyne M Rogers
- National Isotope Centre, GNS Science, Lower Hutt, New Zealand.,Institute of Quality Safety and Nutrition of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tim Jowett
- Department of Maths and Statistics, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
11
|
Nakamoto BJ, Jeffres CA, Corline NJ, Ogaz M, Bradley CJ, Viers JH, Fogel ML. Multiple trophic pathways support fish on floodplains of California's Central Valley. JOURNAL OF FISH BIOLOGY 2023; 102:155-171. [PMID: 36226864 DOI: 10.1111/jfb.15248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.
Collapse
Affiliation(s)
| | | | | | - Mollie Ogaz
- Center for Watershed Sciences, UC Davis, Davis, California, USA
| | | | | | | |
Collapse
|
12
|
Xie B, Du J, Zheng X, Chen B. Marine food webs, ecosystem models and stable isotopes. REFERENCE MODULE IN EARTH SYSTEMS AND ENVIRONMENTAL SCIENCES 2023. [DOI: 10.1016/b978-0-323-90798-9.00027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Mellin C, Hicks CC, Fordham DA, Golden CD, Kjellevold M, MacNeil MA, Maire E, Mangubhai S, Mouillot D, Nash KL, Omukoto JO, Robinson JPW, Stuart-Smith RD, Zamborain-Mason J, Edgar GJ, Graham NAJ. Safeguarding nutrients from coral reefs under climate change. Nat Ecol Evol 2022; 6:1808-1817. [PMID: 36192542 DOI: 10.1038/s41559-022-01878-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | | | - Damien A Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher D Golden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, MARBEC, Montpellier, France
| | - Kirsty L Nash
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Tasmania, Australia
| | - Johnstone O Omukoto
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
14
|
Skinner C, Pei YD, Morimoto N, Miyajima T, Wyatt ASJ. Stable isotopes elucidate body-size and seasonal fluctuations in the feeding strategies of planktivorous fishes across a semi-enclosed tropical embayment. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.942968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reef fish may switch feeding strategies due to fluctuations in resource availability or through ontogeny. A number of studies have explored these trophodynamics using carbon (δ13C) and nitrogen (δ15N) stable isotopes, but additional tracers such as sulfur isotopes (δ34S) show strong potential in systems, where δ13C and δ15N results are ambiguous. We tested the utility of adding δ34S to conventional δ13C and δ15N analysis to detect seasonal and body size changes in resource use of two planktivorous damselfish, Dascyllus reticulatus and Dascyllus trimaculatus across the Puerto Galera embayment in the Philippines. We analyzed stable isotope ratios (δ13C, δ15N, and δ34S) in multiple fish tissues (liver, eye, and muscle) to represent different dietary time frames. We then compared fish tissue isotopes against particulate organic matter (POM) (δ13C and δ15N) and POM suspension feeder (the tunicate Polycarpa aurata: δ13C, δ15N, and δ34S) across the same sites. There were size-based and seasonal differences in damselfish resource use, the latter of which was most pronounced in the fast-turnover liver. Small fish (<70 mm) demonstrated significant seasonality, appearing to switch their resource use between the rainy season and the dry season, while there was no seasonal variation in larger fish (>70 mm). This suggests that smaller fish across the embayment employ an opportunistic feeding strategy to take advantage of fluctuating resource availability, while larger fish exhibits more consistent resource use. Isotope ratios of tunicates and POM further confirmed strong seasonality in this system and a lack of a spatial isotopic gradient. δ15N did not seem to contribute to consumer resource use patterns, while by contrast, δ34S fluctuated significantly between sampling periods and was crucial for demonstrating seasonality in resource use. We recommend including δ34S when attempting to disentangle seasonal differences in resource use in aquatic food webs using stable isotopes.
Collapse
|
15
|
Abstract
Coral reefs depend on the highly optimized mutualistic relationship between corals and Symbiodiniaceae dinoflagellates. Both partners exchange nutrients obtained through heterotrophy of the host and autotrophy of the symbionts. While heterotrophy helps corals withstand the harmful effects of seawater warming, the exchange of heterotrophic nutrients between the two partners is poorly understood. Here, we used compound-specific δ15N and δ13C of amino acids (δ15NAA and δ13CAA) and a 15N pulse-chase experiment with Artemia salina nauplii in two coral-dinoflagellate associations to trace the assimilation and allocation of heterotrophic nutrients within the partners. We observed that changes in the trophic position (TPGlx-Phe), δ15NAA, and δ13CAA with heterotrophy were holobiont-dependent. Furthermore, while TPGlx-Phe and δ15N of all AAs significantly increased with heterotrophy in the symbionts and host of Stylophora pistillata, only the δ15NAA of the symbionts changed in Turbinaria reniformis. Together with the pulse-chase experiment, the results suggested a direct transfer of heterotrophically acquired AAs to the symbionts of S. pistillata and a transfer of ammonium to the symbionts of T. reniformis. Overall, we demonstrated that heterotrophy underpinned the nutrition of Symbiodinaceae and possibly influenced their stress tolerance under changing environmental conditions.
Collapse
|
16
|
Cybulski JD, Skinner C, Wan Z, Wong CKM, Toonen RJ, Gaither MR, Soong K, Wyatt ASJ, Baker DM. Improving stable isotope assessments of inter- and intra-species variation in coral reef fish trophic strategies. Ecol Evol 2022; 12:e9221. [PMID: 36172294 PMCID: PMC9468908 DOI: 10.1002/ece3.9221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Fish have one of the highest occurrences of individual specialization in trophic strategies among Eukaryotes. Yet, few studies characterize this variation during trophic niche analysis, limiting our understanding of aquatic food web dynamics. Stable isotope analysis (SIA) with advanced Bayesian statistics is one way to incorporate this individual trophic variation when quantifying niche size. However, studies using SIA to investigate trophodynamics have mostly focused on species- or guild-level (i.e., assumed similar trophic strategy) analyses in settings where source isotopes are well-resolved. These parameters are uncommon in an ecological context. Here, we use Stable Isotope Bayesian Ellipses in R (SIBER) to investigate cross-guild trophodynamics of 11 reef fish species within an oceanic atoll. We compared two- (δ 15N and δ 13C) versus three-dimensional (δ 15N, δ 13C, and δ 34S) reconstructions of isotopic niche space for interpreting guild-, species-, and individual-level trophic strategies. Reef fish isotope compositions varied significantly among, but also within, guilds. Individuals of the same species did not cluster together based on their isotope values, suggesting within-species specializations. Furthermore, while two-dimensional isotopic niches helped differentiate reef fish resource use, niche overlap among species was exceptionally high. The addition of δ 34S and the generation of three-dimensional isotopic niches were needed to further characterize their isotopic niches and better evaluate potential trophic strategies. These data suggest that δ 34S may reveal fluctuations in resource availability, which are not detectable using only δ 15N and δ 13C. We recommend that researchers include δ 34S in future aquatic food web studies.
Collapse
Affiliation(s)
- Jonathan D. Cybulski
- The Swire Institute of Marine ScienceThe University of Hong KongShek OHong Kong SAR
- School of Biological SciencesThe University of Hong KongPok Fu LamHong Kong SAR
| | - Christina Skinner
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR
| | - Zhongyue Wan
- School of Biological SciencesThe University of Hong KongPok Fu LamHong Kong SAR
| | - Carmen K. M. Wong
- State Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong SAR
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, School of Ocean & Earth Sciences & TechnologyUniversity of Hawai‘i at MānoaKaneoheHawaiiUSA
| | | | - Keryea Soong
- Department of OceanographyNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Alex S. J. Wyatt
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyClear Water BayHong Kong SAR
| | - David M. Baker
- The Swire Institute of Marine ScienceThe University of Hong KongShek OHong Kong SAR
- School of Biological SciencesThe University of Hong KongPok Fu LamHong Kong SAR
| |
Collapse
|
17
|
Roche RC, Heenan A, Taylor BM, Schwarz JN, Fox MD, Southworth LK, Williams GJ, Turner JR. Linking variation in planktonic primary production to coral reef fish growth and condition. ROYAL SOCIETY OPEN SCIENCE 2022; 9:201012. [PMID: 36061523 DOI: 10.6084/m9.figshare.c.6156452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/09/2022] [Indexed: 05/25/2023]
Abstract
Within low-nutrient tropical oceans, islands and atolls with higher primary production support higher fish biomass and reef organism abundance. External energy subsidies can be delivered onto reefs via a range of physical mechanisms. However, the influence of spatial variation in primary production on reef fish growth and condition is largely unknown. It is not yet clear how energy subsidies interact with reef depth and slope. Here we test the hypothesis that with increased proximity to deep-water oceanic nutrient sources, or at sites with shallower reef slopes, parameters of fish growth and condition will be higher. Contrary to expectations, we found no association between fish growth rate and sites with higher mean chlorophyll-a values. There were no differences in fish δ 15N or δ 13C values between depths. The relationship between fish condition and primary production was influenced by depth, driven by increased fish condition at shallow depths within a primary production 'hotspot' site. Carbon δ 13C was depleted with increasing primary production, and interacted with reef slope. Our results indicate that variable primary production did not influence growth rates in planktivorous Chromis fieldi within 10-17.5 m depth, but show site-specific variation in reef physical characteristics influencing fish carbon isotopic composition.
Collapse
Affiliation(s)
- Ronan C Roche
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Adel Heenan
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Jill N Schwarz
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Michael D Fox
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lucy K Southworth
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
- Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Douglas, QLD 4811, Australia
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - John R Turner
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
18
|
Roche RC, Heenan A, Taylor BM, Schwarz JN, Fox MD, Southworth LK, Williams GJ, Turner JR. Linking variation in planktonic primary production to coral reef fish growth and condition. ROYAL SOCIETY OPEN SCIENCE 2022; 9:201012. [PMID: 36061523 PMCID: PMC9428543 DOI: 10.1098/rsos.201012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/09/2022] [Indexed: 05/10/2023]
Abstract
Within low-nutrient tropical oceans, islands and atolls with higher primary production support higher fish biomass and reef organism abundance. External energy subsidies can be delivered onto reefs via a range of physical mechanisms. However, the influence of spatial variation in primary production on reef fish growth and condition is largely unknown. It is not yet clear how energy subsidies interact with reef depth and slope. Here we test the hypothesis that with increased proximity to deep-water oceanic nutrient sources, or at sites with shallower reef slopes, parameters of fish growth and condition will be higher. Contrary to expectations, we found no association between fish growth rate and sites with higher mean chlorophyll-a values. There were no differences in fish δ 15N or δ 13C values between depths. The relationship between fish condition and primary production was influenced by depth, driven by increased fish condition at shallow depths within a primary production 'hotspot' site. Carbon δ 13C was depleted with increasing primary production, and interacted with reef slope. Our results indicate that variable primary production did not influence growth rates in planktivorous Chromis fieldi within 10-17.5 m depth, but show site-specific variation in reef physical characteristics influencing fish carbon isotopic composition.
Collapse
Affiliation(s)
- Ronan C. Roche
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Adel Heenan
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Jill N. Schwarz
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Michael D. Fox
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lucy K. Southworth
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
- Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Douglas, QLD 4811, Australia
| | - Gareth J. Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - John R. Turner
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| |
Collapse
|
19
|
Hesse T, Nachev M, Khaliq S, Jochmann MA, Franke F, Scharsack JP, Kurtz J, Sures B, Schmidt TC. Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks. Sci Rep 2022; 12:11690. [PMID: 35804029 PMCID: PMC9270445 DOI: 10.1038/s41598-022-15704-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Interpretation of stable isotope data is of upmost importance in ecology to build sound models for the study of animal diets, migration patterns and physiology. However, our understanding of stable isotope fractionation and incorporation into consumer tissues is still limited. We therefore measured the δ13C values of individual amino acids over time from muscle and liver tissue of three-spined sticklebacks (Gasterosteus aculeatus) on a high protein diet. The δ13C values of amino acids in the liver quickly responded to small shifts of under ± 2.0‰ in dietary stable isotope compositions on 30-day intervals. We found on average no trophic fractionation in pooled essential (muscle, liver) and non-essential (muscle) amino acids. Negative Δδ13C values of − 0.7 ± 1.3‰ were observed for pooled non-essential (liver) amino acids and might indicate biosynthesis from small amounts of dietary lipids. Trophic fractionation of individual amino acids is reported and discussed, including unusual Δδ13C values of over + 4.9 ± 1.4‰ for histidine. Arginine and lysine showed the lowest trophic fractionation on individual sampling days and might be useful proxies for dietary sources on short time scales. We suggest further investigations using isotopically enriched materials to facilitate the correct interpretation of ecological field data.
Collapse
Affiliation(s)
- Tobias Hesse
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Shaista Khaliq
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany. .,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Frederik Franke
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.,Bavarian State Institute of Forestry, Hans-Carl-von-Carlowitz-Platz 1, 85354, Freising, Germany
| | - Jörn P Scharsack
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.,Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572, Bremerhaven, Germany
| | - Joachim Kurtz
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
20
|
Yun HY, Larsen T, Choi B, Won E, Shin K. Amino acid nitrogen and carbon isotope data: Potential and implications for ecological studies. Ecol Evol 2022; 12:e8929. [PMID: 35784034 PMCID: PMC9163675 DOI: 10.1002/ece3.8929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Explaining food web dynamics, stability, and functioning depend substantially on understanding of feeding relations within a community. Bulk stable isotope ratios (SIRs) in natural abundance are well-established tools to express direct and indirect feeding relations as continuous variables across time and space. Along with bulk SIRs, the SIRs of individual amino acids (AAs) are now emerging as a promising and complementary method to characterize the flow and transformation of resources across a diversity of organisms, from microbial domains to macroscopic consumers. This significant AA-SIR capacity is based on empirical evidence that a consumer's SIR, specific to an individual AA, reflects its diet SIR coupled with a certain degree of isotopic differences between the consumer and its diet. However, many empirical ecologists are still unfamiliar with the scope of applicability and the interpretative power of AA-SIR. To fill these knowledge gaps, we here describe a comprehensive approach to both carbon and nitrogen AA-SIR assessment focusing on two key topics: pattern in AA-isotope composition across spatial and temporal scales, and a certain variability of AA-specific isotope differences between the diet and the consumer. On this basis we review the versatile applicability of AA-SIR to improve our understanding of physiological processes as well as food web functioning, allowing us to reconstruct dominant basal dietary sources and trace their trophic transfers at the specimen and community levels. Given the insightful and opportunities of AA-SIR, we suggest future applications for the dual use of carbon and nitrogen AA-SIR to study more realistic food web structures and robust consumer niches, which are often very difficult to explain in nature.
Collapse
Affiliation(s)
- Hee Young Yun
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Thomas Larsen
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| | - Bohyung Choi
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
- Inland Fisheries Research InstituteNational Institute of Fisheries ScienceGeumsan‐gunKorea
| | - Eun‐Ji Won
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Kyung‐Hoon Shin
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| |
Collapse
|
21
|
Hahlbeck N, Tinniswood WR, Sloat MR, Ortega JD, Wyatt MA, Hereford ME, Ramirez BS, Crook DA, Anlauf-Dunn KJ, Armstrong JB. Contribution of warm habitat to cold-water fisheries. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13857. [PMID: 34766374 DOI: 10.1111/cobi.13857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A central tenet of landscape ecology is that mobile species depend on complementary habitats, which are insufficient in isolation, but combine to support animals through the full annual cycle. However, incorporating the dynamic needs of mobile species into conservation strategies remains a challenge, particularly in the context of climate adaptation planning. For cold-water fishes, it is widely assumed that maximum temperatures are limiting and that summer data alone can predict refugia and population persistence. We tested these assumptions in populations of redband rainbow trout (Oncorhynchus mykiss newberrii) in an arid basin, where the dominance of hot, hyperproductive water in summer emulates threats of climate change predicted for cold-water fish in other basins. We used telemetry to reveal seasonal patterns of movement and habitat use. Then, we compared contributions of hot and cool water to growth with empirical indicators of diet and condition (gut contents, weight-length ratios, electric phase angle, and stable isotope signatures) and a bioenergetics model. During summer, trout occurred only in cool tributaries or springs (<20 °C) and avoided Upper Klamath Lake (>25 °C). During spring and fall, ≥65% of trout migrated to the lake (5-50 km) to forage. Spring and fall growth (mean [SD] 0.58% per day [0.80%] and 0.34 per day [0.55%], respectively) compensated for a net loss of energy in cool summer refuges (-0.56% per day [0.55%]). In winter, ≥90% of trout returned to tributaries (25-150 km) to spawn. Thus, although perennially cool tributaries supported thermal refuge and spawning, foraging opportunities in the seasonally hot lake ultimately fueled these behaviors. Current approaches to climate adaptation would prioritize the tributaries for conservation but would devalue critical foraging habitat because the lake is unsuitable and unoccupied during summer. Our results empirically demonstrate that warm water can fuel cold-water fisheries and challenge the common practice of identifying refugia based only on summer conditions.
Collapse
Affiliation(s)
- Nick Hahlbeck
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - William R Tinniswood
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | | | - Jordan D Ortega
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - Matthew A Wyatt
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - Mark E Hereford
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - Ben S Ramirez
- Klamath Watershed District Office, Oregon Department of Fish and Wildlife, Klamath Falls, Oregon, USA
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Kara J Anlauf-Dunn
- Corvallis Research Lab, Oregon Department of Fish and Wildlife, Corvallis, Oregon, USA
| | - Jonathan B Armstrong
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
22
|
Manlick PJ, Newsome SD. Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip J. Manlick
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Seth D. Newsome
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| |
Collapse
|
23
|
Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 2021; 19:e3001435. [PMID: 34727097 PMCID: PMC8562822 DOI: 10.1371/journal.pbio.3001435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
Collapse
Affiliation(s)
- Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alexandre C. Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Patrick F. Smallhorn-West
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- WorldFish, Bayan Lepas, Malaysia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
24
|
Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web. Sci Rep 2021; 11:20950. [PMID: 34697332 PMCID: PMC8545934 DOI: 10.1038/s41598-021-00348-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively) . Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.
Collapse
|
25
|
Troina GC, Riekenberg P, van der Meer MTJ, Botta S, Dehairs F, Secchi ER. Combining isotopic analysis of bulk-skin and individual amino acids to investigate the trophic position and foraging areas of multiple cetacean species in the western South Atlantic. ENVIRONMENTAL RESEARCH 2021; 201:111610. [PMID: 34224712 DOI: 10.1016/j.envres.2021.111610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
We investigated the trophic structure and habitat use of ten cetacean species occurring in the oceanic waters of the western South Atlantic using naturally-occurring stable isotopes. We analysed δ15N in individual amino acids (AA) to estimate cetacean trophic position (TP) and to evaluate the spatial differences in baseline δ15N (source AAs). We adjusted cetacean bulk-skin δ13C and δ15N for the effect of trophic level using their estimated TPs, obtaining δ13CAdjusted and δ15NAdjusted, respectively. These values were applied to estimate the overlap in the niche areas of cetacean baseline sources. Our analyses showed spatial segregation between Steno bredanensis and the remaining odontocetes, and the high δ15N in this species reflects its occurrence in neritic waters of the southern region. The highest TPs were observed in Physeter macrocephalus, Stenella attenuata and Globicephala melas, while the lowest TPs were reported for S. longirostris, S. clymene and Orcinus orca. Overall, source AA-δ15N showed similar patterns as those of baseline-δ15N (zooplankton) and were higher in species sampled in the southernmost region of the study area (e.g., Delphinus delphis). Isotopic niche areas estimated using δ13CAdjusted and δ15NAdjusted suggested high overlap in foraging area between S. frontalis and Tursiops truncatus, with the latter occupying a higher TP. Our analyses of δ15N in AAs provide a unique insight into the trophic ecology, forage areas and spatial segregation in resource use among these cetacean populations. Additionally, our work provides AA-δ15N baseline for future studies on the trophic ecology and habitat use of marine organisms in the western South Atlantic.
Collapse
Affiliation(s)
- Genyffer C Troina
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil.
| | - Philip Riekenberg
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn, 1790AB, the Netherlands
| | - Marcel T J van der Meer
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, Den Hoorn, 1790AB, the Netherlands
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil
| | - Frank Dehairs
- Analytical, Environmental and Geo-Chemistry Department (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium
| | - Eduardo R Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Rio Grande, RS, Brazil
| |
Collapse
|
26
|
Lerner JE, Forster I, Hunt BPV. Experimentally derived trophic enrichment and discrimination factors for Chinook salmon, Oncorhynchus tshawytscha. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9092. [PMID: 33788330 DOI: 10.1002/rcm.9092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Stable isotope analysis (SIA) can provide important insights into food web structure and is a widely used tool in ecological conservation and management. It has recently been augmented by compound-specific stable isotope analysis of amino acids (CSIA-AA), an innovation that can provide greater precision when analyzing trophic level and food web connectivity. The utility of SIA rests on confidence in its constituent parameters such as the trophic enrichment factor (TEF). There is increasing emphasis on the need to experimentally derive species and tissue specific TEFs for studies utilizing SIA. Chinook salmon, Oncorhynchus tshawytscha, is a species with high potential for study using SIA due to the difficulty in observing its ecology during its marine phase and the significance of the conservation consequences of recent population declines. METHODS Bulk and amino acid-specific TEFs were determined for juvenile and adult Chinook salmon fed specific diets. Three controlled feeding studies were performed: adult salmon were fed a biofeed, juvenile salmon were fed a biofeed, and juvenile salmon were fed krill. Bulk and compound-specific stable isotope data were collected from diet samples and from salmon muscle tissue after a minimum of 8 weeks of controlled feeding. Bulk isotope signatures were measured using EA-IRMS and CSIA-AA signatures using GC/C-IRMS, allowing the TEFs to be calculated. RESULTS The bulk isotope TEFs were higher than those predicted for similar marine organisms and averaged 3.5‰ for ∆15 N and 1.3‰ for ∆13 C. The TEFs derived for nitrogen isotopes of amino acids were in line with expectations for this approach: the mean value for ∆15 NGlu - ∆15 NPhe was 7.06‰ and, using a multi-AA approach, the value for ∆15 NTrophic - ∆15 NSource was 6.67‰. For carbon isotopes of amino acids, the derived TEFs of Iso, Leu and Phe were near 0‰, as was that of Met, supporting their use of as source amino acids in future CSIA studies. CONCLUSIONS This study presents Chinook salmon-specific TEFs for bulk and amino acid SIA. It supports the application of future research applying SIA to the study of Chinook salmon and validates previous research on species-specific TEFs.
Collapse
Affiliation(s)
- Jacob E Lerner
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ian Forster
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1H2, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, Tula Foundation, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
27
|
Romero-Romero S, Miller LC, Black JA, Popp BN, Drazen JC. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci Rep 2021; 11:12594. [PMID: 34131174 PMCID: PMC8206261 DOI: 10.1038/s41598-021-91927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Trophic ecology of detrital-based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound-specific stable isotope ratios of amino acids (CSIA-AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacific (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophic position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ13C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food-chain length in this detritus-based ecosystem.
Collapse
Affiliation(s)
- Sonia Romero-Romero
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA.
| | - Lee C Miller
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Jesse A Black
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| | - Brian N Popp
- Department of Earth Sciences, University of Hawaii at Manoa, 1680 East West Road, Honolulu, HI, 96822, USA
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, USA
| |
Collapse
|
28
|
Wall CB, Wallsgrove NJ, Gates RD, Popp BN. Amino acid δ 13C and δ 15N analyses reveal distinct species-specific patterns of trophic plasticity in a marine symbiosis. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:2033-2050. [PMID: 34248204 PMCID: PMC8252108 DOI: 10.1002/lno.11742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 05/30/2023]
Abstract
Compound-specific isotope analyses (CSIA) and multivariate "isotope fingerprinting" track biosynthetic sources and reveal trophic interactions in food webs. However, CSIA have not been widely applied in the study of marine symbioses. Here, we exposed a reef coral (Montipora capitata) in symbiosis with Symbiodiniaceae algae to experimental treatments (autotrophy, mixotrophy, heterotrophy) to test for trophic shifts and amino acid (AA) sources using paired bulk (δ13C, δ15N) and AA-CSIA (δ13CAA, δ15NAA). Treatments did not influence carbon or nitrogen trophic proxies, thereby not supporting nutritional plasticity. Instead, hosts and symbionts consistently overlapped in essential- and nonessential-δ13CAA (11 of 13 amino acids) and trophic- and source-δ15NAA values (9 of 13 amino acids). Host and symbiont trophic-δ15NAA values positively correlated with a plankton end-member, indicative of trophic connections and dietary sources for trophic-AA nitrogen. However, mass balance of AA-trophic positions (TPGlx-Phe) revealed heterotrophic influences to be highly variable (1-41% heterotrophy). Linear discriminant analysis using M. capitata mean-normalized essential-δ13CAA with previously published values (Pocillopora meandrina) showed similar nutrition isotope fingerprints (Symbiodiniaceae vs. plankton) but revealed species-specific trophic strategies. Montipora capitata and Symbiodiniaceae shared identical AA-fingerprints, whereas P. meandrina was assigned to either symbiont or plankton nutrition. Thus, M. capitata was 100% reliant on symbionts for essential-δ13CAA and demonstrated autotrophic fidelity and contrasts with trophic plasticity reported in P. meandrina. While M. capitata AA may originate from host and/or symbiont biosynthesis, AA carbon is Symbiodiniaceae-derived. Together, AA-CSIA/isotope fingerprinting advances the study of coral trophic plasticity and are powerful tools in the study of marine symbioses.
Collapse
Affiliation(s)
- Christopher B. Wall
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | | | - Ruth D. Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Brian N. Popp
- Department of Earth SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| |
Collapse
|
29
|
Skinner C, Mill AC, Fox MD, Newman SP, Zhu Y, Kuhl A, Polunin NVC. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. SCIENCE ADVANCES 2021; 7:7/8/eabf3792. [PMID: 33608282 PMCID: PMC7895429 DOI: 10.1126/sciadv.abf3792] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Coral reefs were traditionally perceived as productive hot spots in oligotrophic waters. While modern evidence indicates that many coral reef food webs are heavily subsidized by planktonic production, the pathways through which this occurs remain unresolved. We used the analytical power of carbon isotope analysis of essential amino acids to distinguish between alternative carbon pathways supporting four key reef predators across an oceanic atoll. This technique separates benthic versus planktonic inputs, further identifying two distinct planktonic pathways (nearshore reef-associated plankton and offshore pelagic plankton), and revealing that these reef predators are overwhelmingly sustained by offshore pelagic sources rather than by reef sources (including reef-associated plankton). Notably, pelagic reliance did not vary between species or reef habitats, emphasizing that allochthonous energetic subsidies may have system-wide importance. These results help explain how coral reefs maintain exceptional productivity in apparently nutrient-poor tropical settings, but also emphasize their susceptibility to future ocean productivity fluctuations.
Collapse
Affiliation(s)
- C Skinner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering, Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - A C Mill
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - M D Fox
- Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - S P Newman
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Banyan Tree Marine Lab, Vabbinfaru Resort, North Malé Atoll, Republic of Maldives
| | - Y Zhu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - A Kuhl
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - N V C Polunin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
30
|
Tracing the Trophic Plasticity of the Coral-Dinoflagellate Symbiosis Using Amino Acid Compound-Specific Stable Isotope Analysis. Microorganisms 2021; 9:microorganisms9010182. [PMID: 33466994 PMCID: PMC7830491 DOI: 10.3390/microorganisms9010182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
The association between corals and photosynthetic dinoflagellates is one of the most well-known nutritional symbioses, but nowadays it is threatened by global changes. Nutritional exchanges are critical to understanding the performance of this symbiosis under stress conditions. Here, compound-specific δ15N and δ13C values of amino acids (δ15NAA and δ13CAA) were assessed in autotrophic, mixotrophic and heterotrophic holobionts as diagnostic tools to follow nutritional interactions between the partners. Contrary to what was expected, heterotrophy was mainly traced through the δ15N of the symbiont’s amino acids (AAs), suggesting that symbionts directly profit from host heterotrophy. The trophic index (TP) ranged from 1.1 to 2.3 from autotrophic to heterotrophic symbionts. In addition, changes in TP across conditions were more significant in the symbionts than in the host. The similar δ13C-AAs signatures of host and symbionts further suggests that symbiont-derived photosynthates are the main source of carbon for AAs synthesis. Symbionts, therefore, appear to be a key component in the AAs biosynthetic pathways, and might, via this obligatory function, play an essential role in the capacity of corals to withstand environmental stress. These novel findings highlight important aspects of the nutritional exchanges in the coral–dinoflagellates symbiosis. In addition, they feature δ15NAA as a useful tool for studies regarding the nutritional exchanges within the coral–symbiodiniaceae symbiosis.
Collapse
|
31
|
|
32
|
Compound-specific δ 2H analysis highlights the relationship between direct assimilation and de novo synthesis of amino acids from food and water in a terrestrial mammalian omnivore. Oecologia 2020; 193:827-842. [PMID: 32857190 DOI: 10.1007/s00442-020-04730-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
Hydrogen isotope (δ2H) analysis has been routinely used as an ecological tracer for animal movement and migration, yet a biochemical understanding of how animals incorporate this element in the synthesis of tissues is poorly resolved. Here, we apply a new analytical tool, amino acid (AA) δ2H analysis, in a controlled setting to trace the influence of drinking water and dietary macromolecules on the hydrogen in muscle tissue. We varied the δ2H of drinking water and the proportions of dietary protein and carbohydrates with distinct hydrogen and carbon isotope compositions fed to house mice among nine treatments. Our results show that hydrogen in the non-essential (AANESS) and essential (AAESS) AAs of mouse muscle is not readily exchanged with body water, but rather patterns among these compounds can be described through consideration of the major biochemical pathway(s) used by organisms to synthesize or route them from available sources. Dietary carbohydrates contributed more hydrogen than drinking water to the synthesis of AANESS in muscle. While neither drinking water nor dietary carbohydrates directly contributed to muscle AAESS, we did find that a minor but measurable proportion (10-30%) of the AAESS in muscle was synthesized by the gut microbiome using hydrogen and carbon from dietary carbohydrates. δ2H patterns among individual AAs in mice muscle are similar to those we previously reported for bacteria, which provides additional support that this approach may allow for the simultaneous analysis of different AAs that are more influenced by drinking water (AANESS) versus dietary (AAESS) sources of hydrogen.
Collapse
|
33
|
Le Croizier G, Lorrain A, Schaal G, Ketchum J, Hoyos-Padilla M, Besnard L, Munaron JM, Le Loc'h F, Point D. Trophic resources and mercury exposure of two silvertip shark populations in the Northeast Pacific Ocean. CHEMOSPHERE 2020; 253:126645. [PMID: 32283423 DOI: 10.1016/j.chemosphere.2020.126645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Worldwide shark populations have experienced rapid declines over the last decades, mainly due to overfishing. Marine protected areas (MPAs) have thus become an indispensable tool for the protection of these marine predators. Two recently-created MPAs in the Northeast Pacific Ocean, the Revillagigedo National Park and Clipperton Atoll, are characterized by different trophic structures potentially influencing the trophic niche and contaminant exposure of resident sharks in these two sites. In this context, we used carbon (δ13C) and nitrogen (δ15N) stable isotope analyzes as well as total mercury concentrations ([THg]) to assess the effect of foraging site on the trophic niche and Hg levels of juvenile silvertip (ST) sharks Carcharhinus albimarginatus. Analyzing fin clip samples from Revillagigedo and Clipperton, we found that shark δ15N varied spatially in relation to δ15N baselines, suggesting similar trophic position in both MPAs. Moreover, δ13C values indicated that ST sharks from Revillagigedo would feed on different food webs (i.e. both benthic and pelagic) while individuals from Clipperton would only rely on benthic food webs. These differences between MPAs led to a weak overlap of isotopic niches between the two populations, highlighting the site residency of juvenile ST sharks. Within each population, [THg] was not correlated with trophic tracers (δ15N and δ13C) and was also similar between populations. This study revealed no influence of site or food web in [THg] and raises the question of the origin of Hg exposure for reef shark populations in the Northeast Pacific Ocean.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France; Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - James Ketchum
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico
| | - Mauricio Hoyos-Padilla
- Pelagios Kakunjá A.C., Sinaloa 1540, Las Garzas, 23070, La Paz, Baja California Sur, Mexico; Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, Mexico; Fins Attached Marine Conservation, Colorado Springs, USA
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | | | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
34
|
Jardine TD, Galloway AWE, Kainz MJ. Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190639. [PMID: 32536302 DOI: 10.1098/rstb.2019.0639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Determining the transfer and transformation of organic matter in food webs is a fundamental challenge that has implications for sustainable management of ecosystems. Fatty acids (FA) offer a potential approach for resolving complex diet mixtures of organisms because they provide a suite of molecular tracers. Yet, uncertainties in the degree of their biochemical modification by consumers, due to selective retention or metabolism, have limited their application. Here, we consolidated 316 controlled feeding studies of aquatic ectotherms (fishes and invertebrates) involving 1404 species-diet combinations to assess the degree of trophic modification of FA in muscle tissue. We found a high degree of variability within and among taxa in the %FA in consumer muscle tissue versus %FA in diet regression equations. Most saturated FA had weak relationships with the diet (r2 < 0.30) and shallow slopes (m < 0.30), suggesting a lack of retention in muscle when fed in increasing amounts. Contrarily, several essential FA, including linoleic (18:2n-6) and α-linolenic acid (18:3n-3), exhibited significant relationships with the diet (m > 0.35, r2 > 0.50), suggesting supply limitations and selective retention in muscle by consumers. For all FA, relationships strengthened with increasing taxonomic specificity. We also demonstrated the utility of new correction equations by calculating the potential contributions of approximately 20 prey items to the diet of selected species of generalist fishes using a FA mixing model. Our analyses further reveal how a broad range of fishes and invertebrates convert or store these compounds in muscle tissue to meet physiological needs and point to their power in resolving complex diets in aquatic food webs. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.
Collapse
Affiliation(s)
- Timothy D Jardine
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C8.,Canadian Rivers Institute, Fredericton, NB, Canada, E3B 5A3
| | - Aaron W E Galloway
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR 97420, USA
| | - Martin J Kainz
- Inter-university Center for Aquatic Ecosystems Research WasserCluster - Biologische Station Lunz, Lunz am See, Austria
| |
Collapse
|
35
|
Durante LM, Sabadel AJM, Frew RD, Ingram T, Wing SR. Effects of fixatives on stable isotopes of fish muscle tissue: implications for trophic studies on preserved specimens. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02080. [PMID: 31971645 DOI: 10.1002/eap.2080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Isotopic ecology has been widely used to understand spatial connectivity and trophic interactions in marine systems. However, its potential for monitoring an ecosystem's health and function has been hampered by the lack of consistent sample storage and long-term studies. Preserved specimens from museum collections are a valuable source of tissue for analyses from ancient and pre-modern times, but isotopic signatures are known to be affected by commonly used fixatives. The aim of the present study was to understand the effects of fixatives on isotopic signatures of bulk tissue (δ13 Cm and δ15 Nm ) and amino acids (δ13 CAA and δ15 NAA ) of fish muscle and to provide correction equations for the isotopic shifts. Two specimens of each: blue cod (Parapercis colias), blue warehou (Seriolella brama), and king salmon (Oncorhynchus tschawytscha) were sampled at five locations along their dorsal musculature, at four time periods: (1) fresh, (2) after 1 month preserved in formalin, and after (3) 3 and (4) 12 months fixed in either ethanol or isopropanol. Lipid content was positively correlated with C:N ratio (r² = 0.83) and had a significant effect on δ13 C after treatments, but not on δ15 N. C:N ratio (for δ13 Cm ) and percent N (for δ15 Nm ) from preserved specimens contributed to the most parsimonious mixed models, which explained 79% of the variation due to fixation and preservation for δ13 C and 81% for δ15 N. δ13 CAA were generally not affected by fixatives and preservatives, while most δ15 NAA showed different signatures between treatments. δ15 NAA variations did not affect the magnitude of differences between amino acids, allowing scientists to retrieve ecological information (e.g., trophic level) independently of time under preservation. Corrections were applied to the raw data of the experiment, highlighting the importance of δ13 Cm and δ15 Nm correction when fish muscle tissues from wet collections are compared to fresh samples. Our results make it possible to retrieve δ13 Cm , δ15 Nm , δ13 CAA , and δ15 NAA from museum specimens and can be applied to some of the fundamental questions in ecology, such as trophic baseline shifts and changes in community's food web structure through time.
Collapse
Affiliation(s)
- L M Durante
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - A J M Sabadel
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - R D Frew
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - T Ingram
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - S R Wing
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
36
|
Barst BD, Wooller MJ, O’Brien DM, Santa-Rios A, Basu N, Köck G, Johnson JJ, Muir DC. Dried Blood Spot Sampling of Landlocked Arctic Char (Salvelinus alpinus) for Estimating Mercury Exposure and Stable Carbon Isotope Fingerprinting of Essential Amino Acids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:893-903. [PMID: 32045959 PMCID: PMC7748106 DOI: 10.1002/etc.4686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Dried blood spots (DBS), created by applying and drying a whole blood sample onto filter paper, provide a simple and minimally invasive procedure for collecting, transporting, and storing blood. Because DBS are ideal for use in field and resource-limited settings, we aimed to develop a simple and accurate DBS-based approach for assessing mercury (Hg) exposure and dietary carbon sources for landlocked Arctic char, a sentinel fish species in the Arctic. We collected liquid whole blood (from the caudal vein), muscle, liver, and brains of Arctic char (n = 36) from 8 lakes spanning a Hg gradient in the Canadian High Arctic. We measured total Hg concentrations ([THg]) of field-prepared DBS and Arctic char tissues. Across a considerable range, [THg] of DBS (0.04-3.38 μg/g wet wt) were highly correlated with [THg] of all tissues (r2 range = 0.928-0.996). We also analyzed the compound-specific carbon isotope ratios (expressed as δ13 C values) of essential amino acids (EAAs) isolated from DBS, liquid whole blood, and muscle. The δ13 C values of 5 EAAs (δ13 CEAAs ; isoleucine [Ile], leucine [Leu], phenylalanine [Phe], valine [Val], and threonine [Thr]) from DBS were highly correlated with δ13 CEAAs of liquid whole blood (r2 range = 0.693-0.895) and muscle (r2 range = 0.642-0.881). The patterns of δ13 CEAAs of landlocked Arctic char were remarkably consistent across sample types and indicate that EAAs are most likely of algal origin. Because a small volume of blood (~50 µL) dried on filter paper can be used to determine Hg exposure levels of various tissues and to fingerprint carbon sources, DBS sampling may decrease the burdens of research and may be developed as a nonlethal sampling technique. Environ Toxicol Chem 2020;39:893-903. © 2020 SETAC.
Collapse
Affiliation(s)
- Benjamin D. Barst
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Matthew J. Wooller
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Diane M. O’Brien
- Biology and Wildlife Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andrea Santa-Rios
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research (ÖAW-IGF), 6020 Innsbruck, Austria
| | - Jessica J. Johnson
- Biology and Wildlife Department, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, L7S 1A1, Canada
| |
Collapse
|
37
|
Johnson JJ, Olin JA, Polito MJ. A multi-biomarker approach supports the use of compound-specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1781-1791. [PMID: 31344761 DOI: 10.1002/rcm.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Determining the flow of energy from primary producers to higher trophic levels in complex systems remains an important task for ecologists. Biomarkers can be used to trace carbon or energy sources contributing to an organism's tissues. However, different biomarkers vary in their ability to trace carbon sources based on how faithfully they transfer between trophic levels. Comparing emerging biomarker techniques with more commonly used techniques can demonstrate the relative efficacy of each in specific systems. METHODS Two common biomarker techniques, fatty acid analysis (FAA) and bulk stable isotope analysis (SIA), and one emerging biomarker technique, compound-specific stable isotope analysis of amino acids (CSIA-AA), were compared to assess their ability to characterize and quantify basal carbon sources supporting the seaside sparrow (Ammodramus maritimus), a common salt marsh species. Herbivorous insect and deposit-feeding fiddler crab biomarker values were analyzed as proxies of major terrestrial and aquatic basal carbon sources, respectively. RESULTS All three biomarker techniques indicated that both terrestrial and aquatic carbon sources were important to seaside sparrows. However, FAA could only be evaluated qualitatively, due to a currently limited understanding of trophic modification of fatty acids between primary producer and this consumer's tissues. Quantitative stable isotope (SIA or CSIA-AA) mixing models predicted nearly equal contributions of terrestrial and aquatic carbon sources supporting seaside sparrows, yet estimates based on CSIA-AA had greater precision. CONCLUSIONS These findings support the use of CSIA-AA as an emerging tool to quantify the relative importance of basal carbon sources in salt marsh consumers. Integrating multiple biomarker techniques, with their differing benefits and limitations, will help to constrain models of carbon and energy flow in future ecosystem studies.
Collapse
Affiliation(s)
- Jessica J Johnson
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jill A Olin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
38
|
Lachs L, Johari NAM, Le DQ, Safuan CDM, Duprey NN, Tanaka K, Hong TC, Ory NC, Bachok Z, Baker DM, Kochzius M, Shirai K. Effects of tourism-derived sewage on coral reefs: Isotopic assessments identify effective bioindicators. MARINE POLLUTION BULLETIN 2019; 148:85-96. [PMID: 31422307 DOI: 10.1016/j.marpolbul.2019.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Pulau Redang and Pulau Tioman have experienced huge tourism growth over the last two decades, but minimal sewage treatment may threaten the resilience of their coral reefs. This study uses stable isotope techniques to identify suitable bioindicators of sewage nutrients (δ15N) at these islands by measuring macroalgae (Lobophora spp.), gastropods (Drupella spp.), scleractinian coral (Acropora spp.), and leather coral (Sinularia spp.). At tourist hubs using seepage septic tank systems, enrichment of Acropora δ15N (Redang, +0.7‰) and Sinularia δ15N (Tioman, +0.4‰) compared to pristine background levels indicate enhanced sewage nutrient discharge. Carbon isotopes and survey data suggest that sedimentation did not confound these δ15N trends. Potential damaging effects of sewage discharge on the coral reef communities at both islands are highlighted by strong correlations between Acropora δ15N and regional variation in coral reef community structure, and exclusive occurrence of degraded reefs at regions of high sewage influence.
Collapse
Affiliation(s)
- Liam Lachs
- Marine Biology, Ecology & Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Nur Arbaeen Mohd Johari
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Dung Quang Le
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Che Din Mohd Safuan
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nicolas N Duprey
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Rd, Hong Kong, People's Republic of China; School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region
| | - Kentaro Tanaka
- The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Tan Chun Hong
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nicolas C Ory
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Rd, Hong Kong, People's Republic of China; School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region; GEOMAR Helmholtz Centre of Ocean Research Kiel, Marine Evolutionary Ecology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Zainudin Bachok
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - David M Baker
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Rd, Hong Kong, People's Republic of China; School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region
| | - Marc Kochzius
- Marine Biology, Ecology & Biodiversity, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kotaro Shirai
- The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
39
|
Fox MD, Elliott Smith EA, Smith JE, Newsome SD. Trophic plasticity in a common reef‐building coral: Insights from δ13C analysis of essential amino acids. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael D. Fox
- Center for Marine Biodiversity and Conservation Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
| | | | - Jennifer E. Smith
- Center for Marine Biodiversity and Conservation Scripps Institution of Oceanography University of California San Diego La Jolla CA USA
| | - Seth D. Newsome
- Biology Department University of New Mexico Albuquerque NM USA
| |
Collapse
|
40
|
Zgliczynski BJ, Williams GJ, Hamilton SL, Cordner EG, Fox MD, Eynaud Y, Michener RH, Kaufman LS, Sandin SA. Foraging consistency of coral reef fishes across environmental gradients in the central Pacific. Oecologia 2019; 191:433-445. [PMID: 31485849 DOI: 10.1007/s00442-019-04496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/24/2019] [Indexed: 11/30/2022]
Abstract
We take advantage of a natural gradient of human exploitation and oceanic primary production across five central Pacific coral reefs to examine foraging patterns in common coral reef fishes. Using stomach content and stable isotope (δ15N and δ13C) analyses, we examined consistency across islands in estimated foraging patterns. Surprisingly, species within the piscivore-invertivore group exhibited the clearest pattern of foraging consistency across all five islands despite there being a considerable difference in mean body mass (14 g-1.4 kg) and prey size (0.03-3.8 g). In contrast, the diets and isotopic values of the grazer-detritivores varied considerably and exhibited no consistent patterns across islands. When examining foraging patterns across environmental contexts, we found that δ15N values of species of piscivore-invertivore and planktivore closely tracked gradients in oceanic primary production; again, no comparable patterns existed for the grazer-detritivores. The inter-island consistency in foraging patterns within the species of piscivore-invertivore and planktivore and the lack of consistency among species of grazer-detritivores suggests a linkage to different sources of primary production among reef fish functional groups. Our findings suggest that piscivore-invertivores and planktivores are likely linked to well-mixed and isotopically constrained allochthonous oceanic primary production, while grazer-detritivores are likely linked to sources of benthic primary production and autochthonous recycling. Further, our findings suggest that species of piscivore-invertivore, independent of body size, converge toward consuming low trophic level prey, with a hypothesized result of reducing the number of steps between trophic levels and increasing the trophic efficiency at a community level.
Collapse
Affiliation(s)
- Brian J Zgliczynski
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA.
| | | | | | - Elisabeth G Cordner
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Michael D Fox
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Yoan Eynaud
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | | | - Les S Kaufman
- Department of Biology, Boston University, Boston, MA, USA
| | - Stuart A Sandin
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
41
|
Rowe AG, Iken K, Blanchard AL, O'Brien DM, Døving Osvik R, Uradnikova M, Wooller MJ. Sources of primary production to Arctic bivalves identified using amino acid stable carbon isotope fingerprinting . ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2019; 55:366-384. [PMID: 31185743 DOI: 10.1080/10256016.2019.1620742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Benthic invertebrates are a crucial trophic link in Arctic marine food webs. However, estimates of the contribution of different primary production sources sustaining these organisms are not well characterised. We measured the stable carbon isotope values (δ13C) of essential amino acids (EAAs) in muscle tissue from two common bivalve genera (Macoma spp. and Astarte spp.) collected in Hanna Shoal in the northeastern Chukchi Sea. Mixing models comparing the δ13CEAA fingerprints of the bivalves to a suite of primary production endmembers revealed relatively high contributions of EAAs from phytoplankton and bacteria in both species. We also examined whether δ13CEAA fingerprints could be produced from the EAAs preserved in bivalve shells, which could allow primary production sources to be estimated from ancient bivalve shells. The δ13CEAA fingerprints from a suite of paired modern bivalve shells and muscle from Macoma calcarea from across the Chukchi Sea revealed a correspondence between the estimates of the dominant primary production source of EAAs derived from analyses of these two tissue types. Our findings indicate that δ13CEAA fingerprinting of marine bivalves can be used to examine dominant organic matter sources in the Arctic marine benthos in recent years as well as in deeper time.
Collapse
Affiliation(s)
- Audrey G Rowe
- a Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks , Fairbanks , Alaska , USA
- b Alaska Stable Isotope Facility, Water and Environmental Research Center, University of Alaska Fairbanks , Fairbanks , Alaska , USA
| | - Katrin Iken
- a Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks , Fairbanks , Alaska , USA
| | - Arny L Blanchard
- a Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks , Fairbanks , Alaska , USA
| | - Diane M O'Brien
- c Institute of Arctic Biology, University of Alaska Fairbanks , Fairbanks , Alaska , USA
| | - Renate Døving Osvik
- d The Norwegian College of Fishery Science, UiT Norway's Arctic University , Tromsø , Norway
| | - Martina Uradnikova
- d The Norwegian College of Fishery Science, UiT Norway's Arctic University , Tromsø , Norway
| | - Matthew J Wooller
- a Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks , Fairbanks , Alaska , USA
- b Alaska Stable Isotope Facility, Water and Environmental Research Center, University of Alaska Fairbanks , Fairbanks , Alaska , USA
| |
Collapse
|
42
|
Skinner C, Newman SP, Mill AC, Newton J, Polunin NVC. Prevalence of pelagic dependence among coral reef predators across an atoll seascape. J Anim Ecol 2019; 88:1564-1574. [PMID: 31264204 PMCID: PMC6852557 DOI: 10.1111/1365-2656.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Coral reef food webs are complex, vary spatially and remain poorly understood. Certain large predators, notably sharks, are subsidized by pelagic production on outer reef slopes, but how widespread this dependence is across all teleost fishery target species and within atolls is unclear. North Malé Atoll (Maldives) includes oceanic barrier as well as lagoonal reefs. Nine fishery target predators constituting ca. 55% of the local fishery target species biomass at assumed trophic levels 3–5 were selected for analysis. Data were derived from carbon (δ13C), nitrogen (δ15N) and sulphur (δ34S) stable isotopes from predator white dorsal muscle samples, and primary consumer species representing production source end‐members. Three‐source Bayesian stable isotope mixing models showed that uptake of pelagic production extends throughout the atoll, with predatory fishes showing equal planktonic reliance between inner and outer edge reefs. Median plankton contribution was 65%–80% for all groupers and 68%–88% for an emperor, a jack and snappers. Lagoonal and atoll edge predators are equally at risk from anthropogenic and climate‐induced changes, which may impact the linkages they construct, highlighting the need for management plans that transcend the boundaries of this threatened ecosystem.
Collapse
Affiliation(s)
- Christina Skinner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Steven P Newman
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Banyan Tree Marine Lab, Vabbinfaru, Republic of the Maldives
| | - Aileen C Mill
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jason Newton
- NERC Life Sciences Mass Spectrometry Facility, Scottish Universities Environmental Research Centre, East Kilbride, UK
| | - Nicholas V C Polunin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
MacDonald C, Bridge TCL, McMahon KW, Jones GP. Alternative functional strategies and altered carbon pathways facilitate broad depth ranges in coral‐obligate reef fishes. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chancey MacDonald
- Marine Biology and Aquaculture Science, College of Science and Engineering James Cook University Townsville Qld Australia
- Australian Research Council Centre for Excellence in Coral Reef Studies James Cook University Townsville Qld Australia
| | - Tom C. L. Bridge
- Australian Research Council Centre for Excellence in Coral Reef Studies James Cook University Townsville Qld Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland Queensland Museum Network Townsville Qld Australia
| | - Kelton W. McMahon
- Institute of Marine Sciences University of California – Santa Cruz Santa Cruz CA USA
- Graduate School of Oceanography University of Rhode Island Narragansett RI USA
| | - Geoffrey P. Jones
- Marine Biology and Aquaculture Science, College of Science and Engineering James Cook University Townsville Qld Australia
- Australian Research Council Centre for Excellence in Coral Reef Studies James Cook University Townsville Qld Australia
| |
Collapse
|
44
|
|
45
|
Pollierer MM, Larsen T, Potapov A, Brückner A, Heethoff M, Dyckmans J, Scheu S. Compound‐specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Thomas Larsen
- Max Planck Institute for the Science of Human History Kahlaische Straße 07745 Jena Germany
| | - Anton Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Adrian Brückner
- Ecological Networks Technische Universität Darmstadt Schnittspahnstraße 3 64287 Darmstadt Germany
| | - Michael Heethoff
- Ecological Networks Technische Universität Darmstadt Schnittspahnstraße 3 64287 Darmstadt Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research and Analysis Büsgen‐Institute University of Göttingen Büsgenweg 2 37077 Göttingen Germany
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use University of Göttingen Von‐Siebold‐Straße 8 37075 Göttingen Germany
| |
Collapse
|
46
|
Fey P, Bustamante P, Bosserelle P, Espiau B, Malau A, Mercader M, Wafo E, Letourneur Y. Does trophic level drive organic and metallic contamination in coral reef organisms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:208-221. [PMID: 30831362 DOI: 10.1016/j.scitotenv.2019.02.311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Metallic and organic pollutants constitute a serious threat for coral reef ecosystems, potentially affecting a great number of species interacting within complex trophodynamic processes. Pesticides, PCBs and trace elements were measured on coral reef communities of three Pacific islands (Moorea, Wallis and New Caledonia) in relation with δ15N values, a proxy of trophic level. Several potential sources of organic matter, benthic invertebrates and fish belonging to various trophic strategies were sampled at each island. Wallis and New Caledonia displayed, respectively, the highest concentrations of pesticides and trace elements. In the three islands, most trace element concentrations (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and V) decreased when δ15N was rising (i.e. bioreduction), whereas Hg and Se biomagnified with increasing δ15N values. Only few trace elements in some islands did not show any significant trend in relation with δ15N (i.e., Ag in New Caledonia, Zn in Wallis and As plus Zn in Moorea). PCBs concentrations showed a significant bioreduction in New Caledonia and in Moorea, but a significant biomagnification in Wallis. Aldrin and heptachlor were the only pesticides to show a similar significant bioreduction in the three islands. Other pesticides, such as chlordecone, diazinon, endosulfan I and II, heptachlor-epoxide A and B, lindane and pp'-DDE displayed contrasted patterns (e.g. chlordecone significantly biomagnified in New Caledonia, significantly bioreduced in Wallis and did not displayed any significant trend in Moorea). Finally, for unclear reasons, Moorea displayed only negative significant correlations between δ15N and all pesticides (except pp'-DDT). Our results highlight that trophic level, here assessed through δ15N values, is a good predictor of metallic trace elements biomagnification or bioreduction in coral reef organisms. However, at large spatial scale, trophic level relevance to predict pesticides and PCBs biomagnification or bioreduction should be considered with caution and studied in close relation with local characteristics.
Collapse
Affiliation(s)
- P Fey
- Université de la Nouvelle-Calédonie, Institut de Sciences Exactes et Appliquées, EA 7484, LabEx "CORAIL", BP R4, 98851 Nouméa Cedex, New Caledonia
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - P Bosserelle
- Pacific Community (SPC), Fisheries, Aquaculture and Marine Ecosystem division, BP D5, 98848 Nouméa Cedex, New Caledonia; Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), LabEx "CORAIL" USR 3278 CNRS-EPHE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - B Espiau
- Centre de Recherche Insulaire et Observatoire de l'Environnement (CRIOBE), LabEx "CORAIL" USR 3278 CNRS-EPHE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
| | - A Malau
- Service de l'Environnement de Wallis et Futuna, BP 294, 98600 Mata Utu, Wallis and Futuna
| | - M Mercader
- Centre de Formation et de Recherche sur les Environnements Méditerranéens (CEFREM), UMR 5110 CNRS-UPVD, 52 avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - E Wafo
- Laboratoire de Chimie Analytique, Aix-Marseille Université, INSERM, SSA, IRBA, MCT, 13005 Marseille, France
| | - Y Letourneur
- Université de la Nouvelle-Calédonie, Institut de Sciences Exactes et Appliquées, EA 7484, LabEx "CORAIL", BP R4, 98851 Nouméa Cedex, New Caledonia.
| |
Collapse
|
47
|
Pelagic Subsidies Underpin Fish Productivity on a Degraded Coral Reef. Curr Biol 2019; 29:1521-1527.e6. [DOI: 10.1016/j.cub.2019.03.044] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022]
|
48
|
Vergés A, McCosker E, Mayer‐Pinto M, Coleman MA, Wernberg T, Ainsworth T, Steinberg PD. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13310] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adriana Vergés
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Australia Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Erin McCosker
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Australia Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Mariana Mayer‐Pinto
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Australia Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Melinda A. Coleman
- Department of Primary Industries New South Wales Fisheries Coffs Harbour, New South Wales Australia
- National Marine Science Centre, Southern Cross University Coffs Harbour, New South Wales Australia
| | - Thomas Wernberg
- School of Biological Sciences, UWA Oceans Institute University of Western Australia Crawley Western Australia Australia
- Department of Science and Environment (DSE) Roskilde University Roskilde Denmark
| | - Tracy Ainsworth
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Australia Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
| | - Peter D. Steinberg
- Centre for Marine Science & Innovation and Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences UNSW Australia Sydney New South Wales Australia
- Sydney Institute of Marine Science Mosman New South Wales Australia
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technical University Singapore City Singapore
| |
Collapse
|
49
|
Zuercher R, Galloway AWE. Coastal marine ecosystem connectivity: pelagic ocean to kelp forest subsidies. Ecosphere 2019. [DOI: 10.1002/ecs2.2602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Rachel Zuercher
- University of California Santa Cruz Santa Cruz California 95060 USA
| | - Aaron W. E. Galloway
- Oregon Institute of Marine Biology University of Oregon Charleston Oregon 97420 USA
| |
Collapse
|
50
|
A Guide to Using Compound-Specific Stable Isotope Analysis to Study the Fates of Molecules in Organisms and Ecosystems. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11010008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The measurement of stable isotopes in ‘bulk’ animal and plant tissues (e.g., muscle or leaf) has become an important tool for studies of functional diversity from organismal to continental scales. In consumers, isotope values reflect their diet, trophic position, physiological state, and geographic location. However, interpretation of bulk tissue isotope values can be confounded by variation in primary producer baseline values and by overlapping values among potential food items. To resolve these issues, biologists increasingly use compound-specific isotope analysis (CSIA), in which the isotope values of monomers that constitute a macromolecule (e.g., amino acids in protein) are measured. In this review, we provide the theoretical underpinnings for CSIA, summarize its methodology and recent applications, and identify future research directions. The key principle is that some monomers are reliably routed directly from the diet into animal tissue, whereas others are biochemically transformed during assimilation. As a result, CSIA of consumer tissue simultaneously provides information about an animal’s nutrient sources (e.g., food items or contributions from gut microbes) and its physiology (e.g., nitrogen excretion mode). In combination, these data clarify many of the confounding issues in bulk analysis and enable novel precision for tracing nutrient and energy flow within and among organisms and ecosystems.
Collapse
|